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Abstract— This paper deals with the identification of graphi-
cal autoregressive moving-average (ARMA) models with latent
variables. Combining sparse structural characteristics of the
graphical model with low-rank modeling of the latent variables,
a sparse plus low-rank based iterative identification algorithm
is proposed. The topological information embedded in the
sparse AR dynamics is estimated from a regularized Yule-
Walker optimization problem, which is then treated as prior
graphical structure constraint. The latent-variable plus MA
part is identified by solving a convex constrained trace norm
minimization problem. Based on the MA part estimate and the
structural constraint, the graphical AR estimates are updated
by the sparse plus low-rank optimization framework and are
then used for the update of the latent-variable plus MA part.
The effectiveness of the proposed method is illustrated through
a simulation study.

I. INTRODUCTION

Graphical models can deal with the network topology
identification problem, whose edges describe conditional
dependence relations among the model. In many applications
throughout science and engineering [1]–[4], there may exist
unmeasured (latent) variables, which make it difficult to
infer graphical structure. Ancestral graphs can be used to
represent independence relations among observed variables
in the presence of latent confounders [5], and the fast causal
inference is a common approach for causal discovery. For
tree-structured latent graphical models, [6] provided consis-
tent and computationally efficient algorithms for learning
minimal latent trees and [7] provided a method that can
detect the precise location of latent variables. The problem
of estimating the conditional dependency structure of latent-
variable AR graphical models was considered in [8], which
introduces two regularizers inducing sparsity and low-rank
on the corresponding components of the observed inverse
spectral density matrix. As the generalization of the co-
variance extension approach [9], this identification paradigm
was successfully applied to neuroimaging datasets [10] and
further modified by constructing a confidence set constraint
to simplify the regularization parameter selection procedure
[11]. The robustness and scalability of the identification
procedure was improved by using reciprocal processes to
approximate AR processes [12]. The work in [13], [14]
retrieved the sparse plus low-rank graphical structure from
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a different Bayesian view [15], and the corresponding non-
parametric Gaussian regression approaches were proposed.

A host of literature address the latent variables through
some factor analysis technique [16]–[19]. The robust esti-
mation of static factor models was studied in [17], which
exploits the decomposition of the covariance matrix as the
sum of a low-rank matrix whose rank determines the number
of factors and the diagonal matrix modeling the idiosyncratic
noise. The estimation uncertainty of the sample covariance
was also considered and dealt with by setting a divergence
constraint. This identification idea has been generalized to
dynamic AR, MA and ARMA factor model learning, where
the AR dynamic is estimated by means of moments matching
and the MA dynamic factor analysis is performed with the
low-rank plus diagonal decomposition of the spectral density
matrix [18], [19].

In this paper, we focus on the identification of latent-
variable graphical ARMA models, which connects the recent
research on the MA dynamic factor analysis [19] to graphical
model selection and extends the latent-variable graphical AR
model identification results in [20]. We address the following
problems:
● A regularized Yule-Walker optimization model is pro-

posed for sparse AR dynamics identification, which is
reformulated as a vector form and solved by cross-
validated LASSO.

● A modified low-rank plus diagonal decomposition
method for the latent-variable and MA dynamics learn-
ing is formulated by taking into account of a convex
measure of estimation uncertainty.

● Based on the sparsity of the interdependence between
observed variables and the low-rank property of the
spectrum corresponding to the latent-variable part, a
sparse plus low-rank optimization framework is present-
ed to update the graphical AR structure. By alternatingly
estimating the latent plus MA part and the graphical AR
part, finer results can be obtained in terms of estimation
accuracy.

