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Abstract— Gentle quantum leakage is proposed as a measure
of information leakage to arbitrary eavesdroppers that aim to
avoid detection. Gentle (also sometimes referred to as weak or
non-demolition) measurements are used to encode the desire
of the eavesdropper to evade detection. The gentle quantum
leakage meets important axioms proposed for measures of
information leakage including positivity, independence, and
unitary invariance. Global depolarizing noise, an important
family of physical noise in quantum devices, is shown to reduce
gentle quantum leakage (and hence can be used as a mechanism
to ensure privacy or security). A lower bound for the gentle
quantum leakage based on asymmetric approximate cloning is
presented. This lower bound relates information leakage to mu-
tual incompatibility of quantum states. A numerical example,
based on the encoding in the celebrated BB84 quantum key
distribution algorithm, is used to demonstrate the results.

I. INTRODUCTION

Quantum cryptography and key distribution, such as the
celebrated BB84 algorithm [1], often rely on two funda-
mental features of quantum mechanical systems: no cloning
theorem and post-measurement state collapse [2]. No cloning
theorem states that it is impossible to copy a generic quantum
state and therefore an eavesdropper must take direct measure-
ments of the underlying quantum mechanical system that
is used for communication (e.g., polarization of photons).
Post-measurement state collapse implies that upon observing
the quantum mechanical system by the eavesdropper, its
state will stochastically and irreparably change, which can
be used by the sender or receiver to identify presence of
an intruder [1], [3]. Upon detection of the eavesdropper,
the authorized users can abandon communication or switch
medium to avoid the eavesdropper. This motivates investi-
gating the interplay between information extraction by the
eavesdropper (by taking informative measurements) versus
its detection by the authorized users (by post-measurement
state collapse) to determine the optimal trade-off.

The problem of investigating the trade-off between mea-
surement informativeness and state collapse is not new. It has
attracted attention of physicist in the past [4]–[7]. However,
they may not be fit for purpose due to two main reasons.
First, they assume that the eavesdropper is interested in
estimating the entirety of the classical information that is
encoded in the quantum system. This restrict our modeling
of the eavesdropper. A better approach to investigating
eavesdroppers in security and privacy literature is to consider
the worst-case information leakage over anything that they
try to guess or estimate [8]–[11]. This way, we do not
underestimate the eavesdropper and consider a more general
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threat model. Second, mutual information is not a good
measure for information leakage [8]. It was stated in [4]
that “mutual information ... may not be the quantities that
are most relevant to applications in quantum cryptography.”
The motivation for mutual information is rooted in data
compression and transmission with vanishing error, while
an eavesdropper may be content with guessing most likely
outcomes, e.g., as an starting point for phishing attacks. Thus
even a modest increase in the probability of successfully
guessing some attributes of the encoded data can lead to
devastating consequences.

In this paper, we develop a notion for information leakage
against an arbitrary eavesdropper (one whose intention is not
entirely clear to us) that aims to avoid detection. We use
gentle measurements, utilized in [12], to encode the desire of
the eavesdropper to evade detection. A measurement is called
gentle if the post-measurement state remains in proximity of
the state prior to measurement with high probability (over
outcomes of measurement). The measure of proximity, i.e.,
the magnitude of the change caused by the measurement,
in the gentle measurement framework can be tied to the
probability of detection by the Bayesian quantum hypothesis
testing [5]. This notion of quantum information leakage,
referred to as gentle quantum leakage, measures the worst-
case multiplicative increase in the probability of correctly
guessing any deterministic or randomized function of the
private classical data with and without access to the quantum
system encoding the-said data. This way, we search over all
possible goals for the eavesdropper and do not restrict our
analysis.

