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Abstract— This paper studies the model reduction prob-
lem in the Loewner framework for second-order network
systems evolving on graphs. The selection of particular sets
of tangential interpolation data allows constructing reduced
order models which interpolate the underlying network system
while preserving the second-order structure of the system. The
conditions that the tangential interpolation data must satisfy are
established on the basis of the block structure of the Loewner
matrices. We use this result to link the Loewner matrices to
the cluster matrix gained by partitioning the graph associated
with the underlying model. Finally, we provide an illustrative
example to validate the obtained results.

Index Terms— Reduced order modeling; Networked control
systems; Network analysis and control; Large-scale systems

I. INTRODUCTION

Second-order network systems with diffusive couplings
can be found in various scientific disciplines [1]. These
systems usually give rise to a large number of differential
equations which complicates the analysis, the simulation,
and the control of the underlying network describing the
diffusive couplings between subsystems. In light of this,
model reduction for complex network systems has gained
interest for the purpose of reducing the computational com-
plexity of numerical simulations and facilitating analysis
and synthesis of network systems [2]–[9]. The purpose of
model order reduction is to construct a low-order model
(the reduced order model) which approximates a high-order
model by accurately capturing the essential behaviour of the
high-order system, [10], [11]. The Loewner framework is a
data-driven approach which generates reduced order models
based on selected interpolation data (or measurements).
The essential objects underpinning this framework are the
Loewner matrices [12]. These are divided-difference matrices
built from tangential interpolation data obtained by sampling
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the transfer function of the underlying system along par-
ticular directions and frequencies. These objects have been
originally used to solve interpolation problems, and in the
development of interpolants and reduced order models [13]–
[17]. Yet, interpolants constructed using Loewner matrices
may not possess the structure of the underlying system for
arbitrary interpolation points since they are, by construction,
independent of any particular state-space representation.

This paper aims to delve into the characterization of
tangential interpolation data used to construct reduced order
models. In particular, we set conditions upon the tangential
data in order to retain the second-order structure and, possi-
bly, the second-order structure of network systems evolving
on graphs. To this end, and differently from [5] and [7],
we propose a finite family of reduced-order models in the
Loewner framework. These models which interpolate the
large-scale system, are obtained by partitioning the underly-
ing graph of the system and are parametrized by the cluster
matrix.

This paper is organized as follows. In Section II the
notion of model reduction in the Loewner framework is
reviewed. In Section III the considered class of second-
order network systems is presented and the problem of
preservation of second-order network structure is formalized.
In Section IV the main result of the paper is given. In
particular, we consider the scenario in which the tangential
data are generated by a second-order network system, and an
interpolant retaining the underlying structure is constructed.
Then, we specialize the presented conditions in the case
in which a graph can be partitioned and a reduced order
model is obtained by clustering neighbouring subsystems.
In Section V an illustrative example is used to show the
effectiveness of the proposed model reduction technique.
Finally, in Section VI some concluding remarks are given.

Notation. The fields of real and complex numbers are
denoted by R and C, respectively. The set of vectors with
n rows having complex entries is denoted by Cn. The set
of matrices with n rows and m columns having complex
entries is denoted by Cn×m. The cardinality of a set A is
denoted by |A|. The spectrum of a square matrix A ∈ Cn×n

is denoted by σ(A). The adjoint matrix of A ∈ Cn×m is
denoted by A∗. A matrix A is self-adjoint if A = A∗. The
n×1 column vector of ones is denoted by 1n. Given a list of
n elements ai, diag(a1, . . . , an) indicates a diagonal matrix
with diagonal elements ai’s.
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II. PRELIMINARIES

Consider a linear, time-invariant, system of the form

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(1)

with state x(t) ∈ Cn, input u(t) ∈ Cm, output y(t) ∈ Cp,
and matrices A ∈ Cn×n, B ∈ Cn×m, and C ∈ Cp×n with
constant entries1. The triple (A,B,C) is assumed to be a
minimal realization of the system (1), i.e. the system (1) is
reachable and observable.

