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Aero-engines Anomaly Detection using an
Unsupervised Fisher Autoencoder
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Abstract—Reliable aero-engine anomaly detection is crucial
for ensuring aircraft safety and operational efficiency. This re-
search explores the application of the Fisher autoencoder as an
unsupervised deep learning method for detecting anomalies in
aero-engine multivariate sensor data, using a Gaussian mixture
as the prior distribution of the latent space. The proposed
method aims to minimize the Fisher divergence between the
true and the modeled data distribution in order to train an
autoencoder that can capture the normal patterns of aero-engine
behavior. The Fisher divergence is robust to model uncertainty,
meaning it can handle noisy or incomplete data. The Fisher
autoencoder also has well-defined latent space regions, which
makes it more generalizable and regularized for various types
of aero-engines as well as facilitates diagnostic purposes. The
proposed approach improves the accuracy of anomaly detection
and reduces false alarms. Simulations using the CMAPSS
dataset demonstrate the model’s efficacy in achieving timely
anomaly detection, even in the case of an unbalanced dataset.

I. INTRODUCTION

Detecting anomalies in aero-engines is essential for mit-
igating potential risks, maintaining consistent operational
reliability, and enhancing overall safety. Any deviation from
the normal operation of an aero-engines may have severe
consequences, including compromised performance or even
catastrophic failure. An anomaly detection algorithm acts as
an early warning system, enabling engineers and maintenance
personnel to identify irregularities or potential issues in
engine function before they cause serious problems. These
detection systems provide timely insights into engine im-
pairment, facilitating proactive maintenance measures and
minimizing the risk of unexpected flight failures [1], [2], [3],
[4].

Existing methods for aero-engine anomaly detection can
be broadly classified into three categories: model-based,
data-driven, and hybrid methods. Model-based methods use
physical models or mathematical equations to describe the
normal behavior of aero-engines and detect anomalies when
the deviation of the output from its expected nominal value
exceeds a prescribed threshold value. These methods require
a deep understanding of the engine’s structure and dynamics
and often fall short in capturing complex (often nonlinear)
relationships among engine components [5]. On the other
hand, data-driven methods use statistical or machine learning
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techniques to learn the normal patterns of aero-engine data
and identify faults based on prior knowledge of the engine’s
physics. These methods can handle high-dimensional and
noisy data, but may suffer from the lack of labeled data,
the difficulty of feature engineering, and the challenge of
interpreting the results. Hybrid methods combine model-
based and data-driven methods to utilize the advantages of
both approaches. These methods can incorporate domain
knowledge and data analysis to improve the accuracy and
robustness of anomaly detection. However, they may also in-
herit the limitations of both methods, such as the complexity
of model building and the dependency on data quality [6],
[7].

One can use deep learning approaches to overcome the
challenges of traditional methods in aero-engines anomaly
detection. Unlike conventional methods, deep learning tech-
niques do not require capturing intricate patterns or un-
derstanding of nonlinear relationships within complex aero-
engines. Instead, these models excel at autonomously learn-
ing such patterns from extensive multisensory data, making
them highly adaptable to the dynamic nature of aero-engine
systems. Since unsupervised deep learning models do not
require labeled data, no data annotation problems exist. These
advantages, coupled with the advent of the Internet of Things
(IoT) and Industry 4.0, along with improved accessibility
to high-quality engine data, establish a strong foundation
for using deep learning approaches for aero-engine health
monitoring. These approaches address challenges inherent in
traditional methods while harnessing the advancements in
technology, thereby paving the path for enhanced anomaly
detection in aero-engine systems [8], [9], [10].

Various studies explore the application of deep learning
methods in anomaly detection. The authors in [11] introduce
a two-step framework consisting of a stacked denoising au-
toencoder (AE) for extracting features from the input data and
a single Gaussian model construction for anomaly detection.
Another study proposes a sequential variational AE (VAE)
combined with a convolutional neural network (SeqVAE-
CNN) for unsupervised multivariate time-series anomaly
detection [12]. A new approach to detect anomalies in time
series using a VAE-LSTM hybrid model was proposed in
[13]. The model utilizes a VAE module for forming robust
local features over short windows and an LSTM module for
estimating the long-term correlation in the series on top of
the features inferred from the VAE module. Finally, a deep
learning model, anomaly VAE-Transformer, which combines
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the VAE to extract local information in the short term and
the transformer to identify dependencies between the data in
the long term, was proposed in [14]. These studies highlight
the advantages of AE and VAE in detecting subtle deviations
and complex patterns in aero-engine data.

