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Abstract— This paper studies the consensus problem in a
networked multi-agent system subject to actuator attacks. The
concept of passivity is leveraged for the detection of destabiliz-
ing attacks, which relies on satisfying the dissipation-inequality
with the quadratic storage functions. On identification of an
attack, the controller switches to the defense mode, where the
attack signal is mitigated via an estimator based on available
measurements. We show that the state error, incurred due to
an attack, remains bounded with bounded attack signals, and
the system achieves consensus once the attack is mitigated.
Simulations are provided to illustrate the theoretical findings.

I. INTRODUCTION

Communication technology and power-efficient micro-
controllers have improved exponentially, making cyber-
physical systems (CPSs) easy to implement. Distributed
control of these large-scale systems uses wireless channels
and onboard sensing to share information. This, however,
introduces vulnerabilities to malicious attacks through the
communication network [1], [2]. In such scenarios, the main
challenge is to detect and mitigate attacks early to prevent
severe damage to the system. Moreover, it is essential to
minimize resource usage, prompting the use of switching
controllers that can function in normal or defense modes.

From a control system perspective, some challenges re-
garding attack detection and mitigation for secure CPSs are
discussed in [3] and the references therein. These works
primarily characterize different types of possible attacks on a
CPS, classified based on the target point of attack, viz. plant,
network, sensor, actuator, as summarized in [4]. Though
there exist several articles [5]–[11] on this topic, however,
there are certain challenges in implementing these works.
For instance, [7], [8] require beforehand calculation of gains
and matrices to be used in control law for attack detection
and mitigation strategies. Specifically, [7], [8] consider that
the system is always under attack, resulting in unnecessary
consumption of the (already) limited resources in the mobile
systems. A switching controller, on the other hand, saves
resources when there is no attack and goes defensive un-
der attack to maintain system performance. We adapt this
approach in this work by exploiting the ideas from the
passivity theory. The proposed scheme in this paper only
needs system’s current measurement, and we mitigate the
attack rather than isolating the compromised agents, unlike
[5] and [6].
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Among the various existing approaches for attack iden-
tification and mitigation, observer-based methods have re-
ceived significant attention in the literature. For instance,
the seminal work [12] presented an observer-based attack
identification scheme for LTI systems. An attack detector,
requiring side initial state information, is proposed in [6].
In [7], an adaptive controller-cum-observer guarantees the
ultimate boundedness in a leader-follower framework against
data injection attacks. While most of the existing works
focus on residual-based and estimation-based attack detec-
tors, these might be vulnerable to stealthy attacks [13], [14].
Note that it is computationally challenging to identify an
attack signal using an observer alone, as it has to monitor
numerous signals. As a remedy, in this paper, we propose
a relatively simple approach relying on passivity theory for
attack detection, followed by its mitigation using an observer
under the limited availability of output measurements.

Significant research has been devoted to use of passivity
theory in designing resilient control for a CPS [15]. Besides
providing tools for investigating system stability, passivity
theory facilitates an easy attack detection method. Based
on the energy balance of the passive systems, an attack
detection mechanism using the local and networked monitor
is proposed in [10]. In contrast, our approach relies on
checking an inequality condition and does not require a
separate local monitor. Passivity-based defense mechanism
with a switching controller is proposed in [11]. Whereas our
method applies to multi-agent systems and does not rely on
an observer for attack detection. Our paper considers com-
pletely localized independent actuator attack detection and
estimation for the networked agents. Further, a switching-
based control strategy is proposed to switch controller modes
between the normal and the defensive modes.

Contributions: First, we obtain the condition for passivity
for a network of linear systems, cooperating towards con-
sensus, using passivity-inequality with the quadratic storage
function. For clarity, we provide analysis for both scenarios
when the complete system measurements are available and
when limited measurements are available. Second, we give
the condition on the attack signal which can be detected and
may destabilize the system preventing consensus. Third, we
show that, with the proposed estimator, the attack is mitigated
and the (relative) state errors remain bounded. We consider
no upper limit on the number of agents that can be attacked
simultaneously. It is shown that the estimation of the attack
signal converges with the actual attack signal.