Tangential interpolation data are central to the construction
of a reduced order model which interpolates the transfer
matrix H(s) = C(sI − A)−1B of the system (1). These
data are represented by sets of right-tangential data, and left-
tangential data, of the form

{(λi, ri, wi) | λi ∈ C, ri ∈ Cm, wi ∈ Cp, i = 1, . . . , ρ},
{(µj , ℓj , vj) | µj ∈ C, ℓ∗j ∈ Cp, v∗j ∈ Cm, j = 1, . . . , ν},
respectively. Tangential interpolation data generated by an
underlying system are collected by sampling the transfer
matrix H along specific directions and frequencies, i.e. the
sets of data satisfy the so-called interpolation conditions

H(λi)ri = wi, i = 1, . . . , ρ,

ℓjH(µj) = vj , j = 1, . . . , ν.
(2)

Using the interpolation data, we build the Loewner matrix

L =


v1r1−ℓ1w1

µ1−λ1
· · · v1rρ−ℓ1wρ

µ1−λρ

...
. . .

...
vvr1−ℓvw1

µν−λ1
· · · vvrρ−ℓvwρ

µν−λρ

 , (3)

and the shifted Loewner matrix

σL =


µ1v1r1−λ1ℓ1w1

µ1−λ1
· · · µ1v1rρ−λρℓ1wρ

µ1−λρ

...
. . .

...
µvvvr1−λ1ℓvw1

µv−λ1
· · · µvvvrρ−λρℓvwρ

µv−λρ

 . (4)

Note that the Loewner matrix, L, and the shifted Loewner
matrix, σL, are independent of any particular state-space
representation of the underlying system. The tangential data
can be represented compactly using the matrices

Λ = diag(λ1, . . . , λρ),

R = [r1 · · · rρ],

W = [w1 · · · wρ],

M = diag(µ1, . . . , µν),

L∗ = [ℓ∗1 · · · ℓ∗ν ],

V ∗ = [v∗1 · · · v∗ν ],

(5)

with Λ ∈ Cρ×ρ, R ∈ Cm×ρ, W ∈ Cp×ρ, M ∈ Cν×ν , L∗ ∈
Cp×ν , and V ∗ ∈ Cm×ν . Throughout the paper we make the
standing assumption that A, Λ, and M have no common
eigenvalues, i.e. σ(Λ) ∩ σ(A) = ∅, σ(M) ∩ σ(Λ) = ∅, and
σ(A)∩ σ(M) = ∅. It follows that the Loewner matrix (3) is
the unique solution of the Sylvester equation

LΛ−ML = LW − V R, (6)

1Throughout the paper, we consider complex-valued signals and matrices
which are solely obtained through coordinates transformation of real-valued
signals and matrices, as in [16].

and the shifted Loewner matrix (4) is the unique solution of
the Sylvester equation

σLΛ−MσL = LWΛ−MVR. (7)

By uniqueness of solutions to the equations (6) and (7)
it follows that the shifted Loewner matrix, σL, can be
equivalently expressed as

σL = LΛ + V R, σL = ML+ LW.

Following [14], for given Λ and M , if the matrices L, σL, V ,
and W are known, ρ = ν, and (sL− σL) is nonsingular for
all s ∈ σ(Λ)∪σ(M), then a model satisfying conditions (2),
with state r(t) ∈ Cρ, input ur(t) ∈ Cm, and output yr(t) ∈
Cp, is described by the equations

Lṙ(t) = σLr(t)− V ur(t),

yr(t) = Wr(t).
(8)

The system (8) is by construction an interpolant of the
system (2) at the tangential interpolation data (Λ, R,M,L),
i.e. the transfer matrix Hr(s) = −W (sL−σL)−1V satisfies
the interpolation conditions

H(λi)ri = Hr(λi)ri = wi, i = 1, . . . , ρ,

ℓjH(µj) = ℓjHr(λj) = vj , j = 1, . . . , ν.
(9)

The following definition is introduced to define a reduced
order model in the Loewner framework.

Definition 1 (Reduced order model). Let Σ and Σ̄ be two
systems of order n and v, respectively. Σ̄ is a reduced order
model of Σ in the Loewner sense if Σ and Σ̄ satisfies the
interpolation conditions (9) at (Λ, R,M,L) and v < n.

