
  

  

 
Abstract—Owing to the frequent fluctuations encountered in 

raw material characteristics and operational conditions in the 

process industry, traditional data-driven approaches prove 

inadequate in adapting the adjustment of operational variables. 

Furthermore, the potential of multi-view data, including images, 

audio, and sensor data, remains underexploited in industrial 

processes. This study proposes an operational decision-making 

method based on feedstock-guided multi-view actor-critic 

(FMAC-ODM) using multi-view data to address these issues. 

This method utilizes the idea of reinforcement learning (RL) for 

enhanced decision-making. First, the problem of optimizing 

operational variables is reformulated into a continuous RL 

problem to acquire an improved decision-making policy aligned 

with the current operational conditions. Subsequently, the 

inclusion of feedstock properties in the state space is 

implemented to provide essential guidance for the 

decision-making process. Finally, in pursuit of a comprehensive 

understanding and bolstering the precision of the 

decision-making strategy, multi-view data sourced from the 

industrial site is harnessed as a surrogate for human 

observation. The effectiveness of the proposed decision-making 

method is substantiated through its practical application in the 

industrial flotation process. 

I. INTRODUCTION 

The process industry assumes a paramount significance in 

the economic advancement of modern society, including a 

diverse array of fields such as steel, petroleum, and chemicals 

[1-3]. In the production process of the process industry, the 

intelligent decision-making of operating variables is crucial to 

augment product quality and yield to a significant degree. 

However, the decision-making process is often influenced by 

the experience levels of on-site workers, which can 

significantly impact the achievement of overall production 

goals. Moreover, due to the existence of physical and 

chemical reactions in the production process, it is difficult to 

establish complex nonlinear relationship models between 

operational variables and production metrics via mechanism 
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analysis. Hence, optimizing operational variables remains a 

complex and daunting problem in process industries [4, 5]. 

Several data-driven decision-making methods have been 

developed recently to generate decision-making values of 

operational variables in industrial processes [6-8]. For 

example, Zhou et al. [9] developed a supervised monitoring 

strategy to adjust the operational variables of the industrial 

grinding process based on changes in boundary conditions. Lu 

et al. [10] developed a data-driven optimization scheme for 

operational variable control without requiring complete 

knowledge of industrial process dynamics. Yang et al. [11] 

developed a multi-objective evolutionary method for 

adjusting operational variables in the mineral processing 

process. In addition, model predictive control (MPC) is a 

commonly used optimization method in the process industry. 

Amrit et al. [12] developed a method for optimizing process 

economics to address the nonlinear model predictive control 

problems. Chai et al. [13] developed a network-based model 

predictive control method to achieve the prescribed 

performance goals for setpoint compensation in industrial 

processes. However, the fitness evaluation of evolutionary 

computation results in high computational costs. While for the 

application of MPC, the mismatch between the mathematical 

description and the actual process may lead to significant 

performance loss. Given that reinforcement learning (RL) 

enables us to derive an optimal decision-making policy based 

on real-time information, it provides a means to mitigate the 

performance loss arising from model mismatch due to the 

uncertainty of reality. Hence, a model-free RL algorithm 

presents a promising solution for industrial processes [14]. 

RL is an innovative and efficient approach to obtaining 

optimal decision-making policies in industrial processes by 

interacting with agents and situations approaching real-world 

complexity [15, 16]. Ding et al. [17] developed a dynamic 

RL-based multi-objective optimization to identify the optimal 

values of operational variables in industrial plants. Ma et al. 

[18] developed an adaptive reference vector RL approach for 

industrial copper-burdening optimization. He et al. [19] 

developed an industrial decision-making system based on 

deep Q-networks for optimizing vital operational variables.  