In this work, we extend the application of Fisher AE
(FAE), introduced in [15], to the aero-engine anomaly de-
tection scope. The adaptation of FAE to this context is
challenging due to the distinct characteristics of aero-engine
data, which include high variability, strong correlations
among multivariate time series, and significant noise levels.
Moreover, our model incorporates a mixture of Gaussian
distributions with learnable parameters for the latent space
prior distribution, enabling dynamic adaptation to the data
observed. This prior assumes that the data consists of separate
clusters in the latent space, and it has been demonstrated to
outperform other approaches on challenging datasets [16].

By introducing the Fisher criterion into the AE, the model
enhances the separation between classes in the latent space
while simultaneously minimizing the distance within each
class, which can significantly improve the overall effec-
tiveness of the anomaly detection mechanism. One notable
advantage of this type of AE is its enhanced ability to
reach an interpretable and connected regularized latent space.
The maintenance personnel can more quickly and efficiently
perform diagnostics, facilitating a clearer understanding of
the learned representations. The Fisher information helps the
model to focus on capturing features that contribute signif-
icantly to the discrimination between normal and anoma-
lous instances. This is crucial in imbalanced datasets where
anomalies are less frequent, as the model needs to identify
subtle patterns that differentiate the minority class. Addi-
tionally, the model’s capability to detect anomalies promptly
enables proactive maintenance interventions and minimizes
potential downtime. Furthermore, the FAE reduces false pos-
itives and unnecessary alerts, making the diagnostic process
more efficient.

The rest of the paper is organized as follows. Section II
presents some background and motivation for the study. The
FAE is developed and implemented in Section III, as the main
contribution of this work. Comparative simulation results are
presented in Section I'V to underscore the model’s superiority.
Finally, some concluding remarks are given in Section V.

II. PROBLEM STATEMENT

Notation: Throughout the paper, R and N represent the
sets of real and natural numbers, respectively. The symbol
|||l denotes the Euclidean norm (also known as the L2 norm),
V,, denotes the gradient operator with respect to the variable
a, and A, f indicates the Laplacian of the function f with
respect to a.

Aero-engine data acquisition systems record a wide range
of time-series data from sensors for evaluating engine per-
formance. These recorded data can be categorized into two
groups: static and dynamic. Static measurements encompass
performance parameters related to the thermodynamic sys-
tem, while dynamic variables capture oscillations and vibra-

tions within the engine components during operation. Both
types of measurements are vital for fault detection in aero-
engines. However, this study focuses on static measurements
of turbofan engines.

The sensors that capture static data may vary for different
engines, reflecting the uniqueness of their design and specifi-
cations. However, certain variable dynamics are the same for
distinct turbofan engine types. These include variables such
as the fan inlet temperature and pressure, the physical fan
speed, the engine pressure ratio (P50/P2), the ratio of fuel
flow to Ps30, the burner fuel-air ratio, and the turbine cool
air flow [18]. For a complete list of the engine-independent
variables, see [18].

We aim to utilize these data to design a robust and
regularized unsupervised model for detecting anomalies in
multivariate data and address the challenges of (i) imbalanced
data distribution in aero-engines, (ii) insufficient generaliza-
tion across various engine models and configurations, and
(iii) computational time constraints.

Consider an aero-engine with N € N sensors. Let z; €
RPi € {1,...,N}, D € N, be the measurements of
the i-th sensor. Define the aggregate sensor matrix X =
[x1,22,...,7x5] € RP*N and denote the latent variable by
z. The size of z is a design choice based on the desired level
of data compression and the complexity of the data patterns.
The problem is then formulated as finding the instances at
which

1X = fo(2)[> > A (1)

Here, fp(z) is the reconstruction of X from z, and \ is
the anomaly threshold. To identify the anomaly points, we
propose the robust generative FAE, conceptualized by min-
imizing the Fisher divergence between the intractable joint
distribution of observed data and latent variables, aligning it
with the modeled joint distribution. This approach will be
discussed in detail in the following section.