II. NOTATION

In this paper, the set of real column vectors of size
n × 1 is denoted by Rn. For y ∈ Rn, yi represents its i-
th entry, ∥y∥1 is the l1 norm defined as ∑n

1 ∣yi∣, and ∥y∥2
denotes the Euclidean norm defined as

√
∑n

1 y
2
i . The set of

real matrices of size m × n is denoted by Rm×n and the
set of real symmetric matrices of order n is represented
as Sn. For a matrix X , [X]ij or Xij represents its ij-
th entry, ∥X∥0 denotes the number of its non-zero entries,
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∥X∥1 is the l1 norm defined as ∑i,j ∣Xij ∣, ∥X∥F stands
for the Frobenius norm, and rank(X) denotes its rank.
supp(X) is the support set defined as {(i, j) ∶ Xij ≠ 0},
and ∣supp(X)∣ represents the dimension of the set. For a
square matrix X , its trace is denoted by tr(X). If X is
positive definite (semi-definite), we write X > 0 (X ≥ 0).
Given X = [X1,X2,⋯,Xn] ∈ Rm×n with Xj ∈ Rm

representing the j-th column, define the vector Y ∈ Rmn

as Y = vec(X) ∶= [XT
1,X

T
2,⋯,XT

n]T. The inner product
of square matrices A,B is defined as ⟨A,B⟩ ∶= tr(ATB).
In ∈ Sn denotes the identity matrix. The symbol Mn,p is
the set of matrices Q ∶= [Q0 Q1 ⋯ Qp] with Q0 ∈ Sn
and Qj ∈ Rn×n (j = 1,⋯, p). The mapping D from Sn(p+1)
to Mn,p is defined as follows. If the matrix S ∈ Sn(p+1) is
partitioned as

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

S0,0 S0,1 ⋯S0,p

ST
0,1 S1,1 ⋯S1,p

⋮ ⋮ ⋱ ⋮
ST
0,p S

T
1,p ⋯Sp,p

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where Si,i ∈ Sn and Si,j ∈ Rn×n (i ≠ j) denote the sub-
blocks of S, then

D(S) ∶= [D(S)0 D(S)1 ⋯ D(S)p] ∈Mn,p,

D(S)0 =
p

∑
v=0

Sv,v, D(S)j = 2
p−j
∑
v=0

Sv,v+j , j = 1,⋯, p.

Denote the expectation operator by E and use ⊗ to represent
the Kronecker product. F ∗(z) = F (z−1)T represents the
complex conjugate transpose, where the operator is taken
as z = ejω for ω ∈ [−π,π].

III. PROBLEM FORMULATION

Consider the graphical ARMA models with latent vari-
ables:

p1

∑
j=0

Ajy(t − j) =WLx(t) +
p2

∑
i=0

WD,iw(t − i), (1)

A0 = In, x(t) ∼ N(0,Il), w(t) ∼ N(0,In),

where WL ∈ Rn×l (l ≤ n), the AR parameter matrices Aj ∈
Rn×n (j = 1,2,⋯, p1) are sparse, and the MA parameter
matrices WD,i ∈ Rn×n (i = 1,2,⋯, p2) are diagonal. The
processes x(t) ∈ Rl and w(t) ∈ Rn are independent white
Gaussian noise vectors, that is ∀t1, t2, Ex(t1)w(t2)T = 0,
and y(t) ∈ Rn is the measurable system output.

Remark 1 Model (1) allows for latent variables xk(t) (k =
1,2,⋯, l) to produce the conditional independence among
observed variables yq(t)(q = 1,2,⋯, n), which can be
regarded as the extension of graphical ARMA models [21]–
[23] or latent-variable graphical AR models [8], [10], [11].

Remark 2 Model (1) can also be related to factor models
[16]–[19]. Let A(z) and WD(z) denote the matrix poly-
nomials consisting of the AR and MA coefficients, respec-
tively. Then A(z)−1WL is the factor loading transfer matrix
polynomial; x(t) is the process describing unobservable l

factors; A(z)−1WLx(t) represents the latent variable and
A(z)−1WD(z)w(t) is the idiosyncratic noise.