It is noteworthy that in industrial processes, the optimal 

strategy of the operational variables is conventionally 

designed by engineers based on historical data and experience, 

resembling an expert system grounded on the knowledge of 

operators. Analogous to expert systems, RL has the potential 

to continuously enhance operational decision-making policies 

based on reward data that update the performance metrics 

function. This attribute renders the application of RL 

algorithms in industrial processes more reasonable. 
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Inspired by the above ideas, this paper proposes an 

operational decision-making method based on 

feedstock-guided multi-view actor-critic (FMAC-ODM) for 

the decision-making of operational variables in industrial 

processes. The main contributions of this paper are 

summarized as follows: 

a) The multi-view data of the industrial process is utilized to 

enhance the adaptability of operational decision-making 

strategy by fully simulating the overall perception of the 

operators at the industrial site. 

b) To address the issue of frequent fluctuations in raw 

materials in the process industry, the feedstock conditions of 

the production process have been introduced as the state space 

of the algorithm to enhance its accuracy. 

c) The advantages of online learning of the actor-critic 

framework are used to reduce the calculation basis and 

accelerate the convergence speed. 

d) The proposed operational decision-making method is 

substantiated by utilizing data collected from flotation plants 

in real industrial processes. 

II.  PROBLEM FORMULATION 

In this section, a brief description of the industrial flotation 

process is provided. Then, the operational decision-making 

framework for the flotation process is introduced accordingly. 

A. Industrial Flotation Process Description 

The flotation process plays a significant role in the mineral 

processing of the process industry, which entails the 

separation of minerals from raw ores through physicochemical 

surface properties. A diagram of the flotation process line as 

applied in an industrial field is presented in Fig. 1. The 

flotation process has been widely used in the process industry 

due to its ability to recover various minerals, including metals, 

non-metals, and coal. The objective of the flotation process is 

to concentrate the valuable minerals from the raw ores by 

selectively attaching the desired mineral particles to air 

bubbles. These air bubbles then ascend to the surface of the 

flotation cell and create a froth layer that contains the mineral 

concentrate. Then, the froth is collected and further processed.  

To achieve effective flotation in the industrial process, it is 

necessary to adjust the operating variables in real time based 

on the working condition fluctuations. These operating 

variables include the slurry level, aeration, flotation agent, and 

agitation rate. In the current industrial process, the values of 

these operating variables are determined by operators based 

on their experience, with the aim of achieving the desired 

concentrate yield and grade within the target range. However, 

due to frequent changes in feedstock and operating conditions, 

manual selection of setpoints by operators is prone to errors 

resulting in significant fluctuations in both concentrate output 

and concentrate grade. This phenomenon can also ultimately 

lead to product degradation. One prospective remedy to this 

issue involves circumventing the selection of setpoints based 

on manual experiential knowledge and instead utilizing 

intelligent decision-making strategies. The proficient 

integration of such strategies harbors the capability to 

markedly amplify the utilization value of raw ore and elevate 

the overall efficiency of the mineral processing process. 

B. Operational Decision-Making Framework 

In this study, the potassium chloride flotation process at one 

factory in China was utilized as a representative industrial 

process, as depicted in Fig. 2. It mainly includes the roughing 

flotation stage and the cleaning flotation stage. On-site 

operators mainly observed the flotation performance of the 

Rougher 3# and indirectly observed Cleaner 2# to assess the 

flotation efficiency of the entire flotation group. Usually, two 

crucial performance metrics, the concentration of flotation 

froth 1Q  and the grade of flotation froth 2Q , are used to 

evaluate the flotation performance. The concentration of the 

flotation froth indicates the ratio of the solid in the flotation 

froth to the slurry (solid-liquid ratio), which can indirectly 

evaluate the froth yield of the flotation process. The grade of 

flotation froth indicates the proportion of ions in the flotation 

froth in the filtered solid, which can indirectly evaluate the 

froth quality of the flotation process. 

Usually, the operational conditions of the flotation devices, 

such as stirring capacity, may directly impact the flotation 
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Fig. 2. Schematic of flotation process in a worker view. 

 

Fig. 1. Industrial flotation process. 