III. MAIN RESULTS

A common approach in data fitting and probabilistic
analysis involves choosing a probability distribution pg, that
reduces a specific divergence measure in comparison to
the unknown true data distribution pgu. One well-known
distance measure used in this context is the Kullback-Leibler
(KL) divergence. By considering the probabilistic model of
the observed data as py(X), the KL divergence is defined as

DPtrue (X )

follows
X 10 e —

where X is the set of all possible data points X. While
minimizing KL divergence is useful, it may have limitations
when handling complex data. An alternative method called
Fisher divergence has been recently introduced as follows

X,
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[19]

1
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Utilizing the results of [19],

1
D [Pl [po] = ]Epm(wgllvx 10g Pirue (X)|* + s [po (X)),
3)

where
1
sulpo(X)] = 5lIVx log pg(X)|I* + Ax log pg(X).

The Fisher metric evaluates how well the model distribu-
tion can match the true distribution’s structure by comparing
their gradients. The measure is more focused on the shape
or geometry of the distributions rather than their absolute
positions, making it less sensitive to outliers or areas of low
probability mass that can disproportionately affect the KL
divergence.

Let p,¢(X,z) be the joint distribution of the modeled
data and corresponding latent variables, and giue (X, 2)
the joint distribution of the true observed data and latent
variables, where ¢, 6 and 7 represent the parameters of
the encoder, decoder and the prior distribution of the latent
space, respectively. Using the probability chain rule, both
joint distributions are defined as follows [15]

Qtrue,(i)(Xa Z) = plrue(X)q¢(Z|X)v
pnﬁ(X: Z) :p7,(Z)p9(X|Z), (4)

where ¢g(2|/X) is the probability density function of the
encoded distribution, also known as the approximate pos-
terior. It describes how the latent variable z is distributed,
given the input data X. A Gaussian model is often used
for the posterior. py(X|z) is the likelihood of reconstruction,
which represents the probability of reconstructing the input
data X, given the latent space z. Moreover, pn(z) is the
prior probability density function of the encoded distribution,
representing our assumptions about the distribution of the
latent variables before observing any data. In this study, the
prior function is modeled as a mixture of Gaussian distribu-
tions with learnable parameters of the means, variances and
mixture weights.

It is desired to minimize the Fisher divergence between
two joint distributions
9", 0", 0" = argming, , 4D [qine (X, 2) || Py,0(X, 2)],
. 1
=argming , )E, o (x2) [5 IV~ 10g Gurue, 6 (X, 2)

- VX,z Ingn,Q(Xa Z)||2]
&)
By substituting (4) into (5) and utilizing (3), it results from
Theorem 1 of [15] that the minimization of (5) is equivalent

to the following optimization problem
o* 0%, 0 = arg gl";%{Eplmc(X) {DF (96 (21X) | Pn,0(2|X)H
+ By 1) |31 [po (10)]
1 2
+ EHVX 10gq¢,true(X‘Z)H ]} (6)

Considering py(X|z) as Gaussian distribution with mean
fo(z) and variance 1, and using Monte Carlo estimation with
L samples from g4 (z|X), the loss function to minimize (5)
is defined in [15] and [17] as

L
1
L(X;¢,n,0) =37 } 11V 1og g4(V] X)
=1

— V. logp, (1) — V. log po(z|zV) 2

1
+ 51X = fo O
2

9

1
+ 5 HVX log Q¢(Z(l)|X)‘

(7
where z() is the latent variable sampled from g,(2(V|x)
using the reparameterization trick () = (X)) +o (X)W,
Here, (X)) and o(X) are the mean and standard deviation
predicted by the model, and €) is a random variable with
a standard normal distribution A(0, I'). This reparameteriza-
tion enables one to use backpropagation during the training
process. Moreover, fy(z(!)) is the reconstruction of X from
2 using the decoder and k is the regularization control
constant.