By separating the observable variables and latent variables,
the sub-blocks of the power spectrum Φ(z) of Model (1)
have the following relationship:

A(z)Φy(z)A∗(z) =WLΦxW
T
L +WD(z)ΦwW

∗
D(z)

= ΦWL
+ΦWD

(z), (2)
ΦWL

∶=WLW
T
L, ΦWD

(z) ∶=WD(z)W ∗
D(z),

where Φy(z) is the spectral density matrix corresponding
to the observable output y(t), Φx = Il and Φw = In
are spectrums of white Gaussian processes x(t) and w(t),
respectively. Note that the latent-variable spectrum ΦWL

≥ 0
is a low-rank matrix of size n × n and rank l, and the MA
spectrum ΦWD

(z) is diagonal. By exploiting block matrix
inversion formula and Schurs complement representation
[24], the inverse spectrum Φy(z)−1 associated with the
observed variables has a sparse plus low-rank structure [25]:

Φy(z)−1 =ΦS(z) −ΦL(z), (3)
ΦS(z) =A∗(z)[WD(z)ΦωW

∗
D(z)]−1A(z)

=A∗(z)ΦWD
(z)−1A(z), (4)

ΦL(z) =Ψ∗(z)Λ(z)−1Ψ(z),
Ψ(z) =W T

L[WD(z)ΦωW
∗
D(z)]−1A(z)

=W T
LΦWD

(z)−1A(z),
Λ(z) =Φ−1x +W T

L[WD(z)ΦωW
∗
D(z)]−1WL

= Il +W T
LΦWD

(z)−1WL.

Remark 3 Due to the relationship [21], [22], [26]:

X{k} á X{q}∣X{Vn+l/{k,q}}⇔ [Φ(z)
−1]kq = 0,∀∣z∣ ≤ 1,

XI ∶= span{zi(t) ∶ i ∈ I; t ∈ Z}, I ⊂ Vn+l, z ∶= [yT,xT]T,

the sparse pattern of ΦS reflects the existence of few edges
among the observable nodes of the graph G(Vn+l,En+l),
and also characterizes the conditional dependence relations
among the observable variables [8]. Owing to the diagonal
matrices WD,i(i = 1,2,⋯, p2), the sparsity of ΦS computed
from (4) is essentially inherited by A∗(z)A(z). Since the
rank of ΦL coincides with l, rank(ΦL) can measure the
number of latent variables chosen to model the statistical
conditional dependencies of the data [8].

The identification objective is to estimate the graphical struc-
ture En+l, the number of latent variables, and the unknown
parameters Aj , ΦWL

, ΦWD
according to the observations

y(t).

IV. MAIN RESULTS

By virtue of (3), it is plausible to handel the identification
for Model (1) under a sparse plus low-rank decomposition
optimization framework. However, due to the existence of the
MA part, the optimization problem cannot be reformulated
as a matricial form like those in [8], [11] to solve and it is
difficult to decouple the AR and MA parameters.
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Inspired by dynamic factor analysis [18], [19], we can
perform the identification of Model (1) in two parts. Once
the graphical AR part is determined, the latent-variable
coefficient and the MA part can be estimated by low-rank
plus diagonal decomposition according to (2). Different from
the scalar AR dynamics estimation in factor models, the
matrix form of AR parameters in our problem setting leads
to the failure of model conversion for data disentangle-
ment (see [18], Eq. (6)). Besides, since the graphical AR
part identification involves the graph topology selection,
the common maximum likelihood estimator is infeasible.
Therefore, we aim to seek for new relationship among the
AR, MA parameters and latent variables to design efficient
identification method.

A. Preliminary Identification of Sparse AR Dynamics

According to the generalized Yule-Walker equation [27],
we have

Rk = −
p1

∑
j=1

Rk+jA
T
j , k < −p2,

where Rk = Ey(t+ k)y(t)T is the autocovariance sequence.
Since y(t) is real, we have R−k =RT

k. Define the parameter
matrix consisting of the AR parameters as

θA ∶= [A1 A2 ⋯Ap1 ]
T ∈ Rp1n×n.

It follows that ΓθA = Ξ with

Γ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

RT
p2

RT
p2−1 ⋯RT

p2−p1+1
RT

p2+1 RT
p2

⋯RT
p2−p1+2

⋮ ⋱ ⋱ ⋮
RT

p1+p2−1 R
T
p1+p2−2 ⋯ RT

p2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rp1n×p1n, (5)

Ξ ∶= [−Rp2+1 −Rp2+2 ⋯−Rp1+p2 ]
T ∈ Rp1n×n. (6)

In practice, we can obtain the sample estimate of the au-
tocovariance matrix R̂k = 1