Preliminaries: The symbols R and R+ represent the
set of real and non-negative real numbers, respectively. We
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denote by diag{k1, . . . , kn} ∈ Rn×n a diagonal matrix with
diagonal entries ki, i = 1, . . . , n. In is an identity matrix of
size n× n, and 000n ∈ Rn represents a column vector having
all entries 0. ∥ • ∥ ∈ R+ represents induced 2-norm (resp.,
Euclidean norm) for any matrix • ∈ Rm×n (resp., vector • ∈
Rn). For any complex number λ, ℜ(λ) denotes its real part.
The Kronecker product of two matrices is denoted by ⊗. The
Moore–Penrose pseudo inverse of a matrix M ∈ Rm×n is
M† ∈ Rn×m, having the property MM†M = M [16]. The
Laplacian matrix of a graph G is represented by L ∈ RN×N .
One may refer to [17] for the properties of Laplacian L.

Lemma 1 ([18]). Let M be an n× n matrix with negative
real parts of all eigenvalues λi, i = 1, . . . , n, then there
exists γ > 0 and α > 0 such that ∥eMt∥ ≤ γe−αt, ∀t ≥ 0.
In fact, −α = maxi ℜ(λi).

Definition 1 (Passive System [19]). Consider the system

ẋ = f(x, u); y = h(x, u), (1)

with state x ∈ Rm, control input u ∈ Rp, and output
y ∈ Rp. The function f is locally Lipschitz, h is continuous,
f(000m,000p) = 000m and h(000m,000p) = 000p. The system (1) is said
to be passive if there exists a differentiable storage function
S(x) : Rm → R, S(x) ≥ 0, S(000m) = 0, such that

uT y ≥ Ṡ =
∂S

∂x
f(x, u), ∀(x, u) ∈ Rm × Rp. (2)

Here, (2) is referred to as the dissipation-inequality, which
interprets that the rate of change of stored energy Ṡ is less
than the supplied power uT y. We characterize (2) using the
quadratic positive-definite storage function

S(x) = (1/2)xTx, (3)

which offers advantages over other storage functions for LTI
systems. It is computationally moderate, easy to implement,
and resembles energy in physical systems − proportional to
the square of the system parameter. Notably, any system with
linear dynamics can be represented by a quadratic function
as a storage function [20].

II. SYSTEM AND ATTACK MODELS, AND PROBLEM
DESCRIPTION

A. System Model

Consider a multi-agent system comprising N agents

ẋi = Aixi +Biui (4a)
yi = Cixi, i = 1, . . . , N, (4b)

where xi ∈ Rm, ui ∈ Rp, yi ∈ Rp are the state, input,
and output vectors, respectively. Further, Ai ∈ Rm×m, Bi ∈
Rm×p, Ci ∈ Rp×m are the system, input, and output matri-
ces, respectively. It is assumed that ui and yi are vectors of
the same dimension, and (4) satisfies the below properties:

Assumption 1. The matrix pair (Ai, Bi) is controllable and
(Ai, Ci) is observable for all i = 1, . . . , N .

We consider that the agents are diffusively-coupled accord-
ing to a fixed and strongly connected directed communication

Agent i

Controller i

+

+

uai

ui

uci yi

yj
j ∈ Ni

P Q

Observer i

x̂i,
˙̂xi

Fig. 1: The ith agent under actuator attack.

topology having Laplacian L ∈ RN×N . A consensus-based
control law for such systems is given by [21]

ui = K
∑
j∈Ni

(yj − yi), ∀i = 1, . . . , N, (5)

where K > 0 is a positive gain term and Ni is set of
neighbors of i. For all i = 1, . . . , N , (5) can be represented
in the vector-matrix form as:

u = −KL̄y, (6)

where L̄ := (L⊗ Ip) ∈ RNp×Np is the extended Laplacian,
and u = [uT

1 , . . . , u
T
N ]T ∈ RNp, y = [yT1 , . . . , y

T
N ]T ∈

RNp are the stacked input and output vectors, respectively.
Relying on the passivity assumption of system (4), we have
the following result, which will be revisited later:

Lemma 2 (Convergence of Passive systems [21]). Consider
the systems (4) with control (5) and assume that Assump-
tion 1 holds. Suppose the agents are input-output passive
with a radially unbounded positive-definite storage function,
and the communication graph is strongly connected. In that
case, the coupled system (4), (5) is globally stable and the
agents’ output synchronize, i.e., limt→∞∥yj−yi∥ = 0, ∀i, j.

B. Attack Model
Lemma 2 relies on the fact that the control signal is

directly applied to the controlled agents. However, this may
not be true in practice due to any malicious attack on the
actuator, causing the applied control signal to be different
from the signal generated by the controller, see Fig. 1, where
the controller output ui may be corrupted by an unknown
attack ua

i ∈ Rp. Consequently, the compromised input can
be written as

uc
i = ui + ua

i , (7)

for any i. Clearly, if there is no attack, i.e., ua
i = 000p for every

i, uc
i = ui,∀i, implying that the overall system achieve state

consensus according to Lemma 2. We further consider the
following reasonable limitations on the attack signal:

Assumption 2. The attack signal ua
i is Lipschitz, that is,

∥ua
i ∥ ≤ ūa and ∥u̇a

i ∥ ≤ ũa, for some ūa, ũa ∈ R+ for all i.

Such assumption are generally considered in literature, see
[7], [22], as the attacker also has limited resources practically.

To facilitate the further analysis, we represent the com-
promised system (4) for all i, in matrix notations as:

ẋ = Āx+ B̄uc = Āx+ B̄(u+ ua), y = C̄x, (8)

where Ā = diag{Ai} ∈ RmN×mN , B̄ = diag{Bi} ∈
RmN×pN , C̄ = diag{Ci} ∈ RpN×mN are the block di-

2404



agonal matrices, and x = [xT
1 , . . . , x

T
N ]T ∈ RNm, uc =

[(uc
1)

T , . . . , (uc
N )T ]T ∈ RNp are the stacked state

and applied input vectors, respectively. Similarly, u =
[uT

1 , . . . , u
T
N ]T∈RNp and ua = [(ua

1)
T , . . . , (ua

N )T ]T∈RNp.

C. Problem Formulation
Our main aim is to design controller u in (8) for achieving

consensus in the output, even under an external attack ua.
The approach relies on a passivity-based mechanism to detect
attack signals. The controller switches between normal mode
and defense mode, governed by the logic parameter δ = 0, 1,
where δ = 0 means “no attack detection” and δ = 1 means
“attack detection.” This leads to our proposed switching-
based control strategy:

ui = uδ := (1− δ)un
i + δud

i , (9)

where un
i , u

d
i are the control actions in normal (no attack

detection) and defense (attack detection) modes. In case
of no attack detection (i.e., δ = 0), the control vector is
simply chosen as u = un = −K(L ⊗ Ip)y (see (6)),
where un = [(un

1 )
T , . . . , (un

N )T ]T ∈ RNp. This results in
consensus, as per Lemma 2, for the strongly connected and
passive agents with no attack. Thus, it remains to design
ud = [(ud

1)
T , . . . , (ud

N )T ]T ∈ RNp when an attack is
detected in the network.

Let xn(t) and xa(t) be the solutions of system dynamics
(8) under no-attack and attack conditions, respectively. These
can be obtained as

xn(t) = eĀtx0 +

∫ t

0

eĀ(t−τ)B̄un(τ)dτ (10)

xa(t) = eĀtx0 +

∫ t

0

eĀ(t−τ)B̄(ud(τ) + ua(τ))dτ, (11)

where x0 = x(0). We further define

e(t) = xa(t)− xn(t), (12)

as the error between the two state vectors.

