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Abstract— This paper studies strategic group formation
for local anomaly detection with potential applications to
Cognitive Radio Networks (CRN) and the Internet-of-Things
(IoT). The problem comprises multiple local anomaly de-
tection tasks which use machine learning (ML) models and
partial data. We consider a two-layer network structure
with anomaly detectors in the lower layer acting as local
anomaly detectors and central nodes at the upper layer as
data aggregators, which train the ML models used by local
anomaly detectors. The problem is addressed using a strategic
(non-cooperative) game formulation, where all central nodes
and detectors are players. The players interactively learn
one or multiple optimal machine learning models for their
dynamically identified local anomaly detection problems. The
game is next formulated as a successive optimization problem
and solved using the player’s best responses to compute
a Nash equilibrium. Under mild conditions, we prove that
this group formation game is also an exact potential game.
Experimental results are consistent with theoretical ones and
show fast convergence to the solution.

I. INTRODUCTION
Multi-agent Cyber-Physical networks have become

increasingly pervasive with well-known applications in
Cognitive Radio Networks (CRN) [1] and the Internet
of Things (IoT). The nodes of such networks usually have
high-performance storage/computing units acting as in-
dependent decision-makers. Moreover, the network struc-
ture is often hierarchical, with multiple central nodes
as aggregators and numerous network users/devices as
operators. A CRN consists of software-defined-radio
devices (mobile phones, autonomous vehicles) supported
by multiple central nodes (base stations, cloud centers).
Instead of being passively controlled, all devices proac-
tively acquire services from the central nodes according
to their preferences. However, the behaviors of inde-
pendent decision-makers have made anomaly detection
more challenging in the cyber-physical network. On the
one hand, agents are usually reluctant to share local
information with others due to privacy concerns. On the
other hand, each agent’s anomaly detection problem may
not be identical, e.g., it may have its local definition of
normal data and anomalies depending on the ambient
environment. Therefore, rather than handling one unified
anomaly detection problem, solutions for a set of Local
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Anomaly Detection (LAD) tasks are more relevant yet
demanding in multi-agent cyber-physical networks.

Numerous works tackle LAD problems in multiple
disciplines. [2], [3] formulated the LAD as Contextual
Anomaly Detection in an IoT network. [4], [5] modeled
LAD as Correlated Anomaly Detection, which is defined
by a set of local anomaly detection problems embed-
ded with a correlation graph. However, most previous
works establish their solutions under a collective and
collaborative framework, e.g., either anomaly detectors
are instructed by a central controller or collaborate with
others. Moreover, domain knowledge or the environ-
ment’s meta-information is usually assumed, e.g., spatial-
temporal information. We argue that those conditions
may not be satisfied in a multi-agent system because 1)
multiple service providers (central nodes) exist in the
network to deliver private service; 2) anomaly detectors
are independent, whose decisions are made for their
interests; 3) meta-information of either data or detectors
may not be easily shared due to data privacy. Therefore,
a game-theoretic approach is more suitable for addressing
the LAD problems. Note that these LAD problems are
not a priori known to the anomaly detectors or central
nodes.

Our game is designed in a simple two-layer network
as a bipartite graph. The game takes central nodes
and anomaly detectors as players, which concurrently
learn multiple machine learning (auto-encoder) models
for all the LAD problems they jointly identify. Unlike
many previous game-theoretic methods, our game 1)
only models the training stage where no attackers or
anomalies exist; 2) is non-cooperative, with information-
sharing only between the anomaly detectors and central
nodes. Each central node learns an ML model with data
from all connected detectors, forming a local training
group. Then, each detector optimizes its connection
strategy toward central nodes by combining the best
model for its LAD problem. The game evolves with
the player’s best response dynamics, which entail model
training and optimal group formation.

This paper aims to fill a research gap in addressing lo-
cal anomaly detection problems in multi-agent networks.
Based on a review of the most recent and relevant work
presented in Section II, the main contributions of this
paper are:

• a novel non-cooperative connection/group formation
game that supports a distributed learning scheme to
identify and solve all LAD problems at once;

• the proposed distributed learning scheme does not
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rely on any meta-information of anomaly detectors
and domain knowledge of their environments;

• the best response dynamics of our proposed game
are solved through iterative optimization;

• under a mild condition, the game is shown to be an
exact potential game.