N ∑
N−k
t=1 y(t + k)y(t)T from N

samples, and the corresponding matrix estimates of (5) and
(6) can be denoted by Γ̂ and Ξ̂. Inspired by the compressive
sensing theory [28], the identification of the sparse parameter
matrix θA can be expressed as an optimization problem

min
θA

∥θA∥0, s.t. ∥Ξ̂ − Γ̂θA∥2F ≤ ε, (7)

where ε is the error tolerance. However, it is a non-convex
problem and NP-hard. By employing the l1 norm as the
surrogate for l0 norm [29] and introducing a nonnegative
parameter λ to balance the tradeoff between the l1 norm
and Frobenius norm, Problem (7) can be transformed into a
tractable convex relaxation form:

min
θA

1

2
∥Ξ̂ − Γ̂θA∥2F + λ∥θA∥1. (8)

To simplify the solution, we stack the columns of the matrix
θA below each other to construct a sparse vector vec(θA) ∈
Rp1n

2

, and reformulate Problem (8) as

min
vec(θA)

1

2
∥vec(Ξ̂) − (In ⊗ Γ̂)vec(θA)∥22 + λ∥vec(θA)∥1,

which can be directly solved by LASSO with the regulariza-
tion coefficient λ selected by cross validation [30]. Then the
AR parameter estimates Âj (j = 1,⋯, p1) can be recovered
from its optimal solution.

B. Joint Estimation of Latent-variable and MA Spectrums

Denote the sampled covariance and spectrum of the AR
process yAR(t) ∶= Â(z)y(t) as R̂AR

k and Φ̂AR(z), respec-
tively. According to (2), true spectrum ΦAR(z) of the AR
process can be decomposed as a low-rank plus diagonal
structure ΦAR(z) =ΦWL

+ΦWD
(z), which has been studied

in [19]. We modify the proposed optimization framework
with a Frobenius norm convex constraint instead of the
divergence constraint to measure the difference between true
spectrum and its estimate, which can avoid the integral
operation, and thereby construct a more tractable form:

min
ΦWL

,ΦWD

trΦWL
, (9)

s.t. ΦWL
+ΦWD

≥ 0, a.e. ΦWL
,ΦWD

≥ 0,
ΦWD

diagonal,

∥ΦWL
+ΦWD

− Φ̂AR∥F ≤ δ.

Specifically, the last constraint imposes that the true spectrum
ΦAR belongs to a set ’centered’ in the nominal spectrum
estimate Φ̂AR with prescribed tolerance δ. The matrix
parametrization for ΦWD

can be represented as

ΦWD
(ejω) = ∆(ejω)D∆∗(ejω),

∆(ejω) ∶= [In, e−jωIn,⋯, e−jp2ωIn] ∈ Rn×n(p2+1),

D = θnθ
T
n ∈ Sn(p2+1),

θn ∶= [W T
D,0,W

T
D,1,⋯,W T

D,p2
]T ∈ Rn(p2+1)×n.

Then the constraint ΦWD
≥ 0 is equivalent to D ≥

0. The condition ‘ΦWD
diagonal’ can be expressed as

ofdB(D(D)) = 0 with

ofdB(D(D)) ∶= [ofd(D(D)0) ⋯ ofd(D(D)p2)],

ofd(D(D)j) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 [D(D)j]12 ⋯ [D(D)j]1n
[D(D)j]21 0 ⋯ [D(D)j]2n

⋮ ⋮ ⋱ ⋮
[D(D)j]n1 [D(D)j]n2 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

j = 0,⋯, p2.

By expanding the dimension of ΦWL
to construct a

block diagonal low-rank matrix L ∈ Sn(p2+1) satisfying
∑p2

v=0Lv,v = ΦWL
and Lu,v = 0 (u ≠ v), the conditions

ΦWL
≥ 0 and ΦWL

+ΦWD
≥ 0 can be rewritten as L ≥ 0

and L +D ≥ 0, respectively. The objective function trΦWL

is equal to trL. The Frobenius norm constraint is thereby
split into

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥
p2

∑
v=0
(Lv,v +Dv,v) − R̂AR

0 ∥F ≤ δ0,

∥
p2−1
∑
v=0
(Lv+1,v +Dv+1,v) − R̂AR

1 ∥F ≤ δ1,

⋮
∥Lp2,0 +Dp2,0 − R̂AR

p2
∥F ≤ δp2 ,
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where the tolerance parameters δ0,⋯, δp2 can be estimated
by a resampling-based method [19]. Given a sequence of
ŷAR(1),⋯, ŷAR(N) generated from Φ̂AR(z), we can obtain
the resampling covariance estimate R̂AR