Problem. Consider the network (8) under the influence of
the attack signal (7), as shown in Fig. 1. Suppose that the
agents are strongly connected, and Assumptions 1 and 2
hold. The following problems are addressed:

(P1) Devise a passivity-based mechanism to detect an attack
modeled by (7) on the network (8).

(P2) Design the switching control law u in (9) (i.e., un and
ud) such that the error e(t) in (12) remains bounded,
that is, ∥e(t)∥ ≤ Ω, ∀t ≥ 0, where Ω is an arbitrarily
small positive constant.

It is often the case that all the measurements are not
available from the system due to a lack of desired sensors or
a non-measurable state. In this work, we consider two cases
depending on the availability and non-availability of the state
information and its derivative. The former case is discussed
for better motivation and easy following of the latter case.

III. ATTACK DETECTION: A PASSIVITY-BASED
APPROACH WITH QUADRATIC STORAGE FUNCTION

This section proposes a passivity-based attack detection
approach for attacks that might prevent outputs from reach-

ing a consensus. We motivate the approach by analyzing the
case where the complete state information is available. We
then extend these ideas for the case when complete state
information is not available by incorporating a state observer.

As seen by the controller, the system, enclosed by the
dashed rectangle in Fig. 1, should behave as a passive system
to assure consensus as per Lemma 2. Alternatively, the
inequality (2) must be satisfied concerning points P and
Q in Fig. 1. However, the passivity concerning points P
and Q might not hold in the presence of an injected attack
signal ua. We leverage this fact to detect the presence of an
attack. In this direction, we first discuss the following lemma,
which provides a sufficient condition such that the considered
network system (8) remains passive under no attack.

Lemma 3. Under no attack condition, the network (8)
remains passive with the control law (6) and the quadratic
storage function (3) if and only if matrix M := K(B̄L̄ −
C̄T L̄T )C̄ − Ā ∈ RNm×Nm is positive semi-definite, that is,
for any ζ ∈ RNm,

ζTMζ ≥ 0. (13)

Proof. For (8) to be passive, it holds from (2) that uT y ≥
Ṡ(x), where S(x) is the positive definite quadratic storage
function (3) with time-derivative Ṡ(x) = xT ẋ. This implies

uT y ≥ xT ẋ. (14)

Substituting for u, ẋ, y from (6) and (8), respectively,
under no attack condition (i.e., ua = 000Np), we ob-
tain −KxT C̄T L̄T C̄x ≥ xT Āx − KxT B̄L̄T C̄x =⇒
xT

[
K

(
(B̄L̄− C̄T L̄T )C̄

)
− Ā

]
x ≥ 0 =⇒ xTMx ≥ 0,

for any x ∈ RNm. This proves the necessity. If M is not a
positive semi-definite matrix, then it can be trivially shown
that (13) does not hold, proving the sufficiency.

We exploit the passivity property (14) (equivalently (13))
to detect the presence of any malicious attack on the system
by considering that the controller is equipped with a device
that can verify the dissipation inequality (14) in real-time.

Definition 2. The attack signal ua that might cause the
network (8) to satisfy (resp., not to satisfy) inequality (14)
are referred to as undetectable (resp., detectable) attacks.

Definition 2 states that undetectable attack signals, which
do not violate condition (14), have no impact on the net-
work’s consensus properties near the convergence point.
These signals remain passive, as Lemma 2 requires. How-
ever, detectable attack signals that might violate condition
(14) can affect consensus. To identify conditions preventing
consensus, we present the following result divided into
subsections based on the availability of measurements x and
ẋ at point Q in Fig. 1.

A. Availability of Measurements x and ẋ

In this subsection, we present conditions for a destabilizing
attack when all measurements x and ẋ are readily accessible
to the controller at point Q. Also, the control signal sent by
the controller at point P is known as it is generated at the
designer’s end. Following theorem summarizes the results.
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Theorem 1. Let M be a positive semi-definite matrix defined
in Lemma 3. If there exists an attack signal ua such that

ζTMζ < ζT B̄ua, (15)

for any ζ ∈ RNm, the system (8) does not satisfy the
inequality (13). Consequently, an attack on the network (8)
is detected as per Definition 2.