Consider now two auxiliary systems: a “signal generator”
which is constructed from right-tangential interpolation data
and it is described by the equations

ζ̇r(t) = Λζr(t), z(t) = Rζr(t), (10)

with state ζr(t) ∈ Cρ and output z(t) ∈ Cm, and a “filter”
which is constructed from left-tangential interpolation data
and it is described by the equations

ζ̇ℓ(t) = Mζℓ(t) + Lv(t), (11)

with state ζℓ(t) ∈ Cv and input v(t) ∈ Cp. The cascade
interconnection of (10) and the plant (1) obtained setting
u = z possesses an invariant manifold MX = {(x, ζr) ∈
Cn × Cρ | x = Xζr}, in which the tangential generalized
controllability matrix, X , is defined as the unique solution,
by our standing assumption, of the Sylvester equation

AX +BR = XΛ. (12)

Similarly, the cascade interconnection of the plant (1)
and (11) obtained setting v = y possesses an invariant
manifold MY = {(x, ζℓ) ∈ Cn × Cv | ζℓ = −Y x}, in
which the tangential generalized observability matrix, Y , is
defined as the unique solution, by our standing assumption,
of the Sylvester equation

Y A+ LC = MY. (13)
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Consequently, the Loewner matrix and the shifted Loewner
matrix can be expressed as

L = −Y X, σL = −Y AX, (14)

and the right tangential data matrix, W , and the left tangen-
tial data matrix, V , can be expressed as

W = CX, V = Y B, (15)

respectively. Hence, considering the interconnection of the
signal generator (10), the plant (1), and the filter (11),
obtained setting u = z and v = y, and the restriction to
MX and the projection on MY of the dynamics, yields

Y Xζ̇r(t) = Y AXζr(t) + Y Bu(t), (16)
y(t) = CXζr(t).

The system (16), which is algebraically equivalent to the
interpolant (8), is essential for constructing an interpolant
which retains the structure of the underlying system.

III. PROBLEM FORMULATION

In what follows we consider the model reduction problem
for second-order network systems on graphs. A graph is
a pair G := (V,E) composed of a set of vertices, V =
{v1, . . . , vn̄}, and a set of edges, E ⊂ V × V. A graph is
weighted if, for any pair (vi, vj) ∈ E, the associated edge
is assigned a µi,j ∈ R\0. For all (vi, vj) /∈ E we consider
µi,j = 0. For any undirected weighted graph G we can define
a n̄× n̄ Laplacian matrix, L, with (i, j)-th entry defined as

Li,j :=

{∑n
k=1,k ̸=j µk,j i = j,

−µi,j otherwise.

A second-order network system on a graph G is a network
system described by an inhomogeneous second-order differ-
ential equation of the form

Gu(t) = P q̈(t) +Dq̇(t) +Kq(t),

y(t) = Z1q(t) + Z2q̇(t),
(17)

where q(t) ∈ Cn̄ describes the state, y(t) ∈ Cp describes
the output, and u(t) ∈ Cm describes the input. The matrix
P ∈ Cn̄×n̄ is assumed self-adjoint and positive definite. The
matrices K ∈ Cn̄×n̄ and D ∈ Cn̄×n̄ are assumed self-adjoint
and positive definite and are defined as

K = Sk + αkL, D = Sd + αdK,

respectively, where Sk and Sd are non-negative diagonal
matrices; αk and αd are positive scalars; and L is the
Laplacian matrix associated with the weighted graph G. By
its structure, the second-order network system (17) can be
written in the form (1) with n = 2n̄ and matrices

A =

[
0 P−1

−K −DP−1

]
, B =

[
0
G

]
,

C =
[
Z1 Z2P

−1
]
.

(18)

The objective of this paper is to determine conditions on the
tangential interpolation data such that an interpolant of the
high-order system not only interpolates the system at desired

frequencies and along desired directions, but also has the
form (17). In particular, the interpolant must be a reduced
second-order network system of the form

Ḡū(t) = P̄ ¨̄q(t) + D̄ ˙̄q(t) + K̄q̄(t),

ȳ(t) = Z̄1q̄(t) + Z̄2 ˙̄q(t),
(19)

with reduced state q̄(t) ∈ Cρ̄ (for ρ̄ < n̄), self-adjoint and
positive definite matrices P̄ ∈ Cρ̄×ρ̄, K̄ ∈ Cρ̄×ρ̄, and D̄ ∈
Cρ̄×ρ̄ defined as

K̄ = S̄k + ᾱkL̄, D̄ = S̄d + ᾱdK̄, (20)

where S̄k and S̄d are non-negative diagonal matrices, and
ᾱk and ᾱd are positive scalars. In this respect, the matrix L̄
should be a reduced order Laplacian matrix associated with
a weighted and undirected graph Ḡ.