II. RELATED WORK
Anomaly detection [6] identifies anomalies outside of

normal/expected behaviors. However, the definition of
anomalies can be either global or local. For example,
a person driving at 100km/h on the highway can be
considered normal but anomalous in the residential area,
and vice versa for him/her driving at 50km/h. Driving
at 800km/h can be undoubtedly globally anomalous in
most circumstances. As a result, local anomaly detection
becomes necessary to tackle local anomalies, contain-
ing multiple definitions of anomalies and normal data
conditioned on some meta-information of the anomaly
detectors. Contextual anomaly detection shares a signif-
icant intersection with the LAD, where meta-information
from either network activities or agents is learned along
with the anomaly estimators. [2], [3] applied feature
engineering and data mining towards contextual infor-
mation, e.g., learnable feature matrices or parameters
of a joint distribution. Another method of modeling the
LAD problem to estimate the correlation of the local
problems, work in [5] analyzed the correlation against
the geo-location and time of normal patterns. While [4]
proposed a model-free method to solve multiple LAD
problems at once based on estimating a local-problem
similarity graph. [7], [8] proposed a collaborative learning
framework that captivates local anomaly features into
the central model. [9], [10] integrated privacy-preserving
methods by only exchanging model parameters between
learners. Our game-theoretic framework is similar to the
work in [11]. However, assumptions of a mesh network
structure and the coalition of players are assumed in
these works. In particular, [12] applied a split-and-
merge strategy for users to search for their best learning
partners as a group, while again, it is based on a coalition
formation game aiming for one central problem.

III. Problem Definition
We define a set of local anomaly detection problems

on a multi-agent cyber-physical network consisting of
multiple anomaly detectors and central nodes. Each
anomaly detector faces a local anomaly detection prob-
lem, whose definition of anomalies depends on what is
normal in its local environment. Each central node holds
a deep-learning model trained for anomaly detection
tasks. All detectors choose to connect one or multiple
central nodes to use their deep-learning models for local
anomaly detection tasks. In return, they must share
their local data with the connected central nodes for
their models’ training dataset. All anomaly detectors
and central nodes are independent agents/entities not

TABLE I: Mathematical Notation

Ai, A
j jth column, ith row of A

Z,R space of integers, real numbers
w ∈ Rn a n-dimension vector
∆m M-dimensional Simplex
| · | size of a vector/matrix/set

V := {v1, · · · , vN} set of anomaly detectors
C := {c1, · · · , cM} set of central nodes

A ⊂ RN×M set of valid connection matrices
A ∈ A connection matrix
W ∈ W set of machine learning parameters of C

wck = Wk machine learning parameters at ck ∈ C
fck (·;wck) machine learning model at ck ∈ C
Uvi : A → R utility function of vi ∈ V
Uck : W → R utility function of ck ∈ C

affiliated with each other and only aim to maximize
their own utilities. Central nodes facilitate information
sharing between anomaly detectors, which do not have
direct connections to each other.

Problem 1: Based on the network learning model and
the assumptions above, to which central nodes should
the anomaly detectors (devices) connect? In other words,
what is the best way for them to share their data and
select central ML models to solve their local anomaly
detection tasks?

IV. Local Anomaly Detection on a Network
This section presents the network and local anomaly

detection models and relevant notation.

A. Two-layer Network Structure
Our communication network structure is formulated as

a bipartite graph {V, C,A}, where V := {v1, · · · , vN} rep-
resents the set of anomaly detectors, C := {c1, · · · , cM}
represents the set of central nodes, and A := {A ∈
RN×M |Ai ∈ ∆M ,∀i = 1, · · · , N} represents the con-
nection (communication link) matrix from V to C. A
valid matrix A ∈ A is a row-wise stochastic matrix
whose (i, j) entry represents the communication prob-
ability/frequency between vi and cj . If A is assumed
to be in an integer space, it implies every anomaly
detector exclusively connects to a central node and
implements its ML model. We argue that such an integer
connection is equivalent to a group formation, where
anomaly detectors connected to the same central node
serve as a group and share one central service.