The loss function in (7) comprises three components. The
first term measures the divergence between the approximate
posterior g4(z()|X) and the model posterior pg(X|2!)
using the Fisher information matrix of the prior pn(z(l)).
Anomalies typically cause changes in the data distribution
that deviate from the norm, and the Fisher divergence term
helps the model adapt to these variations. By minimizing
the first term in (7), the model captures the uncertainty or
variability in the data distribution, and becomes more robust
to anomalies. The second term, which is the reconstruction
error, measures the dissimilarity between the original input
data X and its reconstruction f(z(")). Faults in aero-engine
time-series data will likely result in significant deviations
from the expected or normal data patterns. By minimizing
this term, the model aims to capture and reproduce normal
data patterns accurately. The third term is stability control,
which penalizes large gradients of the encoder network’s
output for its parameters. By minimizing this term, the model
extracts stable and invariant features from the input data,
making it less sensitive to minor fluctuations and noise.

The anomaly detection process with the FAE begins by
training the model on a dataset representing normal con-
ditions. During this phase, the Adam optimizer is utilized
to optimize the model parameters. Once the training is
complete, the FAE model reconstructs data samples. For each
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sample, we calculate the reconstruction error. Anomalies are
identified by comparing these errors against a predefined
threshold, which can be set using statistical methods or based
on specific domain knowledge of the data. Samples whose
reconstruction error exceeds this threshold are classified as
anomalies. This method effectively detects unusual patterns,
showcasing the model’s capability to identify departures from
the established normal behavior. The detailed procedure is
outlined in Algorithm 1 and 2 .

Algorithm 1 Training the VAE with Fisher Divergence

Input: Training data X, latent dimension
Initialize VAE parameters: ¢, 1, 0
repeat
Randomly sample a minibatch of training data:
{XiHL,
Compute the gradient: Vg, 0 L(X;; 0,7, 6)
Update ¢, 1, and 6 using the Adam optimizer
until Convergence
Output: Optimized parameters ¢*, n*, 6*

L

® W

Algorithm 2 Anomaly Detection using the Trained VAE

*

1: Input: Test data X', trained parameters ¢*, n*, 6%,
threshold A
Reconstruct the data X/, .., = fo~(2) where z = g4« (X')
Calculate reconstruction error € = || X' — X/ ...||?
ife> A

then Flag as anomaly
endif
Output: Anomaly indicators

NN R RN

IV. SIMULATIONS

To evaluate the model’s performance, we apply the FAE
to the commercial modular aero propulsion system simu-
lation (CMAPSS) dataset. This public dataset, synthetically
generated by NASA, comprises simulated run-to-failure data
from turbofan engines. The dataset consists of multiple mul-
tivariate time series, each of which corresponds to a different
engine. Each time series includes sensor readings recorded
over time. The dataset includes data fleet of FD001, FD002,
FDO003, and FD004, each representing different operating
conditions and fault modes. These variants provide diverse
scenarios for algorithm testing [20].

Example 1. In the first example, we focus on the FD0O1
subset of the CMAPSS dataset, which presents scenarios
of fault occurring in the high-pressure compressor (HPC).
We utilize all 21 measurements in the dataset, including
various sensor readings and engine operational conditions.
Our approach involves implementing two distinct AEs: VAE
and FAE, to detect anomalies in the time series data.

The initial step involves data preprocessing, where we
adopt a data augmentation strategy to optimize the training of
our deep learning models. This strategy entails duplicating a
specific dataset segment that represents normal operational
conditions. The primary purpose of this duplication is to

TABLE I: The AEs hyperparameters

Hyperparameters Value or description

32, ReL.U activation
32, ReLLU activation

Encoder hidden layer size
Decoder hidden layer size

Latent size 2
Number of mixture components 3
Initializer for mixture weights Uniform
Initializer for mixture means Zeros
Initializer for mixture log variances Zeros
Batch size 16
No. of epochs 50

increase the representation of normal states within the dataset
(in real-world scenarios, this step might be unnecessary),
ensuring that the models are adequately trained with typical
operational patterns.