r,k and the random
variable ∥R̂AR

k − R̂AR
r,k ∥F whose distribution can be em-

pirically approximated by the Monte Carlo method. Then
δk,αk

can be computed numerically according to Pr(∥R̂AR
k −

R̂AR
r,k ∥F ≤ δk,αk

) = αk for k = 0,1,⋯, p2 by choosing a
desired probability αk ∈ (0,1).

As a consequence, a matrix reparametrization form of the
optimization problem (9) is given by

min
L,D

trL, (10)

s.t. L +D ≥ 0, a.e. L,D ≥ 0,
ofdB(D(D)) = 0,

∥
p2−k
∑
v=0
(Lv+k,v +Dv+k,v) − R̂AR

k ∥F ≤ δk, k = 0,⋯, p2.

Based on the optimal solutions L̂ and D̂, the latent-variable
and MA spectrums can be recovered as Φ̂WL

= ∑p2

v=0 L̂v,v

and Φ̂WD
=∆D̂∆∗, respectively, and the estimated number

of latent variables is l̂ = rank(Φ̂WL
).

C. Iterative Update of Graphical AR Estimates

According to Remark 3, the sparse AR dynamics esti-
mated by (8) or its vector form can determine the graph
topology En for the observable variables. The accuracy of
the AR dynamics obtained from this sparse regularized Yule-
Walker optimization framework depends on the accuracy of
the sampled autocovariance matrix R̂k. If the number of
sampling data N is large enough, the estimates R̂k are close
to true values, and we can obtain an efficient latent-variable
graphical ARMA model estimate by following a two-stage
identification method with stage 1 described in Sec. IV-A
and stage 2 shown in Sec. IV-B. However, in the limited
sampling data case, redundant links may be selected due to
inaccurate sparse AR entry estimates, so that the accurate
graph topology cannot be obtained. Taking account of this
case, we can make use of the two-stage identified results as
prior information to update the graphical AR part for the
further reduction of the estimation error.

Given the MA spectrum estimate Φ̂WD
(z) and sampled

output spectrum Φ̂y(z), we can construct an optimization
problem with respect to the graphical AR part based on (2):

min
A(z)

ϕ∗[A(z)Φ̂y(z)A∗(z) − Φ̂WD
(z)]

+γϕ1[A∗(z)A(z)], (11)

where γ > 0, ϕ∗ and ϕ1 are penalty functions inducing low-
rank structure and sparsity, respectively. The low-rank term
is further written as

ϕ∗[A(z)Φ̂y(z)A∗(z) − Φ̂WD
(z)]

= tr( 1

2π
∫

π

−π
A(ejω)Φ̂y(ejω)A∗(ejω) − Φ̂WD

(ejω)dω)

= tr([In θT
A]K̂[In;θA]) − tr(D̂)

= tr(K̂X) − tr(D̂), (12)

where

K̂ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R̂0 R̂1 ⋯ R̂p1

R̂T
1 R̂0 ⋯ R̂p1−1
⋮ ⋮ ⋱ ⋮

R̂T
p1

R̂T
p1−1 ⋯ R̂0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Sn(p1+1),

X = [In;θA][In θT
A] ∈ Sn(p1+1).

As introduced in [8], [11], [31], the sparsity term can be
defined as

ϕ1[A∗(z)A(z)] = h∞(Q)

=∑
j>i

max
k=0,⋯,p1

{∣[Qk]ij ∣, ∣[Qk]ji∣} (13)

with Q0 ∶= ∑p1

v=0Xv,v and Qk ∶= 2∑p1−k
v=0 Xv,v+k for k =

1,⋯, p1.
We refer to the sparse AR dynamics estimates obtained

from (8) as Âini
j (j = 1,⋯, p1) and place restrictions on

the sparsity pattern of X by utilizing the corresponding
graphical structure, that is

X0,j ∈ supp(Âini
j ), j = 1,⋯, p1. (14)

Let ρ ∶= γ
1+γ ∈ (0,1). By virtue of (12)–(14), we can obtain

a constrained matricial reformulation of (11):

min
X
(1 − ρ)[tr(K̂X) − tr(D̂)] + ρh∞(Q),

s.t. X0,j ∈ supp(Âini
j ), j = 1,⋯, p1.