We derive a semi-explicit formula for the gentle quantum
measurement based on the Sibson information of order
infinity (an extension of the mutual information [13]). Fur-
thermore, we prove that the gentle quantum leakage meets
important axioms for a measure of information leakage
including positivity (i.e., gentle quantum leakage is always
greater than or equal to zero), independence (i.e., gentle
quantum leakage is zero if the quantum state is independent
of the classical data), and unitary invariance (gentle quantum
leakage remains unchanged by transforming the quantum
encoding of the classical data by a unitary channel). These
axioms have been formulated for classical and quantum
notions of information leakage [8], [9], [11], [14], [15]. We
provide upper bounds for the gentle quantum leakage based
on the number of the possibilities of the classical data (i.e.,
the cardinality of its support set) and the dimension of the
quantum system used for encoding the data. We prove that
global depolarizing noise, an important family of physical
noise in quantum devices [16], reduces the gentle quantum
leakage and therefore, can be used as a mechanism for
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mitigating security and privacy threats, albeit at the risk
of sacrificing utility [17], [18]. We also provide a lower
bound for gentle quantum leakage based on asymmetric
approximate cloning [19]. A numerical example, based on
the encoding in the BB84 [1], is used to demonstrate the
results.

The remainder of the paper is organized as follows.
Section II presents some preliminary material and notations
on quantum systems and information theory. Gentle quantum
leakage is presented in Section III. A lower bound based on
approximate cloning is presented in Section IV. Numerical
results are presented in Section V. Finally, Section VI
concludes the paper and presents some directions for future
work.

Finally, note that, due to page limitations, most detailed
proofs have been removed from the paper after peer-review.
The proofs can be found in an online technical report [20].

II. PRELIMINARIES

Finite-dimensional Hilbert spaces are denoted by H. The
set of linear operators from HA to HB is denoted by
L(HA,HB). When HA = HB = H, with slight abuse of
notation, we write L(H) instead of L(HA,HB). The set
of positive semi-definite linear operators on Hilbert space
H is denoted by P(H) ⊂ L(H). We write A ≥ 0 when
A ∈ P(H) and A ≥ B if A − B ≥ 0. Furthermore,
the set of positive semi-definite linear operators on Hilbert
space H with unit trace, also known as density operators,
is denoted by S(H) ⊂ P(H) ⊂ L(H). We use lower case
Greek letters, such as ρ and σ, to denote density operators.
Conventionally, density operators are used to model states of
quantum systems [21, § 4]. We define the (normalized) trace
distance between any two quantum states ρ, σ ∈ S(H) as

∥ρ− σ∥tr :=
1

2
tr(|ρ− σ|),

where |M | =
√
M†M for any operator M ∈ L(H). An

important property of the trace distance is that it is unitary
invariant, i.e., ∥U(ρ − σ)V †∥tr = ∥ρ − σ∥tr for all unitary
operators U and V [21, Property 9.1.4]. Note that operator
U ∈ L(H) is unitary if U†U = UU† = I . For any two
linear operators A,B ∈ L(H), [A,B] = AB −BA denotes
their commuter. Linear operators A,B ∈ L(H) commute if
and only if [A,B] = 0.

Generalized quantum measurements are modelled using
the Positive Operator Valued Measure (POVM) framework.
POVMs can model the von Neumann, i.e., projection-based,
measurements and their extensions, e.g., when the measure-
ment involves interaction with ancillary systems [22]. A
POVM, with the set of possible outcomes Y, is a set of
positive semi-definite operators F = {Fy}y∈Y ⊆ P(H)
such that

∑
y∈Y Fy = I . The probability of observing

measurement outcome y ∈ Y on a quantum system with
state ρ ∈ S(H) is tr(ρFy). This is commonly called the
Born’s rule. Note that POVMs do not explicitly consider
the post-measurement state of the quantum system, i.e.,
post-measurement collapse of the state. To also model the

BobAlice

Eve POVM F = {Fy}y∈Y with
implementation B = {By}y∈Y

X

Z

Y Ẑ

ρ ρB|Y

classic communication
to check authenticity

encoding
ρ ∈ {ρx}x∈X

Fig. 1. Communication schematic between Alice, Bob, and Eve.

post-measurement state collapse, we need to consider an
implementation B = {By}y∈Y of POVM F = {Fy}y∈Y
such that Fy = B†

yBy for all y ∈ Y. For any operator B, B†

denotes its complex conjugate transpose. Using implemen-
tation B = {By}y∈Y, the post-measurement state is given
by

ρB|y =
ByρB

†
y

tr(ByρB
†
y)

=
ByρB

†
y

tr(ρFy)
,

if the outcome y ∈ Y is observed and the pre-measurement
state is ρ ∈ S(H). It is postulated that it is impossible to
observe a quantum system, i.e., take measurements, without
disturbing its state via the so-called post-measurement state
collapse [4]. This is a feature that often underlies quantum
cryptography and key distribution [1]. However, some mea-
surements disturb the state more than others. A family of
measurements that do not significantly disturb the state are
called gentle [12] or weak measurements [4]. We use these
measurements to develop a notion of information leakage
when the eavesdropper aims to be undetected.