Proof. We prove this by contradiction. Assume that the
dissipation-inequality (14) is satisfied across the points P and
Q in Fig. 1. Substituting for u, y and ẋ from (6) and (8)
into (14) in the presence of attack signal ua, we obtain
xT [K(B̄L̄ − C̄T L̄T )C̄ − Ā]x ≥ xT B̄ua =⇒ xTMx ≥
xT B̄ua, after substituting for M from Lemma 3. Now, it
can be concluded that any value of ua, which violates the
preceding condition, causes the system (8) to lose passivity
and hence prevent consensus of the agents under control law
(6), as in Lemma 2. Alternatively, if ua satisfies the condition
(15), the same can be concluded, proving our claim.

B. Unavailability of Measurements

When the complete state information is not available, the
unknown states can be constructed using a state observer,
as shown in Figure 1. We consider the following observer
dynamics for the complete system:

˙̂x = Āx̂+ B̄u− H̄(ŷ − y) (16a)
ŷ = C̄x̂, i = 1, . . . , N, (16b)

where H̄ = diag{Hi} ∈ RmN×pN with Hi ∈ Rm×p being a
corrective feedback gain matrix, and x̂ = [x̂T

1 , . . . , x̂
T
N ]T ∈

RNm is the stacked observer state vector with x̂i being the
state estimation for the agent i. Further, the observer gain
matrix H̄ is selected such that the error x̂− x converges to
000Nm while satisfying the positive semi-definiteness of the
matrix M̃ defined by

M̃ = K(B̄L̄− C̄T L̄T + H̄)C̄ − Ā, (17)

which is analogous to M in Theorem 1. Since the accurate
values of the states are necessary for precisely detecting
the presence of an attack, we consider the following mild
assumption on the initial states of the observer:

Assumption 3. The initial observer’s state is synchronized
with the initial system’s state, i.e., x̂(t) ≈ x(t), 0 ≤ t < ta
where ta is the time of start of an attack on the system (8).

It is worth noticing that, in terms of the estimated mea-
surements ŷ, the control law (9) for normal operation, i.e.,
for δ = 0, is given according to (6) as

u = un = −KL̄ŷ, (18)

which will be used in the subsequent analysis. Analogous
to Theorem 1, we state the following theorem in case of
unavailability of the state measurements.

Theorem 2. Let M̃ in (17) be a positive semi-definite matrix
for appropriately chosen H̄ . Network (8) does not satisfy the
inequality (14) with respect to observer dynamics (8) if the
attacking signal ua fails to satisfy the following inequality:

x̂TM̃x̂ ≥

x̂T H̄C̄

(∫ t

0

Āxdτ−
∫ t

0

B̄L̄C̄x̂dτ+

∫ t

0

B̄uadτ

)
. (19)

Consequently, an attack on the network (8) is detected.

Proof. For the estimated state x̂ and output ŷ, (14) becomes
uT ŷ ≥ x̂T ˙̂x. Substituting for ˙̂x, ŷ and u from (16) and (18),
respectively, and following the steps similar to the proof in
Theorem 1, it can be concluded that x̂T [K(B̄L̄− C̄T L̄T +
H̄)C̄ − Ā]x̂ ≥ x̂T H̄C̄x =⇒ x̂TM̃x̂ ≥ x̂T H̄C̄x. Now,
substituting x(t) =

∫ t

0
ẋdt, where ẋ is given by (8), we get

x̂TM̃x̂ ≥ x̂T H̄C̄[
∫ t

0
Āxdτ−

∫ t

0
B̄L̄C̄x̂dτ+

∫ t

0
B̄uadτ ]. So

any value of ua not satisfying the condition (19) may render
the system non-passive and hence, the consensus in states
cannot be guaranteed.