B. Distributed Anomaly Detection
As an anomaly detector vi connecting to the central

node ci, it agrees to share its local data as part of the
ci’s ML model training. However, anomaly detectors are
usually constrained with limited resource capacity to
implement a large-scale ML training task. Therefore,
training the ML models at the central nodes with
powerful computing and storage resources has become a
convincing scenario, e.g., virtual private cloud (VPC) in
IoT or Radio Resource Unit (RRU) in CRN. Accordingly,
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anomaly detectors deploy the trained ML models from
the connected central nodes for their local anomaly
detection. Such a machine learning scheme has been
widely adopted in many real-world edge computing tasks
supported by cloud services. In our paper, independent
agents with imperfect information implement this dis-
tributed anomaly detection.

1) Locally Observed Data: we denote the locally ob-
served dataset of vi as Dvi ∈ Rni×d, where ni represents
the number of data points in Dvi and d is the number of
features of the data. Similarly, we denote a data point
in Dvi as x ∈ Rd. The dataset Dvi represents all data
observed by vi, e.g., each anomaly detector has a limited
ownership or detection range of all network patterns. We
denote D := ∪vi∈VDvi as aggregate data from all local
datasets, the total number of which is n if the local data
of any two random anomaly detectors have no overlaps,
then n =

∑N
i=1 ni.

2) Anomaly Detection Model Training Using Auto-
encoders: This paper uses the auto-encoder structure
as the ML model to detect local anomalies. The auto-
encoder structure is a deep learning structure compatible
with a semi-supervised learning task. The structure aims
to minimize the distance between the input data and
its output, i.e., reconstruction error. In the inference
stage, the distance (reconstruction loss) is expected to be
much more significant for anomalies. We denote the auto-
encoder held at ck as fck(·,wck), where the function fck
is concatenated by two deep neural networks: an encoder
E : Rd → Rl and a decoder E : Rl → Rd. Consequently,
fck(x;wck) = (E ◦D)(x;wck), where (E ◦D) : Rd → Rd

is the symbol of composite function, x ∈ Rd is the input
data and wck is the model’s parameters.

3) Anomaly Estimation Using Auto-encoders: in the
estimation stage, each anomaly detector selects the auto-
encoders from the connected central nodes to score its
local data as a potential anomaly. We first denote the
anomaly-scoring function of a local anomaly detector vi
as fvi : Rd → Rd. We choose this function to be a
linear mixture (ensemble) model from all central models
weighted by Ai:

fvi(x, Ai) =

M∑
k=1

Ak
i · fck(x;wck). (1)

This anomaly-scoring function combines the auto-
encoder scores from all connected central nodes by vi’s
connection vector Ai. To determine if a data point
x ∈ Dvi is an anomaly, a threshold-based method is
used based on the sum of squared errors between x and
fvi(x, Ai). Under a threshold ϵvi ∈ R, any data x ∈ Dvi

will be counted as the anomaly if ||fvi(x, Ai)−x||22 ≥ ϵvi .
In our work, ϵvi is determined by the 50 percentile of
the Euclidean error of all local data, denoted by the
percentile function q for each vi as:

ϵvi = q({||fvi(x, Ai)− x||22|x ∈ Dvi}, 0.5). (2)

C. Summary of Model’s Assumptions

For convenience, we formally summarize all assump-
tions of our network learning model mentioned above:
(A1) to make all possible group formations achievable,
the hypothetical number of aggregators, M , should be
no less than the number of detectors, N , i.e., M ≥ N ;
(A2) all central nodes are reachable and exclusive for
anomaly detectors, i.e., A ∈ ZN×M ,∀A ∈ A; (A3) local
datasets are disjoint, i.e., Dvi∩Dvj = ,∀i ̸= j; (A4) LAD
is formulated as a semi-supervised learning task;

V. Game-theoretic Framework

We propose a non-cooperative game for the net-
work learning process for several realistic reasons. First,
anomaly detectors solving LAD problems are selfish: they
only aim to maximize local performance with potential
privacy concerns. Second, central nodes may belong to
different service entities with competitive relationships
and no information-sharing contract. Even if they belong
to the same entity, central nodes’ cooperation can be
very expensive, e.g., synchronization of database replicas
and real-time communication across two regions. Third,
the game does not require domain knowledge of the
network environment, e.g., no meta-information (domain
knowledge) is required from observed data points and
anomaly detectors, e.g., temporal-spatial information
of the anomaly detectors and how data points are
generated.