TABLE I 
DISCRIPTION OF OPERATIONAL VARIABLES  

Symbol Description 

a1 Mixed mother liquid flow 

a2 Roughing flotation pulp level 

u1 Ventilation volume 

u2 Flotation agent 
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performance, which is commonly represented by the stirring 

current in practice. In addition, to enable real-time monitoring 

of the industrial process, an industrial camera and microphone 

were installed to facilitate the acquisition of real-time images 

and audio data of the flotation froth in the vicinity of the 

Rougher 3# and Cleaner 2# instead of relying on manual 

observation by on-site operators near the flotation tank. Hence, 

the operational conditions of flotation process are expressed as 

 1 2 3, ,=c c c c , where 1c  denotes the stirring current, 2c  

denotes the froth image, and 3c  denotes the froth audio. 

Moreover, frequent changes in the feedstock properties can 

result in the working condition fluctuations of the flotation 

production process. Therefore, the feedstock ore conditions 

are also the operational conditions that must be considered. 

They include the flow and grade of feedstock ore, denoted by 

 1 2,=x x x , where 1x  denotes the feedstock ore flow and 2x  

denotes the potassium grade of the feedstock ore. 

Table I presents the primary operational variables, which 

are summarized by extensive investigation of industrial sites 

and active discussions with experts. In the actual industrial 

application, the ventilation volume and flotation agent are 

generally fixed at constant values based on the human 

operators using their experiences and process knowledge. 

Hence, the operational variables are denoted as  1 2,=a a a . 

Since the setting and adjustment of operational variables are 

crucial to the production performance of the entire process, 

this study aims to propose an intelligent decision-making 

method that fuses the operational conditions based on the 

multi-view data and feedstock ore conditions obtained from 

the industrial process to provide optimal decision-making 

values of the operational variables. Then, the objective of 

decision-making problem of flotation performance metrics Q  

is described as 

 ( )*

1 2 2Q Q Q Q= +  (1) 

where 1Q , 2Q  and *

2Q  represent the actual concentration of 

flotation froth, the actual grade of flotation froth, and the 

target grade of flotation froth, respectively. The penalty 

function ( )  assumes a negative scalar value if 2Q  is less 

than *

2Q  or ( )  equals zero under all other circumstances. 

1Q  and 2Q  are described as  

 ( )1 1 ,Q f= a c x  (2) 

 ( )2 2 ,Q f= a c x  (3) 

where ( )1f  and ( )2f  represent the embedding models of the 

concentration and the grade of the flotation froth, respectively. 

Over the past few decades, most research efforts have 

investigated decision-making methods for operational 

variables in the flotation process. However, these approaches 

typically assume that feedstock ore conditions remain constant. 

This assumption is flawed since variations in raw material 

properties and equipment can lead to frequent fluctuations in 

the working conditions of the entire flotation process, 

negatively impacting production performance. Therefore, this 

study proposes a dynamic optimization problem to describe 

the decision-making problem of operational variables in the 

flotation process and aims to achieve better performance. 

 
( )   ( ) ( ) ( )( )* *

2 2

*

1 2 2, ~ , ~
E E , ,

c Q c Q
Q f f Q = +

 e e
a c x a c x  (4) 

where e  represents the probability distribution of operational 

conditions.   

Notably, most of the current research endeavors related to 

operational decision-making methods focus on flotation froth 

images. To the best of our knowledge, the use of froth audio to 

provide intelligent decision-making of operational variables 

for field workers is the first attempt. 

III. PROPOSED OPERATIONAL DECISION-MAKING METHOD  

To overcome the impact of feedstock ore fluctuations and 

effectively utilize multi-view data obtained from industrial 

processes, this study designs a FMAC algorithm for industrial 

operational decision-making. Fig. 3 further provides a visual 

framework for its application in industrial flotation process. 

A.  Reinforcement Learning 

Reinforcement Learning (RL) is an effective learning 

approach based on behavioral psychology principles, which 

aims to find a balance between exploration and exploitation by 

using a trial-and-error mechanism with the environment [15]. 

Active and model-free RL methods have found extensive 

application in addressing various optimization and control 

challenges, particularly in complex environments [20]. 

Usually, the fundamental components of RL consist of the 

agent and the environment, where actions and rewards are the 

critical elements that connect them. Specifically, the agent is 

responsible for selecting the actions to interact with the 

environment, while the rewards received in response to the 

actions taken are used to evaluate their efficacy. 