Remark 1. Though the conditions (13) and (19) are ana-
lytically obtained (through (14)), these are not required in
implementing the switching control law (9). It is sufficient to
verify only (14) to know whether the system is passive or not
as seen from points P and Q in Fig. 1.

IV. ATTACK MITIGATION

After detection of an attack, δ = 1 in (9), and hence,
u = ud, which needs to be designed for attack mitigation
such that error (12) remains bounded, where the switching
between normal and defense modes occurs with δ. We again
split the discussion into two parts, without a state observer
and with a state observer, for clarity and ease of the analysis.

A. Without Observer: Availability of Measurements

Let the control ud in (9) be proposed as:

ud = −KL̄y − ûa, (20)

where ûa = [(ûa
1)

T , . . . , (ûa
N )T ]T is an estimation of the

attack signal ua, and is given by

ûa(t) = B̄†(ẋ(t)− Āx(t)− B̄(−L̄y(t)− ûa(t− td))), (21)

where B̄† = (diag{Bi})† = diag{B†
i }, and td > 0 is a

small constant reaction time, representing the time required
in observing the effect of control u(t) on the output of the
plant. This indicates that an output measurement received by
the controller at time t was caused by an input signal sent
at time t − td, which is usually a case in practice. Clearly,
ûa is Lipschitz, implying that

∥ûa(t)− ûa(t− td)∥ ≤ η|td|, (22)

for some constant η ∈ R+. Ideally, when td → 0, we
get an accurate estimation of the attack signal. However, it
is not practically feasible due to the controller’s and other
components’ processing time. Note that (21) is a simple
algebraic equation motivated by Luenberger observer and
does not require the implementation of any dynamical system
for attack estimation. We have the following result:

Lemma 4. As td → 0, the difference ûa(t) −
ua(t) belongs to the null space of matrix B̄, that is,
limtd→0 B̄ (ûa(t)− ua(t)) = 0.

2406



Proof. Substituting ẋ from (8) into (21), yields ûa(t) =
B̄†(Āx(t)+B̄un(t)−B̄ûa(t)+B̄ua(t)−Āx(t)−B̄un(t)+
B̄ûa(t − td)) = B̄†B̄ûa(t) + B̄†B̄ua(t) − B̄†B̄ûa(t − td).
Rearranging this, we get ûa(t)− B̄†B̄ua(t) = B̄†B̄(ûa(t)−
ûa(t− td)). By left multiplying by B̄ and using the property
of generalized matrix inverse, as defined in subsection I, we
have B̄(ûa(t) − ua(t)) = B̄(ûa(t) − ûa(t − td)). It can be
seen that as td → 0, the effect of attack will be removed from
the system since limtd→0 B̄ (ûa(t)− ua(t)) = 0, implying
that ûa(t)− ua(t) belongs to the null space of B̄.

It is clear that if B̄ is full rank matrix, ûa(t) → ua(t) as
td → 0. This also indicates that for bounded attack signal
ua(t) and small values of td, the attack estimate ûa(t) also
remains bounded. We now describe the following theorem.

Theorem 3. Consider network (8), operating under control
law (9) where un and ud for all i are defined in (6) and (20),
respectively. If Assumptions 1 and 2 hold and measurements
x and ẋ are available. Then, the error (12) remains bounded.

Proof. Substituting for ud and ûa from (20) and (21),
respectively, into (11), yields

xa(t) = eĀtx0+

∫ t

0
eĀ(t−τ)B̄undτ︸ ︷︷ ︸
T1

+

∫ t

0
eĀ(t−τ)B̄ua(τ)dτ︸ ︷︷ ︸

T2

−
∫ t

0
eĀ(t−τ)B̄B̄†(ẋ(τ)−Āx(τ)−B̄(un(τ)−ûa(τ−td)))dτ︸ ︷︷ ︸

T3

. (23)

Simplifying the term T3 in (23) separately, we observe that
T3 =

∫ t

0
eĀ(t−τ)B̄B̄†B̄un(τ)dτ −

∫ t

0
eĀ(t−τ)B̄B̄†ẋ(τ)dτ +∫ t

0
eĀ(t−τ)B̄B̄†Āx(τ)dτ−

∫ t

0
eĀ(t−τ)B̄B̄†B̄ûa(τ−td)dτ .