Definition 1 (Gentle Measurements) Consider the set of
states S ⊆ S(H) and constants α, δ ∈ [0, 1].

The POVM F = {Fy}y∈Y is (α, δ)-weakly gentle on S if
it possesses at least one implementation B = {By}y∈Y, i.e.,
Fy = B†

yBy for all y ∈ Y, such that

P
{
∥ρB|Y − ρ∥tr ≤ α,∀ρ ∈ S

}
≥ 1− δ, (1)

where the probability is taken with respect to measurement
outcomes, i.e., random variable Y ∈ Y denotes the measure-
ment outcome. The set of all (α, δ)-weakly gentle POVMs on
S is denoted by G(α,δ)(S).

The POVM F = {Fy}y∈Y is (α, δ)-strongly gentle on
S if (1) holds for all implementations B = {By}y∈Y. The
set of all (α, δ)-strongly gentle POVMs on S is denoted by
G(α,δ)(S).

III. MAXIMAL LEAKAGE WITH GENTLE
MEASUREMENTS

We use discrete random variable X ∈ X to model
the classical data that must be protected. Without loss of
generality, we assume that pX(x) = P{X = x} > 0 for all
x ∈ X; otherwise, we can trim the set X to only contain
elements with non-zero probability. For each X = x ∈ X,
Alice prepares quantum system A in mixed state ρx ∈ P(H),
i.e., encodes x as ρx. The ensemble E := {pX(x), ρx}x∈X
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models Alice’s quantum encoding of the classical data. Alice
intends to communicate this quantum system to Bob as in
Figure 1. However, this communication maybe intercepted by
an eavesdropper, Eve. From the perspective of someone who
does not know the realization of classical data X , i.e., Bob
and Eve, the state is given by the expected density operator
ρ = E{ρX} =

∑
x∈X pX(x)ρx.

Eve wants to estimate a possibly randomized discrete
function of the classical data X , denoted by discrete random
variable Z. The nature and composition of this random
variable, i.e., the target of the eavesdropping attack, is not
known by Alice or Bob. This can only be done by taking
measurements of the quantum system, which is modelled
by POVM F = {Fy}y∈Y. Let discrete random variable
Y ∈ Y denote the outcome of the measurement. By Born’s
rule, P{Y = y |X = x} = tr(ρxFy) for all x ∈ X
and y ∈ Y. Eve uses the measurement outcome to take
a one-shot1 guess of the random variable Z denoted by
the random variable Ẑ. Maximal quantum leakage, defined
in [9], measures the multiplicative increase of the probability
of correctly guessing the realization of any random variable
Z with and without access to the measurement outcome Y .

Definition 2 (Maximal Quantum Leakage [9]) Maximal
quantum leakage from random variable X through quantum
system A is

Q(X→A)ρ := sup
{Fy}y∈Y

sup
Z,Ẑ

log

 P{Z = Ẑ}
max
z∈Z

P{Z = z}

 (2a)

= sup
{Fy}y∈Y

log

∑
y∈Y

max
x∈X

tr(ρxFy)

, (2b)

where, in (2a), the inner supremum is taken over all random
variables Z, Ẑ ∈ Z with arbitrary finite support set Z and
the outer supremum is taken over all POVMs F = {Fy}y∈Y
with arbitrary finite outcome set Y.

For maximal quantum leakage, defined above, we search
over all measurements to find one that results in the most
information gain, measured by multiplicative increase in
the probability of correctly guessing a secret. This would
imply that the post-measurement state could be arbitrarily
disturbed. This disturbance can be used by Alice or Bob
to identify presence of an eavesdropper (in which case they
can cease communication or switch to a different medium).
For instance, the famous quantum key distribution algorithm
of BB84 [1] uses the post-measurement state disturbance,
no-cloning theorem in quantum systems, and access to a
classical communication channel to identify presence of an
eavesdropper. Therefore, it is postulated that Eve must use
gentle or weak measurements to avoid getting caught [4].
Note that the use of the trace-distance in the definition of
gentle measurements can be justified if the Alice or Bob use
the Bayesian hypothesis-testing to identify presence of an
eavesdropper [5]. Other definitions, e.g., using fidelity [4],

1Number of guesses is immaterial in measuring information leakage [9].