(15)

Given a string of penalty parameters ρ chosen from the range
(0,1) via cross-validation, the graphical AR part can be
updated with AR parameter estimates Â1,⋯, Âp1 computed
from the optimal solutions X̂ by spectral decomposition
and the graph topology estimates Ên determined from the
sparsity pattern of Â∗(z)Â(z). Note that Ên can be more
accurate after normalization and filtering [23]. The optimiza-
tion model (15) exploits the acquired MA part estimate and
preliminary AR graphical structure, which can reduce the
number of parameters to be identified and further improve the
estimate accuracy for the graphical AR part. In practice, we
can take the two-stage estimates obtained from (8) and (10)
as the initial values, and estimate the AR graphical structure
with (15) and the latent plus MA dynamics with (10) in an
alternative way [18].

Let k denote the iterative number. Then the parameter
estimates of the k-th iteration are denoted by Âk(z), Φ̂WL,k,
Φ̂WD,k(z), l̂k, θ̂A,k, L̂k and D̂k. Inspired by [8], we define
a model fitness function as

f = D(Φ̂
NP

y ∥Φ̂
P

y,k) × pk,

D(Φ̂
NP

y ∥Φ̂
P

y,k) ∶=
1

2
{ 1

2π
∫

π

−π
[log det((Φ̂

NP

y )
−1
Φ̂

P

y,k)

+⟨Φ̂
NP

y , (Φ̂
P

y,k)
−1
⟩]dω − n},

pk = ∣supp(Â∗k(z)Âk(z))∣ − n + nl̂k,
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where Φ̂
NP

y is the smoothed non-parametric spectral esti-

mate of the process y(t) , and Φ̂
P

y,k is the k-th parametric
spectral estimate computed by

Φ̂
P

y,k(z) = Âk(z)−1[Φ̂WL,k−1 + Φ̂WD,k−1(z)]Â∗k(z)−1.

The best value of the penalty parameter ρ in (15) and the
corresponding graphical AR topology estimate Ên will be
selected according to the lowest score f .

Define the mean square difference between identified
parameters of two sequential iterations as ek ∶= ∥θ̂A,k −
θ̂A,k−1∥2F /p1n2 + ∥L̂k − L̂k−1∥2F /[n(p2 + 1)]2 + ∥D̂k −
D̂k−1∥2F /n(p2 + 1). If ek − ek−1 ≤ ε, where ε takes a small
positive value, stop the iteration.

V. SIMULATION EXAMPLE

Consider the latent-variable ARMA graphical model with
n = 10 observable variables and l = 1 latent variables:

y(t) +A1y(t − 1) +A2y(t − 2) =WLx(t) +WD,0ω(t)
+WD,1ω(t − 1), (16)

where Aj ∈ R10×10 (j = 1,2) are sparse matrices with
non-zero entries [A1]53 = [A1]67 = [A1]8,10 = [A2]12 =
[A2]35 = [A2]96 = 0.5, the entries of WL ∈ R10×1 are
randomly generated within (0,1) and WD,i ∈ R10×10 (i =
0,1) are randomly generated such that the zeros of the
transfer functions [WD]vv(z) (v = 1,⋯, n) are within the
circle with radius 0.95 on the complex plane.