In the next step, the VAE and FAE are trained with pre-
specified hyperparameters in Table 1. The prior is a mixture
of three Gaussian distributions, each with its own set of
learnable parameters of the mean and log-variance. Through-
out the learning process, these parameters are updated to
better capture the complex nature of the data distribution. The
model is used to reconstruct the data, calculate reconstruction
errors, and identify anomalies by setting a suitable threshold.
The threshold is set at the 90th percentile of calculated recon-
struction errors. The resulting loss values and reconstruction
errors are, respectively, illustrated in Figs. 1 and 2 for the
VAE, and Figs. 3 and 4 for the FAE. It can be observed that
the FAE is less susceptible to overfitting and has a lower
test loss than the VAE. Furthermore, the reconstruction error
threshold established by the FAE model effectively reduces
the incidences of false positives.

Latent space analysis using scatter plots and Kernel density
estimation (KDE) plots are presented in Figs. 5 and 6 for the
VAE, and in Figs. 7 and 8 for the FAE. These figures offer
a deeper understanding of the distribution and separation of
normal and anomalous data in the latent space. Comparing
the outcomes of both models, it is evident that the FAE pro-
vides a more structured and regularized latent space, offering
a clearer distinction between normal and abnormal data, as
well as more meaningful and interpretable representations of
the input data. This demarcation significantly improves the
robustness of anomaly detection, allowing for more precise
identification of outliers, hence enhancing the FAE’s ability to
detect anomalies. In contrast, the VAE model does not clearly
distinguish between normal and abnormal data, leading to
potentially less effective and less reliable results.

Remark 1. The parameters of the mixture model can learn to
capture various operational states of the aero-engine corre-
sponding to different operating regimes, such as idling, take-
off, and cruising. This capability helps differentiate between
normal operational variations and anomalies.

Remark 2. Leveraging the structured and separate latent space
in the FAE approach minimizes the necessity for a decoder
layer. This streamlined process contributes to reducing the
diagnostic time of the VAE to identify anomalies.
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Fig. 1: Train and test loss using VAE in FDOO1 dataset

— Reconstruction error
—— Anomaly threshold
X  Anomalies

Reconstruction error
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Data point (second)

Fig. 2: Anomaly detection using VAE in FD0O1 dataset

Example 2. In the second example, we apply the FAE
to the FDOO3 subset, where faults originate from the fan and
HPC degradation. To address the complexity, we increase the
FAE latent variables from two (in Example 1) to three. The
distribution of these latent spaces is illustrated in Fig. 9. A
clear observation from this figure is the distinct boundary that
the FAE establishes between normal and abnormal data.

Remark 3. The latent space structure in Example 2 is
noticeably different from that observed in Example 1. This
difference underscores the adaptability and diagnostic capa-
bilities of the FAE. The model can detect anomalies and rep-
resent different types of faults through specific changes in the
configuration of the latent space. This unique characteristic of
the FAE, where the latent space structure dynamically adapts
to different types of faults, reveals its effectiveness in diag-
nostic applications. The ability to visually and quantitatively
distinguish between various fault sources in the latent space
can be pivotal for high-performance diagnosis and targeted
maintenance strategies.

V. CONCLUSIONS

This research investigates the application of the FAE
in aero-engine anomaly detection. The approach aims to
minimize the discrepancy between the actual and modeled
data distributions, allowing the FAE to categorize the aero-
engine’s data properly. The FAE’s ability to create a regu-
larized and well-structured latent space makes it particularly
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Fig. 4: Anomaly detection using FAE in FD0O1 dataset
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Fig. 5: Distribution of latent variables in VAE
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Reconstruction Error

30

Latent Variable 2

Gz

-0.5 0.0 05 10

Latent Variable 1

Fig. 8: Probability distribution of latent variables in FAE

15 2.0

25

effective in distinguishing between normal and abnormal data
patterns, thereby enhancing the precision of anomaly detec-
tion. This distinction is crucial for the early identification
of potential issues in aero-engines, which is paramount for
ensuring flight safety and operational efficiency. Simulations
performed on the CMAPSS dataset confirm its efficacy in
aero-engine health monitoring. In future work, we plan to
explore the model’s uncertainty quantification to objectively

evaluate risks associated with potential anomalies.

0.5

0.4

Latent variable 3
°
@
Reconstruction error

o
o

0.1

Fig. 9: Distribution of latent variables in FAE
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