Using the property B̄B̄†B̄ = B̄ of the generalized
matrix inverse, we obtain T3 =

∫ t

0
eĀ(t−τ)B̄un(τ)dτ −∫ t

0
eĀ(t−τ)B̄B̄†ẋ(τ)dτ +

∫ t

0
eĀ(t−τ)B̄B̄†Āx(τ)dτ −∫ t

0
eĀ(t−τ)B̄ûa(τ − td)dτ . Substituting ẋ from (8), we have

T3 =
∫ t

0
eĀ(t−τ)B̄un(τ)dτ +

∫ t

0
eĀ(t−τ)B̄B̄†Āx(τ)dτ −∫ t

0
eĀ(t−τ)B̄B̄†(Āx(τ)+B̄(un(τ)−ûa(τ)+ua(τ))dτ −∫ t

0
eĀ(t−τ)B̄ûa(τ−td)dτ , which on substitution into (23),

results in

xa(t) = eĀtx0 +

∫ t

0

eĀ(t−τ)B̄undτ

+

∫ t

0

eĀ(t−τ)B̄(ûa(τ)− ûa(τ − td))dτ. (24)

Further, substituting (10) and (24) into (12), it is
clear that ∥e(t)∥ = ∥

∫ t

0
eĀ(t−τ)B̄(ûa(τ) − ûa(τ −

td))dτ∥ ≤
∫ t

0
∥eĀ(t−τ)B̄(ûa(τ) − ûa(τ − td))∥dτ ≤∫ t

0
∥eĀ(t−τ)∥∥B̄∥∥(ûa(τ)−ûa(τ−td))∥dτ , which follows by

exploiting the triangle inequality. Using (22), it can be writ-
ten that ∥e(t)∥ ≤ η∥B̄∥|td|

∫ t

0
∥eĀ(t−τ)∥dτ . Now, applying

Lemma 1, it follows that ∥e(t)∥ ≤ αηγ∥B̄∥|td|(e−αt + 1),
where γ > 0 is a constant and −α = maxℜ(λ(Ā)) < 0.

B. With Observer: Unavailability of Measurements
Analogously to the previous case, the control ud in (9) is

now proposed in terms of the estimated measurements as

ud = −KL̄ŷ − ûa, (25)

1 2

3
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L =


1 0 0 −1 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 2 −1
0 0 −1 0 1


(b) Laplacian

Fig. 2: Communication Topology

where ŷ is the estimated output, and ûa is given by

ûa(t) = B̄†( ˙̂x(t)− Āx̂(t)− B̄(−L̄ŷ(t)− ûa(t− td))). (26)

Theorem 4. Consider network (8), operating under control
(9) and observer (16) where un and ud are defined in (25)
and (26), respectively. Suppose that Assumptions 1 to 3 hold
and measurements x and ẋ are not available. Then, the error
(12) remains bounded.

Proof. Following an approach similar to the previous case,
it can be written using (25) and (26) that

xa(t) = eĀtx0+

∫ t

0

eĀ(t−τ)B̄(un(τ)−ûa(τ) + ua(τ))dτ

= eĀtx0 −K

∫ t

0

eĀ(t−τ)B̄L̄C̄x̂(τ)dτ

+

∫ t

0

eĀ(t−τ)B̄(ûa(τ)− ûa(τ − td))dτ

+

∫ t

0

eĀ(t−τ)B̄B̄†H̄C̄(x̂(τ)− x(τ))dτ. (27)