IV. MAIN RESULT

To begin with, consider a nonsingular Loewner matrix, L,
and the right- and left-tangential data (5). With this in mind,
the coordinates transformation ω := Lr yields

ω̇(t) = σLL−1ω(t)− V ur(t),

yr(t) = WL−1ω(t).
(21)

To discuss the second-order structure we set the order of the
reduction ρ = 2ρ̄ and, without loss of generality, we consider
Loewner matrices as block-structured matrices of the form

σL : =

[
σL11 σL12

σL21 σL22

]
, L : =

[
L11 L12

L21 L22

]
, (22)

with Lij ∈ Cρ̄×ρ̄, σLij ∈ Cρ̄×ρ̄. In a similar fashion, the
right-tangential data can be assumed in the block structure

Λ : =

[
Λ11 Λ12

Λ21 Λ22

]
,

R :=
[
R1 R2

]
,

W :=
[
W1 W2

]
,

(23)

with Λij ∈ Cρ̄×ρ̄, Ri ∈ Cm×ρ̄, and Wi ∈ Cp×ρ̄, and the
left-tangential data

M :=

[
M11 M12

M21 M22

]
, L :=

[
L1

L2

]
, V :=

[
V1

V2

]
, (24)

with Mij ∈ Cρ̄×ρ̄, Li∈ Cρ̄×p, and Vi∈ Cρ̄×m.

The following is a list of lemmata concerning particular
properties which can be achieved by selecting tangential
interpolation data.

Lemma 1. Consider the right-tangential data, (Λ, R,W ),
and the left-tangential data, (M,L, V ), and suppose that L
and σL in (22) are such that

σL11 = 0, σL12 = I, σL21 = −I,

L12 = 0, L21 = 0, V1 = 0.
(25)

Then the interpolant (21) is equivalent to a second-order
inhomogeneous system of the form

−V2ū(t) = L22 ¨̄q(t)− σL22 ˙̄q(t) + L−1
11 q̄(t),

ȳ(t) = W1L−1
11 q̄(t) +W2 ˙̄q(t),

(26)
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Proof: Consider L and σL as in (22), W as in (23),
and V as in (24). With (25) in mind we have that

σL =

[
0 I
−I σL22

]
, L =

[
L11 0
0 L22

]
, V =

[
0
V2

]
.

By substituting the above matrices in (21), and setting ω =
(ω1, ω2), we compute the second order equation

L22ω̈1(t) = σL22L−1
22 ω2(t)− L−1

11 ω1(t)− V2ur(t),

yr(t) = W1L−1
11 ω1(t) +W2L−1

22 ω2(t).

Finally, setting ω1 = q̄ and ω2 = L22 ˙̄q yields the second-
order inhomogeneous system (26).

To address the structure preservation problem we assume
the existence of an interpolant of the form (16) and an
underlying system of the form (17) generating the tangential
interpolation data. By the second-order structure (17) the
tangential generalized controllability matrix, X , and the
tangential generalized observability matrix, Y , yield block-
structured matrices of the form

X =

[
X11 X12

X21 X22

]
, Y =

[
Y11 Y12

Y21 Y22

]
,

with Xij ∈ Cn̄×ρ̄ and Yij ∈ Cρ̄×n̄.

Lemma 2. Consider the network system (17) and let (21)
be its interpolant at (Λ, R,M,L). Suppose that (Λ, R,M,L)
are such that X and Y satisfy (12) and (13) with

X12 = 0, X21 = 0, Y12 = 0, Y21 = 0. (27)

Then (21) yields a second-order system of the form (26) with
matrices

L12 = 0, L11 = −Y11X11,

L21 = 0, L22 = −Y22X22,

V1 = 0, W1 = Z1X11,

V2 = Y22G, W2 = Z2P
−1X22,

(28)

and

σL11 = 0, σL12 = −Y11P
−1X22,

σL21 = Y22KX11, σL22 = Y22DP−1X22.
(29)

Proof: Recall that, in terms of X and Y , the structure
of L and σL is as in (14) and the structure of V and W is as
in (15). Then, by construction, we have that the conditions
(27) imply (28) and (29).