[5], can be also used. However, they can be translated into
the definition relying on trace distance due to the relationship
between fidelity and trace distance [21, Theorem 9.3.1].

Definition 3 (Gentle Quantum Leakage) For any α, δ ∈
[0, 1], (α, δ)-weakly gentle quantum leakage from random
variable X through quantum system A is

L(α,δ)(X → A)ρ

:= sup
{Fy}y∈G(α,δ)(S)

sup
Z,Ẑ

log2

 P{Z = Ẑ}
max
z∈Z

P{Z = z}

, (3)

where the outer supremum is now taken over the set of all
(α, δ)-weakly gentle measurements on S := {ρx}x∈X de-
noted by G(α,δ)(S). Similarly, (α, δ)-strongly gentle quantum
leakage is

L(α,δ)(X → A)ρ

:= sup
{Fy}y∈G(α,δ)(S)

sup
Z,Ẑ

log2

 P{Z = Ẑ}
max
z∈Z

P{Z = z}

, (4)

where the outer supremum is now taken over the set of all
(α, δ)-strongly gentle measurements.

This notion of information leakage keeps the disturbance
on the state caused by measurement below α with probability
of at least 1−δ (with respect to measurement outcomes). This
way, we can investigate the trade-off between information
leakage and Eve’s chance of getting caught by Alice or Bob.

Corollary 1: The following properties hold:
• L(α,δ)(X → A)ρ and L(α,δ)(X → A)ρ are non-

decreasing in α, δ ∈ [0, 1];
• L(α,δ)(X → A)ρ ≥ L(α,δ)(X → A)ρ for all α, δ ∈

[0, 1];
• L1,δ(X → A)ρ = Lα,1(X → A)ρ = L1,δ(X → A)ρ =

Lα,1(X → A)ρ = Q(X→A)ρ for all α, δ ∈ [0, 1].
Proof: These properties can be immediately

seen from that G(α,δ)({ρx}x∈X) ⊆ G(α,δ)({ρx}x∈X),
and that G(α,δ)({ρx}x∈X) ⊆ G(α′,δ′)({ρx}x∈X) and
G(α,δ)({ρx}x∈X) ⊆ G(α′,δ′)({ρx}x∈X) if α′ ≥ α and
δ′ ≥ δ. Also, as α → 1 or δ → 1, G(α,δ)({ρx}x∈X) and
G(α,δ)({ρx}x∈X) converges to the set of all POVMs.

Using the same line of reasoning as in the maximal quan-
tum leakage in [9], we can derive a semi-explicit formula
for the gentle quantum leakage. This derivation follows from
eliminating the first supremum on random variables Z and Ẑ
using their classical counterpart, i.e., maximal leakage, in [8].
The following result reformulates the gentle quantum leakage
using the Sibson mutual information of order infinity, which
is a generalized notion of information in classical information
theory and can be reviewed in [8], [13].

Corollary 2: The gentle quantum leakage is

L(α,δ)(X → A)ρ = sup
{Fy}y∈G(α,δ)({ρx}x∈X)

I∞(X;Y ), (5)

L(α,δ)(X → A)ρ = sup
{Fy}y∈G(α,δ)({ρx}x∈X)

I∞(X;Y ), (6)
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where I∞(X;Y ) is the Sibson mutual information of order
infinity between random variables X and Y computed as

I∞(X;Y ) := log2

∑
y∈Y

max
x∈X:pX(x)>0

P{Y = y |X = x}


= log2

∑
y∈Y

max
x∈X

tr(ρxFy)

 .

Proof: The proof follows from applying Theorem 1
in [8] to resolve the supremum on Z and Ẑ.