From (10) and (27), it is clear that the error e(t) in (12)
satisfies ∥e(t)∥ ≤ ∥

∫ t

0
eĀ(t−τ)B̄(ûa(τ) − ûa(τ − td))dτ +∫ t

0
eĀ(t−τ)B̄B̄†H̄(x̂ − x)dτ∥ ≤

∫ t

0
∥eĀ(t−τ)B̄(ûa(τ) −

ûa(τ − td))∥dτ +
∫ t

0
∥eĀ(t−τ)B̄B̄†H̄(x̂ − x)∥dτ ≤∫ t

0
∥eĀ(t−τ)∥∥B̄∥∥(ûa(τ) − ûa(τ − td))∥dτ +∫ t

0
∥eĀ(t−τ)∥∥B̄B̄†H̄∥∥(x̂ − x)∥dτ . Using (22), it can

be concluded that ∥e(t)∥ ≤ η∥B̄∥|td|
∫ t

0
∥eĀ(t−τ)∥dτ +

∥B̄B̄†H̄C̄∥
∫ t

0
∥eĀ(t−τ)∥∥(x̂ − x)∥dτ . Now, applying

Lemma 1, it yields that ∥e(t)∥ ≤ αηγ∥B̄∥|td|(e−αt +
1) + γ∥B̄B̄†H̄C̄∥

∫ t

0
e−α(t−τ)∥(x̂ − x)∥dτ , where γ > 0

is constant and −α = maxℜ(λ(Ā)). Further, since
∥(x̂ − x)∥ ≤ ρ for some ρ > 0 for an appropriately chosen
H̄ , in conclusion, ∥e(t)∥ remains bounded for all t ≥ 0.

V. SIMULATION EXAMPLE

Consider N = 5 agents having dynamic matrices as:

Ai = i

−6 i 0.5i
i −9 0.4i

0.5i 0.4i −9

 , Bi = i

 0
0
0.5

 , Ci =
1

i

20
0

T

,

where i = 1, . . . , 5, and interacting according to a directed
strongly connected topology as shown in Fig. 2. One can
easily verify that Assumption 1 holds and the agents are
passive. The initial states of the agents are taken randomly
in the interval [−20, 25]. Further, the initial states of the
observer are set the same as the actual system to satisfy
Assumption 3. The attack considered on agents is of the form
ua
i = ai sin (ωit), where ai, ωi are chosen randomly in the
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Fig. 3: Illustration of passivity inequality (2).
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Fig. 4: Behavior of attack and estimated attack signals.

interval [10, 20] and [0, 10π], for i = 1, 2, 4, 5, respectively.
Note that the attack signal is unknown to the controller. We
consider agent 3 is not under attack and set a3 = 0. The
attack satisfies Assumption 2 and is active for t ∈ (2, 5)s.

Figure 3(a) shows the graph of storage function S, change
in stored energy Ṡ, and input energy (uT y) for Agent 2,
in case of availability of measurements (Case I). Other
attacked agents also show similar behavior and these plots are
omitted for brevity. It is clear that the agent loses passivity
at t = 2s, where the attack starts. Consequently, the attack
is detected almost immediately, and the controller switches
to the defense mode, according to (9). Figure 4(a) shows the
estimated attack signal, which converges to the actual attack
signal with almost negligible error for Agent 2. Other agents
show similar behavior and their plots are omitted. Figure
5(a) shows the evolution of output of the networked system.
It can be seen that the system output remain bounded near
the consensus value, as derived in Theorem 3.

Figure 3(b) shows that the agent loses passivity at the
beginning of the attack, and the controller switches to the
defense mode, in case of non-availability of measurements
(Case II). The behavior of attack estimation and the output
with observer are shown in Figs 4(b) and 5(b), respectively.
Similar conclusions can be drawn in this case too.

VI. CONCLUSIONS

Leveraging ideas from the passivity theory, we proposed
a switching-based control scheme for attack detection and
mitigation on a networked linear multi-agent system. Two
scenarios were considered, with and without the availability
of state measurements. It was shown that the state error
remains bounded in both cases. The proposed method is com-
putationally moderate as it does not involve the calculation
of any gains, parameters, or coefficients.
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