Let the the sample size be N = 1000, N = 2000, and
N = 5000, respectively. The preliminary AR dynamics is
estimated with the vector form of (8) solved by using 10-fold
cross-validated LASSO, and the graph topology estimates Ên
for the observable variables corresponding to the minimum
cross-validated mean squared error are depicted in Fig. 1.
As N increases, the number of selected spurious links is
reduced, and the estimated graph topology Ên is closer
to the true graph topology En. The proposed sparse plus
low-rank based iterative identification algorithm is applied
to update the preliminary estimates with δk,αk

(k = 0,1)
computed from 200 Monte Carlo experiments for αk =
0.5. For convenience, we only give the graph topology
estimates Ên for different regularization parameters ρ and
the corresponding fitness function scores f in the case of
N = 1000 (shown in Fig. 2). Compared with that of the
preliminary case, the iterative graph topology estimates are
more sparse with redundant edges further reduced. The final
selected Ên is marked in red for ρ = 0.3 with the minimum
score f = 9.88, which is identical to true En. In the cases
of larger sample size, accurate graph topology estimates
can also be obtained based on more accurate preliminary
information. The preliminary and iteratively updated non-
zero entry estimates in Âj (j = 1,2) are tabulated in Table I.
Note that some redundant estimates of zero entries are not
listed. We define the AR parameter estimation error including
these estimates as δA ∶= ∥θA − θ̂A∥F /∥θA∥F and list it for
each case in the last column of Table I. The sparse plus low-
rank based iterative procedure can improve the estimation

precision, and the estimation precision increases with the
increment of the amount of sampled data.
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Fig. 1. Preliminary graph topology Ên against the sample size N
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Fig. 2. Estimated graph topology Ên against the regularization parameter
ρ for N = 1000

To provide empirical estimates of the latent-variable and
MA part, we perform 20 Monte Carlo runs for the sparse plus
low-rank based iterative identification of Model (16) with the
graphical AR part fixed but WL, WD,i (i = 0,1) randomly
generated as described before, and N = 5000 samples are
taken for each Monte Carlo experiment. The box-plots of
the estimation errors δΦWL

∶= ∥ΦWL
−Φ̂WL

∥F /∥ΦWL
∥F and

δΦWD
(ejω) ∶= ∥ΦWD

(ejω) − Φ̂WD
(ejω)∥F /∥ΦWD

(ejω)∥F
for ω ∈ [0, π] are shown in Fig. 3, indicating that the latent-
variable and MA spectrums can be recovered with negligible
numerical errors of the order 10−1. The box-plot of the
singular values σj (j = 1,⋯,10) of Φ̂WL

are shown in
Fig. 4, revealing that the number of latent variables can be
accurately recovered as l̂ = 1.
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TABLE I
THE SPARSE AR PARAMETER ESTIMATES OBTAINED FROM PRELIMINARY TWO-STAGE AND SPARSE PLUS LOW-RANK BASED ITERATIVE METHODS

AND ESTIMATION ERRORS δA FOR DIFFERENT SAMPLE SIZE N

AR parameter matrices Â1 Â1 Â1 Â2 Â2 Â2 δA
Non-zero positions (5,3) (6,7) (8,10) (1,2) (3,5) (9,6)

N=1000 Two-stage estimates 0.3465 0.3409 0.4258 0.3699 0.4406 0.4996 32.23%
Iteratively updated estimates 0.4841 0.4771 0.5361 0.4741 0.4686 0.5197 5.24%

N=2000 Two-stage estimates 0.5066 0.4074 0.4250 0.5200 0.4815 0.4783 11.93%
Iteratively updated estimates 0.5062 0.5072 0.4924 0.5433 0.4912 0.4814 4.04%

N=5000 Two-stage estimates 0.4466 0.4189 0.2752 0.4423 0.4958 0.5046 20.87%
Iteratively updated estimates 0.4848 0.5009 0.4925 0.4861 0.5101 0.5164 2.39%

True values 0.5 0.5 0.5 0.5 0.5 0.5

VI. CONCLUSIONS

An identification approach for latent-variable graphical
ARMA models has been developed in this paper, which alter-
natingly estimates the graphical AR part by sparse plus low-
rank optimization and the latent MA part through low-rank
plus diagonal decomposition technique based on the prelim-
inary regularized Yule-Walker estimates. Simulation results
have demonstrated the efficacy of the proposed method.
The identification procedure is sub-optimal and theoretical
properties of the sequential strategy, such as convergence, are
open problems which can be investigated for future research.
In addition, the practical use of the work will be further
explored. For example, we can apply the proposed approach
to neural dynamics learning.
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