Lemma 3. Consider the network system (17) and let (21)
be its interpolant at (Λ, R,M,L). Suppose that

X11 = −K−1Y ∗
11, X12 = 0,

X21 = 0, X22 = −PY ∗
22.

(30)

If there exists a unique matrix, Y , satisfying (12), and such
that (30) satisfies (13), with Y12 = 0 and Y21 = 0, then

σL11 = 0, σL12 = −σL∗
21, σL22 = σL∗

22 < 0.

Moreover, if for some nonsingular matrix Φ ∈ Cn̄×n̄

Y11 = (Y22ΦY
∗
22)

−1Y22Φ, (31)

then σL12 = −σL21 = I .

Proof: Substituting (30) in (29) we have that

σL12 = Y11Y
∗
22, σL21 = −Y22Y

∗
11, σL22 = −Y22DY ∗

22,
(32)

and thus, by construction, σL12 = −σL∗
21 and σL22 =

σL∗
22 < 0 since D = D∗ > 0. Finally, combining the

structure (31) with the matrices in (32) we directly deduce
that σL12 = I and σL21 = −I .

The lemmata lay the foundation for the solution of the
considered problem. In particular, we present an interpolant
for the second-order network system (17) which preserves
the structure of (17) while accomplishing interpolation at
(Λ, R,M,L).

Proposition 1 (Structure preservation). Consider the net-
work system (17) and let (21) be its interpolant at
(Λ, R,M,L). Suppose that there exist X and Y , unique
solutions of (12) and (13), respectively, of the form

Y =

[
(Y22KY ∗

22)
−1Y22K 0

0 Y22

]
,

X =

[
−Y ∗

22(Y22KY ∗
22)

−1 0
0 −PY ∗

22

]
.

(33)

Then the interpolant (21) is equivalent to the reduced order
network system (19) with

K̄ = Y22KY ∗
22, P̄ = Y22PY ∗

22, D̄ = Y22DY ∗
22,

Ḡ = −Y22G, Z̄1 = −Z1Y
∗
22, Z̄2 = −Z2Y

∗
22.

(34)

Proof: The proof is constructive and follows by substi-
tuting the matrices (28) and (33) into the system (26).

The construction of an interpolant for the second-order
network systems (17), which preserves the structure at
(Λ, R,M,L), yields a reduced Laplacian matrix, L̄, which
is not directly obtained by partitioning the vertices of the
underlying graph G. The obtained reduced Laplacian matrix
in (20) is expressed in terms of the bottom-right block of
the tangential generalized observability matrix, Y , i.e. L̄ =
Y22LY ∗

22, where the matrix Y22 is such that the Laplacian
structure of the matrix L is retained in (19). In this respect,
we proceed by associating to Y22 the properties of a cluster
matrix, with the aim of retaining not only the Laplacian
structure of L̄ but also the structure of the underlying graph
of the reduced order model.

Recall that a cluster of a graph G is a nonempty index sub-
set of V, and a cluster matrix associated to a clustering C =
{C1, . . . , Cρ̄} is defined by T := (κ(C1), κ(C2), · · · , κ(Cρ̄)) ,
where κ(Ci) ∈ Rn̄ is the characteristic vector of Ci. The
cluster matrix is such that: the s-th element of κ(Ci) is 1 if
vs ∈ Ci and 0 otherwise; the clustering C = {C1, . . . , Cρ̄} is
a partition of G, that is Ci ∩ Cj = ∅ and

⋃ρ̄
i=1 Ci = V; the

characteristic vector κ(Ci) ∈ Rn̄ is such that 1∗
n̄κ(Ci) = |Ci|

with Ci ̸= ∅. The finite set T = {T1, . . . , Tφ} is the set of
all n̄× ρ̄ cluster matrices obtained partitioning the set V.
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With conditions (28) in mind, we can force the matrix
Y22 to define a clustering C, i.e. Y ∗

22 = T ∈ T. The
selection of the clustering implies that the matrices in (34) -
characterizing the reduced order second-order equation (19) -
are solely composed of a cluster matrix, T , which is obtained
by partitioning the set V, and of the matrices P , D, and K,
which are matrices defining the underlying system, namely

K̄ = T ∗KT , P̄ = T ∗PT , D̄ = T ∗DT .