In what follows, we prove that the gentle quantum leakage
is an appropriate notion of information leakage by demon-
strating that it meets important axioms [8], [9], [11], [14],
[15], such as positivity (i.e., gentle quantum leakage is
always greater than or equal to zero), independence (i.e.,
gentle quantum leakage is zero if the quantum state is
independent of the classical data), and unitary invariance
(gentle quantum leakage remains unchanged by transforming
the quantum encoding of the classical data by a unitary
channel).

Proposition 1 (Positivity and Independence) The follow-
ing properties hold:

• L(α,δ)(X → A)ρ ≥ 0 with equality if and only if ρx =

ρx
′

for all x, x′ ∈ X;
• L(α,δ)(X → A)ρ ≥ 0 with equality if ρx = ρx

′
for all

x, x′ ∈ X.
Proof: See [20].

In the next result, we show that the strongly gentle quan-
tum leakage remains unchanged by application of unitary
quantum channels on the quantum encoding of the classical
data. Unitary operators are often used for quantum comput-
ing [2] and quantum machine learning [23]. Therefore, this
result demonstrates that quantum information leakage, mea-
sured by strongly gentle quantum leakage, cannot increase
by employing arbitrary quantum computing routines (which
also contains classical computing routines as a subset).

Proposition 2 (Unitary Invariance) For any unitary chan-
nel U(ρ) = UρU† with unitary operator U ∈ L(H),

L(α,δ)(X → A)U(ρ) = L(α,δ)(X → A)ρ.
Proof: See [20].

For the weakly gentle quantum leakage, we may not be
able to achieve unitary invariance. Instead, we prove a weak
data-processing inequality that shows that the weakly gentle
quantum leakage under application of the unitary operator
can be bounded. This is done in the following proposition.

Proposition 3 (Weak Data-Processing Inequality) For any
unitary channel U(ρ) = UρU† with unitary operator U ∈
L(H),

L(α,δ)(X → A)U(ρ) ≤ L(α+β(U),δ)(X → A)ρ,

where β(U) := supρ∈{ρx}x∈X ∥U(ρ)− ρ∥tr.
Proof: See [20].

In the next proposition, we derive an upper bound for
the gentle quantum leakage based on maximal quantum

leakage. This demonstrates that, as expected, a discrete
random variable X ∈ X has no more than log2(|X|) bits of
information for an adversary to learn. In addition, the amount
of leaked information is upper bounded by 2 log2(dim(H)).
Hence, embedding or encoding classical information in a
“small” quantum system, i.e., dim(H) ≪ |X|, can restrict
the leakage (and perhaps simultaneously the utility of such
encoding for information processing).

Proposition 4 (Upper Bound) L(α,δ)(X → A)U(ρ) ≤
L(α,δ)(X → A)U(ρ) ≤ min{log2(|X|), 2 log2(dim(H))} if
ρ ∈ S(H).

Proof: The proof follows from Corollary 1 and the
upper bound for maximal quantum leakage in [9].

In the next proposition, we show that the gentle quantum
leakage is reduced by application of a global depolarizing
channel Dp : S(H) → S(H) defined as

Dp(ρ) :=
p

dim(H)
I + (1− p)ρ, (7)

where p ∈ [0, 1] is a probability parameter capturing the
magnitude of the depolarization “noise”. This implies that
gentle quantum leakage accords with intuition (that quantum
noise can reduce the information leakage) and follows similar
results on privacy in quantum systems [9], [24].

Proposition 5: For global depolarizing channel Dp,

L(α,δ)(X → A)Dp(ρ) = log2(p+ (1− p)2L(α,δ)(X→A)ρ),

L(α,δ)(X → A)Dp(ρ) = log2(p+ (1− p)2L(α,δ)(X→A)ρ).

Particularly,

d

dp
L(α,δ)(X → A)Dp(ρ) < 0 if L(α,δ)(X → A)ρ > 0,

d

dp
L(α,δ)(X → A)Dp(ρ) < 0 if L(α,δ)(X → A)ρ > 0,

which shows that gentle quantum leakage is decreasing in
probability parameter p.

Proof: Following [9], we know that∑
y∈Y

max
x∈X

tr(Dp(ρ
x)Fy) = p+ (1− p)

∑
y∈Y

max
x∈X

tr (ρxFy) .