A. Game Definition

Our game is played at the training time and is defined
as a tuple:

G = {{V, C}, {A,W},U}. (3)

The set of players is the union of anomaly detectors V
and central nodes C.The connection matrix A ∈ A is a
strategy profile of all anomaly detectors V. The set of
auto-encoders parameters W ∈ W is a strategy profile of
all central nodes. For any strategy profile (A,W ), where
A ∈ A and W ∈ W, Ai is the connection strategy of
vi while Wk = wck denotes the learning parameters of
the auto-encoder owned by ck. Lastly, U denotes the set
of utility functions for both anomaly detectors Uvi and
central nodes Uck . For convenience, we also denote the
strategy profile against a player vi with the notation −vi,
e.g., A−i, U−vi .

B. Utility Functions

1) Utilities of Anomaly Detector Players: The util-
ity function of vi is simply the sum-of-squared errors
between the input data and its estimated output:

Uvi(Ai,W,Dvi) =
∑

x∈Dvi

||
M∑
k=1

Ak
i ·fck(x;wck)−x||22. (4)
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2) Utilities of Central Node Players: Based on the
learning network model, each central node ck trains its
own auto-encoder fck(·;wck) with local data shared by
all connected anomaly detectors. The utility function of
ck is the training loss function conditioned on the current
connection (data-querying) strategy (A).

Uck(wck , A,D) =
∑
vi∈V

∑
x∈Dvi

||Ak
i (fck(x;wck)− x)||22.

(5)
Even without the integer constraint on A, the ensem-

ble estimation function and both utility functions are
still valid for continuous action space, e.g., fvi becomes
an ensemble model from all fck weighted by a connection
probability Ak

i .

C. Best Response Dynamics
1) Cost Minimization by Players: for each player vi,

the local problem of minimizing its utility is

u∗
vi,W = min

Ai∈ZM
Uvi(Ai,W,Dvi) s.t. Ai ∈ A (6)

where u∗
vi,W

is the optimal value acquired by vi condi-
tioned on W ∈ W. Notice that u∗

vi,W
is attainable if

||wck ||22 ≤ ∞ since (4) is convex on A ∈ A. With the
integer constraint on the actions, solving (6) becomes as
easy as finding ck that minimizes the local losses, i.e.,
an argmin process.

2) Training Loss Minimization by Central Nodes:
in the training process, central nodes minimize their
training loss by gradient descent algorithms. We have

l∗ck,A = min
wck

∈R|Wk|
Uck(wck , A,D) (7)

where l∗ck,A is the optimal value attained by ck con-
ditioned on A ∈ A. We assume (7) is differentiable
but non-convex, whose local optima can be acquired
by the gradient-descent algorithms. The best response
dynamics show that finding the optimal solutions for
either (6) and (7) depends on the other problem’s optimal
solution. However, the non-convexity of (7) makes the
global optima acquirement non-trivial.

D. Network Training Algorithms
Based on the best responses (6) and (7), a distributed

algorithm is proposed to solve our game. It is distributed
since all players search for their best responses by solving
a local optimization problem. The interaction ends with
successive optimizations between the network’s lower
(Algorithm 1) and upper (Algorithm 2) layers.

Using Algorithm 1, each anomaly detector concur-
rently updates the best response by finding the central
node minimizing its local losses in Algorithm 1, e.g.,
argminAi

Uvi(Ai,W,Dvi).
For central nodes, their auto-encoders concurrently

update the model parameters with available training
data and a gradient-descent solver, e.g., ADAM. The
operations iterate between Algorithm 1 and all models’
training updates, while a stopping condition needs to be

Algorithm 1: Best Connection Search for vi

Input: Network Parameters C,W,Dvi , {fck}ck∈C
Output: Connection Strategy Ai

Update {wck , fck}ck∈C
function argminAi

(C, W , Dvi , {fck}ck∈C)
Step 1: Return the Ai that minimize (6)
Step 2: Update central node connection by Ai

defined to terminate the iteration. Since all algorithms
run at the player level, it does not have a central
framework, and players in the same layer update their
actions in parallel, which brings a favorable run time in
a large-scale network.

VI. Theoretical Analysis
This section studies several properties of the game G

(3) and its best response dynamics. We first prove G
is an exact potential game, then we show the sufficient
condition of attaining the global optimum of its potential
function.