Theorem 1. Consider a system of the form (1) with matri-
ces (18). Then for any n̄×ρ̄ cluster matrix T ∈ T there exists
a reduced order network of the form (21) with matrices

L =

[
K̄−1 0
0 P̄

]
, σL =

[
0 I
−I −D̄

]
,

V =

[
0

T ∗G

]
, W = −

[
Z1T K̄−1 Z2T

]
,

(35)

which is an interpolant at

Λ=

[
0 K̄

−P̄−1(I + T ∗GR1) −P̄−1(D̄ + T ∗GR2)

]
,

M=

[
L1Z1T (I + L1Z2T )P̄−1

L2Z1T − K̄ (σL22 + L2Z2T )P̄−1

]
,

(36)

for any pair (R,L) such that σ(Λ) ∩ σ(A) = ∅, σ(M) ∩
σ(Λ) = ∅, and σ(A) ∩ σ(M) = ∅.

Proof: For a given system with matrices (18), we set
the tangential interpolation data (Λ,M) as in (36) for any
pair (R,L). Then, plugging (18) and (36) into the Sylvester
equations (12) and (13) we have that the matrices

Y =

[
(T ∗KT )−1T ∗K 0

0 T ∗

]
, X=−

[
T (T ∗KT )−1 0

0 PT

]
,

are solutions of (12) and (13), respectively. However, since
(Λ,M) in (36) are parametrized by R and L, respectively,
then to ensure uniqueness of the solutions of (12) and (13)
the matrices R and L must be such that σ(Λ)∩σ(A) = ∅ and
σ(A)∩σ(M) = ∅. Hence, from the computed X and Y and
from the equations (14) and (15) we have that the matrices L,
σL, V , and W yield the form (35). Finally, by construction,
L and σL are solutions of (7) and (6), respectively, and
uniqueness is achieved since σ(M) ∩ σ(Λ) = ∅.

Theorem 1 reveals that there exists a finite family of
reduced order model, parametrized by the cluster matrix
T ∈ T, which preserves the network system structure and
interpolates the system (17) at (36). The advantage of using
the result of Theorem 1 is that, since the reduced order
model meets the interpolation conditions by construction,
we can always build a reduced order model which preserves
the network system structure without solving any Sylvester
equations for any arbitrary n̄ × ρ̄ cluster matrix T ∈ T.
Hence, for each cluster matrix Ti ∈ T there exists a transfer
function for the system (21) of the form

Hri(s) = −Wi(sLi − σLi)
−1Vi (37)

Algorithm 1 Minimum H2-norm Loewner interpolant

Input: A, B, C, as in (18)
Initialize the order of the reduction ρ̄ such that ρ̄ < n̄

1: Compute the set T = {T1, . . . , Tφ} containing all the
n̄× ρ̄ cluster matrices partitioning the underlying graph

2: Set H as the transfer function with matrices (A,B,C)
3: for i = 1 : φ do
4: Set Hri as the i-th transfer function in (37)
5: Set ei = ||H −Hri ||H2 as the H2-norm of the error
6: end for
7: Select k such that ek = min(e1, · · · , eφ)
8: Select Tk from T
9: return Lk, σLk, Vk, Wk from (38)

with matrices as in (35), i.e.

Li =

[
(T ∗

i KTi)−1 0
0 T ∗

i PTi

]
, σLi =

[
0 I
−I −T ∗

i DTi

]
,

Vi =

[
0

T ∗
i G

]
, Wi = −

[
Z1TiK̄−1 Z2Ti

]
.