Therefore,

L(α,δ)(X → A)Dp(ρ)

= log2

(
sup
{Fy}y

∑
y∈Y

max
x∈X

tr(Dp(ρ
x)Fy)

)
= log2

(
p+ (1− p) sup

{Fy}y

∑
y∈Y

max
x∈X

tr (ρxFy)

)
= log2(p+ (1− p)2L(α,δ)(X→A)ρ),

where the supremum is taken over G(α,δ)({ρx}x∈X). The
proof for L(α,δ)(X → A)Dp(ρ) follows from taking the
supremum over G(α,δ)({ρx}x∈X).
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IV. APPROXIMATE CLONING

A quantum cloner is a quantum channel T : S(H) →
S(H) × S(H). This is often referred to as 1 → 2 quantum
cloning because 2 copies from 1 state are created. Ideally,
we would like this mapping to be such that T (ρ) = ρ ⊗ ρ
for any ρ ∈ S(H). This is however forbidden by the
rules of quantum system (particularly linearity of quantum
channels) [25]. Despite this negative result, imperfect or
approximate cloning has been shown to be achievable [26],
[27]. Let Ti denote the quantum channel to the i-th copy of
quantum state, i.e., Ti(ρ) = tr−i(T (ρ)), where tr−i denotes
the partial trace with respect all quantum systems except the
i-th one.

Theorem 1 (Cloning Region [28]) For all p1, p2 ∈ [0, 1],
there exists quantum cloner T such that Ti = Dpi if and
only if

d

2
(d(2− p1 − p2)+

√
d2(p1 − p2)2 − 4(1− p1)(1− p2))

− (2− p1 − p2) ≤ (d2 − 1),

where d := dim(H).
We can use this description of the achievable approximate

cloning to provide a lower bound for the weakly gentle
quantum leakage. This is explored in the next proposition.

Proposition 6: For all α, δ ∈ [0, 1], the weakly gentle
quantum leakage is lower bounded by

L(α,δ)(X → A)ρ ≥ L(α,0)(X → A)ρ ≥ Lα({ρx}x∈X),

where Lα({ρx}x∈X) := log2(p
∗
2 + (1 − p∗2)2

Q(X→A)ρ) and
d = dim(H) with

(p∗1, p
∗
2) ∈ min

(p1,p2)
p2,

s.t. 0 ≤ p1 ≤ 1,

0 ≤ p2 ≤ 1,

p1 ≤ α

∥I/dim(H)− ρx∥tr
,∀x ∈ X,

[
p1
p2

]⊤2d2−1− d4

4
1− d4

4

1− d4

4
2d2−1− d4

4

[p1p2
]

+
[
−2−d2 −2−d2

][p1
p2

]
+ 3 ≤ 0.

Proof: The second copy can be used to extract secret
information by Eve. By using the cloning technique provided
in Theorem 1, we can see that the second cloned state
contains log2(p2+(1−p2)2

Q(X→A)ρ) bits of information [9].
Furthermore, the first copy can be passed to Bob for which
the disturbance is given by ∥T1(ρ)−ρ∥tr = p1∥I/dim(H)−
ρ∥tr. Finally, the last constraint follows from the condition
in Theorem 1.

Remark 1 (Convexity) The optimization problem in Propo-
sition 6 is convex for dim(H) = 2. Therefore, for a qubit,
i.e., when dim(H) = 2, the lower bound can be easily
computed. Unfortunately, the last constraint becomes non-
convex if dim(H) > 2.

10
-4

10
-3

10
-2

10
-1

10
0

0

0.2

0.4

0.6

0.8

1

Lα({ρx}x∈X)
I(X;W1)
I∞(X;W1)
I(X;W2)
I∞(X;W2)

Gentleness α

In
fo

rm
at

io
n

L
ea

ka
ge

Fig. 2. Information leakage and its lower bound versus weakly gentle
measurement parameter α.

Remark 2 (Incompatibility) A similar measure to
Lα({ρx}x∈X) in Proposition 6 has been proposed as a
measure of mutual incompatibility of states within {ρx}x∈X,
albeit for pure states and based on symmetric approximate
cloning [19]. Here, Lα({ρx}x∈X) generalizes this notion of
mutual incompatibility to asymmetric approximate cloning
and potentially mixed states. It should be noted that if
{ρx}x∈X are mutually compatible, i.e., if ρx and ρx

′

commute for all x, x′ ∈ X, perfect cloning is possible and
thus we can attain maximal information leakage with no
state disturbance.