A. Exact Potential Game
We start with the following definition.
Definition 6.1 (Exact Potential Game): The game G

defined in Section V-A by (3) is an exact poten-
tial game, if there is a potential function ΦD :
A × W → R such that i) for each Player
vi ∈ V, ∀A−i ∈ A−i,W ∈ W,∀A′

i, A
′′

i ∈ Ai,
ΦD(A

′

i, A−i,W ) − ΦD(A
′′

i , A−i,W ) = Uvi(A
′

i,W,Dvi
) −

Uvi(A
′′

i ,W,Dvi); ii) for each Player ck ∈ C, ∀w−ck ∈
W−k, A ∈ A,∀w′

ck
,w

′′

ck
∈ Wk, ΦD(w

′

ck
,w−ck , A) −

ΦD(w
′′

ck
,w−ck , A) = Uck(w

′

ck
, A,D)− Uck(w

′′

ck
, A,D).

Based on this definition of the exact potential game,
we state that

Φ(A,W ;D) =
∑
vi∈V

∑
x∈Dvi

||
M∑
k=1

Ak
i · fck(x;wck)− x||22.

(8)
The exact potential function measures the total sum-
of-squared losses of local estimation from all anomaly
detectors in G.

Theorem 1 (Exact Potential Game): The game G (3)
is an exact potential game if A ⊆ ZN×M , i.e. if the
connection matrices have only integer entries.

Proof: We omit the proof due to the space limita-
tions.

Theorem 2 (Convergence): The best response dy-
namic of the game G (3) converges to a Nash Equilibrium
if the perfect solver exists for (6) and (7).
We omit the proof here since it has been proved as the
Theorem 1 of [13]. Furthermore, [14] shows that every
pure Nash Equilibrium of an exact potential game is
equivalent to a local optimum of the potential function.
Theorem 2 assumes an ideal situation as the assumption
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of ”perfect solvers” does not exist, particularly for solving
(7).

B. Connection to Collaborative Learning
The exact potential function (8) is the sum of the

estimation loss of the local training data from all anomaly
detectors. Therefore, the game G also offers us a central
problem formulation, where all players collaborate to-
gether to minimize the sum of their local estimation
loss. Firstly, this section will formulate this central
optimization problem in (9) with all players’ actions as
the decision variables. Secondly, this section will also
show sufficient conditions to attain the global optimum of
this central optimization problem by the non-cooperative
best-response dynamics.

Φ∗ = min
A ∈ ZN×M ,W

Φ(A,W ;D), (9a)

s.t. Ai ∈ ∆M , i = 1, · · · , N, (9b)

C. Global Optimum Attainment Without Collaboration
This section discusses the sufficient conditions of ac-

quiring the global optimum in (9) from the best response
dynamics of G(3). We start with the definition of the
global optimum of the central optimization problem and
assuming we have a way to find them.

Definition 6.2 (Optimal Solutions of the Global Problem):
An optimal solution of (9) is defined as A∗ ∈ A,W ∗ ∈ W
where W ∗

k = w∗
ck
, k = 1, · · · ,M .

Assumption 2.1 (Perfect Central Solver): We assume
there exists a perfect solver for (9) which acquires the
optimal solution (A∗,W ∗).
Next, we define two primal decomposition forms of our
central problem (9), similar to the definition of dual
decomposition in Section 2.2. of [15].

Definition 6.3 (Primal Decomposition): The central
problem (9) has a primal decomposition by V if ∃ϕvi(Ai)
such that Φ(A,W ;D) =

∑
vi∈V ϕvi(Ai). In addition,

the central problem (9) has a primal decomposition by
C if ∃ϕck(Wk) such that Φ(A,W ;D) =

∑
ck∈C ϕck(Wk).

1) Primal Decomposition by Anomaly Detectors:
Theorem 3: For each vi, 1) its utility function (6)

is a primal decomposition component of the potential
function (9a) and A∗

i is its best response conditioned on
W ∗; 2) if A′

i is its best response conditioned on W ∗, then
(A

′
,W ∗) is also optimal for (9).

2) Primal Decomposition by Central Nodes:
Theorem 4: For each ck, 1) its utility function (7)

is a primal decomposition component of the potential
function (9a) and W ∗

k is its best response conditioned
on A∗; 2) if W ′

i is an optimal solution of (7) conditioned
on A∗, then (A∗,W

′
) is also optimal for (9).