The mathematical formulation of RL is presented as a 

three-tuple ( ), ,rs a , which includes three key components:  

(1) State ( s ) characterizes the environment; 
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Fig. 3. Operational decision-making framework based on FMAC. 
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(2) Action ( a ) represents the decision-making output, 

which is determined based on the current state of the system 

and the associated reward; 

(3) Reward ( r ) provides a quantitative evaluation. 

The fundamental concept of RL is to enhance the optimal 

strategy by obtaining the maximum reward function in the 

long term, which is expressed as  

 ( ) ( ) ( ), ~
0

max max E ,
t t

T
t

t t

t

J r
=

 =   s a π
π π

π s a  (5) 

where T  represents the maximum step. ( 0,1   represents 

the discount factor, which is helpful to the convergence of the 

function. ( ) a s represents the conditional distribution, which 

is a criterion of selecting actions. Then, the optimal 

decision-making policy is calculated by optimizing the 

long-term reward function. 

 ( ) ( ), ~
0

arg max E ,
t t

T
t

t t

t

r
=

 =   s a π
π

π s a  (6) 

where π  represents the optimal decision-making policy. The 

above function is often solved using an algorithm that searches 

for extreme values. 

B. Operational Decision-Making Method based on 

Feedstock-Guided Multi-View Actor-Critic 

In the context of the industrial flotation process, the 

formulation of a rational program and the precise definition of 

states, rewards, and actions are fundamental to achieving a 

global optimal decision-making strategy. As discussed in the 

previous section, different operational conditions and grades 

of flotation froth requirements require different 

decision-making values of operational variables. For instance, 

when the raw materials are high quality, it is necessary to 

select the decision-making values of operational variables that 

increase product yield to improve production efficiency. 

Conversely, for low-quality raw materials, it is necessary to 

select the decision-making values of the operational variables 

that improve the grade of flotation froth.  

Therefore, based on industrial process mechanism and prior 

knowledge, the state space of the RL algorithm comprises 

operational conditions and feedstock ore conditions, as well as 

the target grade of flotation froth, which is denoted as 
*

2 , ,s Q =  c x . In particular, we use industrial cameras and 

microphones to collect flotation froth images and audio from 

actual industrial sites to assist in operational decision-making. 

This can ensure the real-time acquisition of flotation process 

multi-view data, circumventing the need for on-site workers to 

remain constantly at the industrial site for observation.  

Inspired by the above analysis and reinforcement learning 

algorithm, an operational decision-making method based on 

feedstock-guided multi-view actor-critic (FMAC-ODM) is 

proposed for effective operational decision-making in the 

flotation process. This operational decision-making strategy 

aims to obtain relatively optimal decision-making values of 

the operational variables to ensure that the concentration and 

grade of flotation froth remain within the desired range. To 

achieve this, the reward function of the proposed 

FMAC-ODM is defined as 

 ( )*

1 2 2r Q Q Q= +  (7) 

 ( ) ( ) ( )( )* *

1 2 2, , , , ,r Q f f Q= +a c x a c x a c x  (8) 

where r  is a nonpositive scalar function, ( )1 ,f a c x  represents 

the concentration of flotation froth, ( )( )*

2 2,f Q a c x  is a 

penalty function. 

The decision-making framework for operational variables, 

as presented in Eq. (4), can be transferred to Eq. (5) in the RL 

algorithm framework, which is given as 

 ( ) ( )~ , ~E ,t tJ r=   s e a ππ s a  (9) 

It is worth noting that, unlike other sequential decision 

processes, the decision-making of operational variables in this 

context is not sequential. Therefore, the step size T  is 

selected to be one in each episode. The iterative approach is 

frequently employed to refine the optimal decision-making 

policy, which can be characterized as a continuous process. 

Thus, the derivation of this policy can be described as follows: 

 
( ) ( ) ( )new ~ , ~

argmax E ,
s

r=   s e a π a sπ
π s a  (10) 

where ( )π a s  is assumed as a conditional distribution belongs 

to Gaussian distribution. 