(38)
In this respect, among all the possible interpolants as-

sociated with the clustering in (37), we can formulate an
optimization problem in terms of the H2-norm of the error
between the transfer function of (17) and the reduced order
interpolant (37) as follows:

k = argmin
i

||H(jω)−Hri(jω)||H2 . (39)

The H2-norm of the error is reported within the pseudocode
in Algorithm 1. We point out that the complexity of the
algorithm is related to the cardinality of T, i.e. the number
of disjoint partitions of the underlying graph.

V. ILLUSTRATIVE EXAMPLE

In this section, the theoretical results discussed in Sec-
tion IV and the effectiveness of Algorithm 1 are illus-
trated. The considered example is a second-order network
system of the form (17) of order n̄ = 8 with P =
diag(10, 2, 1, 1, 2, 3, 6, 8), Sk = I , Sd = 0, Z1 = 0,
Z2 = G∗ = (0, 0, 0, 0, 0, 1, 0, 0), αk = 1, αd = 0.15, and

L=



5 0 0 0 0 −5 0 0
0 5 0 0 −3 −2 0 0
0 0 6 −1 −2 −3 0 0
0 0 −1 6 −5 0 0 0
0 −3 −2 −5 25 −2 −6 −7
−5 −2 −3 0 −2 25 −6 −7
0 0 0 0 −6 −6 13 −1
0 0 0 0 −7 −7 −1 15


. (40)

The second-order network system yields a system of the
form (1) for n = 16 and matrices (18). Suppose that we want
to compute a reduced order model which retains the network
structure with a desired reduced order ρ̄ = 3. Applying
Algorithm 1 we find that the number of disjoint partitions
associated with (40) is φ = 966. We then construct the
reduced order network system of the form (21) of order
ρ = 6 with matrices as in (38). The Bode diagram of the
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Fig. 1: Bode plots of the original system with n = 16, and
of all the reduced order models with ρ = 6.
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Fig. 2: Bode plots of the original system with n = 16, and
the minimum error interpolant for each ρ ∈ {2, 4, 6, 8}.

minimum error interpolant is plotted in Figure 1 highlighting
the difference with the other 965 reduced order models.
Accordingly, for the sake of illustration, Figure 2 illustrates
the Bode diagrams associated with the reduced order mod-
els obtained by applying the proposed algorithm for ρ ∈
{2, 4, 6, 8}. The minimum error for each ρ ∈ {2, 4, 6, 8} is
approximately 0.2, 0.09, 0.04, and 0.02, respectively. Finally,
due to the interpolation matrices given in (36), we have that
for each ρ ∈ {2, 4, 6, 8} the minimum error model solving
the optimization problem (39) interpolates the high-order
model at the points reported in Table I.

VI. CONCLUSION

Second-order network systems which evolve on graphs are
usually described by a large number of differential equations.
In this paper, we have addressed the model reduction prob-
lem in the Loewner framework with the objective of pre-
serving the second-order network structure of the underlying
large-scale system. In this respect, a family of reduced order
models which not only interpolates the underlying system
but also retains the network structure has been presented. It
has been shown that by partitioning the underlying graph
of the system the associated reduced order model meets,
by construction, the interpolation conditions at particular
tangential interpolation points which are parametrized by
the cluster matrix. Additionally, to select the most accurate
reduced order model among all the possible interpolants, we
have formulated an optimization problem in terms of the

Table I: Interpolation points for each order ρ

2 4 6 8

− 1
30

± j 217
312

− 479
562

± i 1479
497

− 1053
1246

± j 2179
730

− 230
279

± j 2380
797

− 310
5973

± j 1055
1666

− 1328
3713

± j 3412
1587

− 196
4419

± j 2028
2933

− 244
4081

± j 436
695

− 954
15347

± j 774
835

− 151
2162

± j 1838
2013

− 1
330

± j 697
1001

− 454
795

± j 3218
1059

− 743
1260

± j 6598
2169

− 709
1153

± j 1695
559

148
11319

± j 1934
3033

− 299
867

± j 2503
1163

337
43565

± j 729
1051

− 107
2603

± j 566
621

− 859
17450

± j 1053
1138

130
5763

± j 281
444

H2-norm of the error between the transfer function of the
underlying network system and the family of interpolants.
Finally, the theoretical results have been illustrated by means
of an example comparing the Bode plot of the underlying
model with the proposed minimum error interpolant and
showing the effectiveness of the proposed approach.
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