Theorem 3 shows that having an optimal W ∗ of
collaborative optimization (9) is a sufficient condition
of acquiring an optimal A∗ of (9) by the best response

dynamics of G, and vice versa in Theorem 4. However,
finding an optimal W ∗ or A∗ as the precondition (initial
condition) of the best response dynamics can be difficult.
Therefore, attaining the global optimum of the central
problem is not generally guaranteed by the best response
dynamics with a random initial condition. Nevertheless,
we will show in the simulation section that the best
response dynamics empirically return a near-optimal
outcome of the collaborative optimization problem.

VII. Simulations

A. Simulation Setup

1) Distributed MNIST Data Generation: in this pa-
per, we use our synthetic data generator to create
MNIST data points in a 2-dimensional space. This is due
to lack of equivalent wireless network datasets. As shown
in Figure 1 (a), the generator randomly creates color-
coded data points based on a Gaussian-mixture Model
(GMM). Anomaly detectors are located in different areas
with a limited detection range (dash-line grid). All data
points falling into an anomaly detector’s (vi) detection
range forms its local data Dvi . We assign each data point
with a random MNIST figure whose color represents an
MNIST digit. For example, black data are only drawn
from the MNIST figures with digit one.

2) Defining Normal Data and Anomalies: We utilize
the data point’s color to specify locally normal data
and anomalies for each anomaly detector vi. As shown
at the left-hand side Figure 1 (a), locally normal data
of vi is defined as all digits observed in its detection
range. Similarly, the local anomalies of vi are digits that
never emerge. For instance, the anomaly detector at the
bottom-left corner observes 2 (purple) and 1 (black) as
its locally normal data. Therefore, any MNIST data with
digits 3, 4, and 5 will be counted as anomalies, e.g., on
the right-hand side of Figure 1 (a).

B. Simulation Results

In Figure 1 (b), the simulation of the best response
dynamics is compared with two other learning schemes:
1) all anomaly detectors learning as a grand coalition
(red) and learning their local problems independently
(yellow).

1) Training Loss: The average training loss of the
overall central node’s model is shown on the left-hand
side, consistently decreasing on average. Due to the
semi-supervised learning framework, learning in a grand
coalition has a training loss as small as that of the best
dynamics responses. This is because the grand coalition
learning creates a global anomaly detection model which
takes all locally normal data as its training data, i.e.,
one auto-encoder minimizes the self-mapping SSE of
all network data. Nevertheless, the training-loss curve
reflects a decent loss-minimization outcome from the best
response dynamics, similar to the grand coalition.
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(a)

(b)

Fig. 1: (a) shows 121 anomaly detectors (stars) with their detection
range in dash lines are presented. Note that the detectors do not
know their location and how MNIST digit classes are distributed in
the matrix. 5-digit classes of the MNIST data are used to generate
locally normal data (left) and anomalies (right) based on a GMM;
(b) shows the simulation results from our game-theoretic learning
process (blue). The left figure shows the training loss, and the
right shows the AUC values over 100 epochs. A comparison of
isolated (yellow) methods and grand-coalition learning (red) is also
presented.

2) AUC Curve: The testing dataset contains locally
normal data and local anomalies for each anomaly detec-
tor. The testing curve is generated on the right-hand side
with the average AUC values computed from all anomaly
detectors in every training epoch. The AUC curve
reflects the average anomaly-detection performance of
each detector on its local data. Since the anomaly data
is chosen from the same digits (1,2,3,4,5) as the normal
data and due to lack of prior knowledge, the grand
coalition centralized model struggles to identify local
anomalies, which causes the AUC to fluctuate around
0.5. In contrast, the average AUC curve from the best
response dynamics increases above 0.8 thanks to each
anomaly detector’s optimal group formation/connection.
The isolated learning also induces increasing AUC values,
whose rate is significantly lower than the best response
dynamics.

VIII. Conclusion
We proposed a novel non-cooperative game of iden-

tifying and solving local anomaly detection problems
in the multi-agent-cyber-physical network. Using auto-
encoders as the anomaly detection models, all models can
be efficiently trained by the players’ best response dy-

namics to tackle different LAD problems. Each anomaly
detector finding the best central nodes to interact with
is equivalent to an optimal group formation of learning
multiple local models simultaneously. Our game is proved
to be an exact potential game in which all players aim to
minimize total LAD losses. The best response dynamics
also guarantee convergence towards a local optimum
of the potential function, which is equivalent to the
Nash Equilibrium of the game under ideal conditions.
The simulation result reflects essential properties of
the best response dynamics, significantly outperforming
other benchmark methods.
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