Considering the high-dimensional and continuous nature of 

the state and action spaces involved in the optimal operational 

decision-making problem, an actor network is employed using 

a neural network implementation denoted as ( )π a s , where 

parameter   is used to approximate the Gaussian distribution. 

The actor network utilizes the state as input and produces the 

action as output. 

In addition, the critic network ( )R a s  with parameter   is 

used to estimate the reward generated by ( )π a s . The input 

of the critic network consists of the state and action. During 

the training process, the loss function of the critic network is 

defined as follows: 

 ( ) ( ) ( )
21

, ,
2

J R r  = − s a s a  (11) 

where ( ),r s a  represents the actual reward of the production 

data. Then, by minimizing the loss function, ( ),R s a  can be 

replaced by ( ),r s a  when the training accuracy is satisfied. 

Hence, the policy is updated as 

 
( ) ( ) ( )new ~ , ~

arg max E ,
s

R



 

 =  s e a π a sπ
π s a  (12) 

Furthermore, integrating experience replays into the 

FMAC-ODM method allows for repeated learning from 

experiential data with benefits such as reduced costs, fewer 

trials and errors, and faster learning speeds. By doing so, the 

utilization efficiency of industrial process data can be 

enhanced, thereby addressing the challenge of insufficient 

data commonly encountered in industrial processes. In the 

experience replay method, a set of experiences consisting of 

the state, action, and immediate reward obtained during the 

interaction between the FMAC-ODM method and the 

3649



  

flotation production process is stored in the experience pool. 

These experiences are randomly selected to form a batch and 

are used as a training set for the actor network. By minimizing 

the loss function defined based on the criterion, the 

decision-making policy can be improved as 

 
( ) ( )new ~ , ~

arg max E ,
P

R



 

 =  s a π a sπ
π s a  (13) 

where P  denotes the experience replay pool. It should be 

noted that during the training process of the critic network, a 

batch gradient descent method is employed to train the 

network using randomly selected experiences. Subsequently, 

the loss function is reformulated as shown below: 

 ( ) ( ) ( ) ( )
2

, ,

1
E , ,

2
r

J R r  = − s a
s a s a  (14) 

The above loss function can effectively alleviate the poor 

performance of the stochastic gradient descent method due to 

the presence of noise in a single sample. Subsequently, the 

FMAC-ODM method is used to obtain the relatively optimal 

decision-making policy based on the realizations of actor and 

critic networks based on iteratively updating Eqs. (13) and (14) 

in an alternating manner. Finally, the optimal decision-making 

values of the operational variables are obtained from the actor 

network, denoted as 

 ( )argmax ,R=
a

a s a  (15) 

where a  represents the optimal decision-making values of 

the operational variables. 

IV. EXPERIMENTS 

In this section, the proposed FMAC-ODM method is 

applied to an actual industrial flotation process to validate its 

effectiveness. 

A. Data Description and Experiment Setup 

All experimental data sets are collected from the largest 

potassium chloride flotation plant of a mineral processing 

enterprise in China. The description of the potassium chloride 

flotation process is introduced in Section II. A total of 223 data 

sets were collected, including the feedstock ore conditions, 

operational conditions, operational variables, and 

performance metrics. The detailed description of these 

variables is given in Table II. The first 180 data sets were used 

for training, while the remaining 43 were reserved for 

validation. In this study, the three-layer neural networks are 

used to approximate the models ( )1f  and ( )2f  of the 

flotation process. These networks are designed to map the 

operational and feedstock ore conditions to the performance 

metrics. Given the focus of our study on the practical 

implementation of RL for operational decision-making in 

industrial processes, we assume that the current system has the 

capability to track and implement the decision-making 

outcomes for operational variables. To simulate the flotation 

production process at an industrial site, a dynamic model is 

designed based on the human experience and industrial 

mechanism.  

In the proposed FMAC-ODM method, the state vector is 

composed of the feedstock ore conditions x , operational 

conditions c , and target flotation froth grade *

2Q . The action 

vector is obtained from the proposed operational 

decision-making method based on the FMAC-ODM method. 