Corollary 3: For all α, δ ∈ [0, 1], L(α,δ)(X → A)ρ =

L(α,0)(X → A)ρ = Q(X → A)ρ if [ρx, ρx
′
] = 0 for all

x, x′ ∈ X.

V. NUMERICAL EXAMPLE

Consider the BB84 scheme in [1]. This is a scheme for
quantum key distribution and its security relies on non-
cloning theorem and post-measurement state collapse. Con-
sider uniformly distributed random variable X = (X1, X2) ∈
{0, 1}2. The sender, i.e., Alice in Figure 1, encodes the
random variable X into a two-dimensional quantum system,
i.e., a qubit, according to

ρx =


|0⟩ ⟨0| , x = (0, 0),

|1⟩ ⟨1| , x = (0, 1),

|+⟩ ⟨+| , x = (1, 0),

|−⟩ ⟨−| , x = (1, 1),

where {|0⟩ , |1⟩} is the computational basis or the Z-basis,
and {|+⟩ , |−⟩} is the X-basis. Here, X and Z refer to Pauli
matrices [2]. The qubit, for instance, can model the pho-
ton polarization when establishing quantum communication
using single photons. Given that it is not possible to clone
an arbitrary quantum state, the eavesdropper must measure
the state directly or via an ancillary system interacting with
it (e.g., based on approximate cloning). For instance, the
eavesdropper can toss a coin and, based on the outcome,
measure the state either in the Z-basis or the X-basis. This
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measurement is denoted by W1 in what follows. Another
approach is to always measure in the X-basis. This mea-
surement is denoted by W2 in what follows. Both these
measurement strategies result in a non-trivial change of the
state (as they are projection based), which the sender or the
receiver can use to identify the presence of a malicious party
and thus abandon communication (i.e., key sharing protocol)
with high probability. This was used to establish the safety
of the BB84 algorithm. Instead of the proposed measurement
strategies, the eavesdropper can use gentle measurements
proposed in this paper to extract some information, albeit not
the maximum possible amount, while reducing the detection
probability. Note that as α and δ (i.e., the gentleness) vary
the amount of extracted information changes but also the
probability of detection by the sender or receiver.

Figure 2 illustrates information leakage versus weakly
gentle measurement parameter α. The solid curve illustrates
the lower bound Lα({ρx}x∈X) in Proposition 6. Other mea-
sures of information leakage that do not rely on gentle
measurement are also demonstrated for comparison. The
maximum amount of information that can be extracted,
captured by the maximal quantum leakage Q(X → A)ρ
and attained by measurement W2, is 1 bit. As we increase
α → 1, the lower bound gets closer to the maximal quantum
leakage. As we reduce α → 0, the lower bound reduces. It
is interesting to that for a relatively small α = 0.1 (which
reduces the chance of Eve getting caught significantly),
the eavesdropper can still steal a significant amount of
information L(0.1,δ)(X → A)ρ ≥ L0.1({ρx}x∈X) = 0.7608
for any δ ∈ [0, 1].

VI. CONCLUSIONS AND FUTURE WORK

We developed and studied a new notion for quantum
information leakage against arbitrary eavesdroppers that aim
to avoid detection. Gentle measurements were used to encode
the desire of the adversary to evade detection. Future work
can focus on proving data-processing inequality for gen-
eral quantum channels and (sub-)additivity when accessing
multiple quantum systems. Also, a numerical algorithm for
computing the gentle quantum leakage can be developed.
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APPENDIX I
USEFUL LEMMA

Lemma 1: Consider

B+ =

√
1− 2ϵ2

2
I + ϵM,

B− =

√
1− 2ϵ2

2
I − ϵM,

B0 =
√
2ϵ(I −M2)1/2,

for semi-positive definite operator M . Then {F+, F−, F0}
with Fy = ByB

†
y with y ∈ {+,−, 0} forms a POVM. For

any α > 0, there exists ϵ′ > 0 such that, for all 0 ≤ ϵ ≤ ϵ′,
{F+, F−, F0} is (α, δ)-weakly gentle on any S ⊆ S(H).

Proof: See [20].
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