The production goal of the industrial flotation process is to 

maximize the flotation froth concentration while meeting the 

flotation froth grade specifications. Notably, the concentration 

of flotation froth can indirectly reflect the flotation froth yield 

of the overall production process. Hence, the reward function 

is designed as 

 1 2r r r= +  (16) 

 
*

2 2

1 1 2 *

2 2

0.8,
,  and 

0,

Q Q
r Q r

Q Q

− 
= = 


 (17) 

Comparative experiments are designed to assess the 

effectiveness of the proposed method. Manual operations 

collected at industrial sites were used as a baseline for 

comparison. In addition, operational decision-making 

methods based on the deep Q-Network (DQN-ODM) [15] and 

the standard actor critic (AC-ODM) [21] are used as 

additional comparisons. For unbiased and impartial 

experimentation, all actor networks use three-layer neural 

networks comprising 128 hidden-layer neurons and are trained 

using a learning rate of 0.06. 

B. Results and Discussion 

The experimental results of the flotation froth performance 

metrics under four comparison operational decision-making 

methods are presented in Table III and Fig. 4. Table III reports 

the minimum, maximum, and average values (in parentheses) 

of the performance metrics. Fig. 4 intuitively depicts the 

trajectories of two performance metrics. As can be seen from 

the results, the proficiency of on-site operators lies primarily 

in regulating the froth grade, while their control of froth 

concentration has no significant advantages. Other operational 

decision-making methods based on the idea of RL framework, 

including DQN-ODM, AC-ODM, and FMAC-ODM, have 

significantly improved froth concentration, which indirectly 

guarantees an increase in flotation yield. Despite the increase 

in froth concentration observed under the DQN-ODM method, 

the froth grade tends to decrease, especially there is no high 

froth grade exists. On the other hand, the froth grade obtained 

TABLE II 
DISCRIPTION OF VARIABLES IN THE FLOTATION PROCESS 

Tag Description 

Feedstock condition Feedstock ore flow (x1), feedstock ore grade (x2) 

Operational condition Stirring current (c1), froth image (c2), froth audio (c3) 

Operational variable 
Mixed mother liquid flow (a1), roughing flotation 

pulp level (a2) 

Performance metric Froth concentration (Q1), froth grade (Q2) 

 

TABLE III 
COMPARISION RESULTS OF FOUR DECISION-MAKING METHODS 

Method Concentration (%) Grade (%) 

Manual operation 36.36-44.37 (40.64) 27.07-31.81 (29.40) 

DQN-ODM 40.71-46.70 (43.63) 27.47-32.33 (29.76) 

AC-ODM 39.08-47.77 (44.12) 27.05-32.12 (29.90) 

FMAC-ODM 40.53-47.71 (44.90) 27.66-32.48 (30.42) 
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by the AC-ODM method fluctuates significantly, which may 

be attributed to the frequent adjustment of operational 

variables. Although the maximum froth grade achieved with 

the proposed FMAC-ODM method is lower than manual 

operation, it demonstrates the highest mean froth grade among 

the compared methods. In addition, the proposed method 

improves froth concentration while ensuring the froth grade, 

which also demonstrates its effectiveness in the operation 

optimization of industrial processes. Based on the above 

experimental results and analysis, it is concluded that the 

RL-based operational decision-making methods have the 

favorable potential for guiding the production of industrial 

processes, especially in scenarios where multi-view data and 

feedstock conditions from industrial sites are factored into the 

decision-making process. 

V. CONCLUSION 

This study introduces a novel operational decision-making 

method named FMAC-ODM for the optimization of 

operational variables in industrial processes. Compared to 

existing methods, the proposed FMAC-ODM method exhibits 

superior utilization of multi-view data derived from industrial 

sites, consequently affording it an enhanced capacity for 

comprehensive perception. Moreover, it effectively attenuates 

the impact of feedstock conditions on operational fluctuations. 

The superiority of the proposed method is demonstrated 

through simulation experiments using actual data sourced 

from the industrial flotation process. 
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Fig. 4. Comparision results of froth concentration and grade based on 

different operational decision-making methods. 
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