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Abstract— We investigate the stabilizability of Nash equi-
librium of the nonlinear game-based control system (GBCS),
which has a similar decision-making structure as Stackelberg
Games: one leader and multiple rational followers or agents.
While the leader of the GBCS is a macro-regulator rather
than a game player. The stabilizability problem is that whether
the regulator can stabilize the system by regulating the Nash
equilibrium formed by the agents at the lower level. The
stabilizability of linear-quadratic GBCS has been investigated
in [10]. In this paper, we will first formulate the stabilizability
problem of the general nonlinear GBCS. Then the stabilizabil-
ity relationships between the linear-quadratic and nonlinear
GBCSs are given, by investigating the solvable relationship
of the associated algebraic Riccati equations and nonlinear
Hamilton-Jacobi equations.

I. INTRODUCTION

The game-based control system (GBCS) framework was
first introduced in [7] to investigate the control problems of
complex systems whose behaviours are not only driven by
physical laws, but also by their own interests or willingness,
such as, economic and the rapidly developing “intelligent”
systems. In traditional control theoretical framework, the
plants to be controlled are usually modelled by physical
laws and do not have their own objective functions, such as
cars, air planes, and industrial processes. The Lucas criticism
and Braess’s paradox show that the traditional control theory
cannot be used directly to control such systems.

GBCS has a hierarchical decision-making structure: one
regulator and multiple agents. The regulator is regarded as
the global controller and makes decision first, and then the
agents try to optimize their respective objective functions.
Hence, for any given control of the regulator, the agents
form a differential game and each agent solves an optimal
control problem. In many cases, there is no natural terminal
time T when the decision process stops and any choice
of the T can always be contested [13, Page 5]. Hence,
many economic models, such as optimal economic growth
model and dynamic general equilibrium model, consider the
optimization on an unbounded time interval. Sometimes the
terminal time T may be a random stopping time which
represents the time of death or cease. Using the method
in [15], we can reformulate equivalently this as an infinite-
horizon decision problem under some weak assumptions.
Because of these reasons, we will investigate the infinite-
horizon GBCS in this paper.
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For the infinite-horizon GBCS stability becomes an issue,
which is an important concern for a dynamic system and
is usually the first requirement to be considered. In game
systems, there are many examples where individuals pursue
their own interests and make the system unstable or even
collapse, such as financial crises. Forcing rational agents
to adopt cooperative behavior to stabilize the system is
relatively difficult to achieve in reality. An easier way is to
intervene in the game formed by the rational agents through a
third party or upper level regulator, which makes the strategic
behavior of individuals automatically stabilizes the system.
For example, a government agency is in charge of designing
an macrocontrol which would introduce the agents to satisfy
globally the stability conditions. Therefore, whether there is
such higher-level intervention and how to conduct it become
a key issue. From the perspective of control theory, this is
the stabilizability problem.

To the best of our knowledge, except for [10], there is
no systematic study on the stability of this kind of system
and only a few sporadic ad hoc methods have appeared
in the literature. The authors of [10] have investigated the
stabilizability of linear-quadratic GBCS and some explicit
algebraic conditions have been given, where the dynamics of
the system are linear and the payoff functions of the agents
are quadratic. However, most real dynamic game systems
are nonlinear, which makes the existing results in [10] have
significant limitations. Inspired by the idea of Lyapunov
indirect methods, we may apply the existing results of
linear-quadratic GBCSs to nonlinear GBCSs by studying the
relationship between the stabilizability of nonlinear systems
and their linear-quadratic approximation systems. In this
paper, we will first study the approximation problem of
nonlinear optimal control, and then use the corresponding
results to study the linear-quadratic approximation problem
of GBCS. Using the tool of the symplectic geometry, [11]
has given some results of the approximation problem of the
optimal control, where there is no discount factor in the
agents’ payoff functions. For our general GBCS framework,
the discount factor of the agents’ payoff functions may not
be zero, which makes essential differences in the Hamilton-
Jacobi equations describing the optimal control, and so the
method of [11] cannot be directly applied to our research on
related problem. Fortunately, it can be handled through the
methods of the contact geometry.

The rest of this paper is organized as follows. In Section II,
some key concepts of the general nonlinear optimal control
are given, and then the game-based control systems (GBCS)
and the stabilizability problem are introduced. Section IV
gives the main results and the proofs of them are given in
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this section. Section V will conclude the paper with some
remarks.

II. PRELIMINARIES

A. Nonlinear optimal control problem

Consider the following infinite-horizon nonlinear optimal
control (INOC) problem: The system dynamics are described
by {

ẋ(t) = f(x(t), u(t)),

x(0) = x0, t ∈ [0,∞),
(1)

and the payoff function to be minimized is

J(x0, u) =

∫ ∞

0

e−αtl(x(t), u(t))dt. (2)

where f and l are smooth functions and α ≥ 0 is the discount
rate (e−αt is the discount factor). We assume that there exists
a unique solution of (1) for any u(·) ∈ U and x0 ∈ Rn, where
U is the admissible controls set. Here, we assume that

U = {u(·) : R+ → Rm) | u is piecewise continuous}. (3)

Because the integral in (2) is over an infinite time interval
and no priori assumptions of boundedness of l are made, we
must make clear what is the meaning of it. Let x(·; x0, u)
denote the state trajectory of (1) starting at x0 when the
control is u ∈ U . Then for T ≥ 0, the payoff function of
finite time-horizon is

JT (x0, u) =

∫ T

0

e−αtl
(
x(t;x0, u), u(t)

)
dt, (4)

which is always well-defined for any u ∈ U under some weak
assumptions. We define the set of the admissible control
inputs to be

U(x0) = {u ∈ U : lim
T→∞

JT (x0, u) exists}. (5)

For u ∈ U(x0), the payoff function (2) is

J(x0, u) = lim
T→∞

JT (x0, u). (6)

B. Local optimal feedback control

For simplicity, we will only consider the analytic systems,
i.e., the function f and l are smooth, and so we only consider
the smooth feedback controls. The following are the basic
assumptions:

Assumption 1: The function f and l are smooth, which
satisfy

f(0) = 0, l(0) = 0,

∂l

∂x
(0, 0) = 0,

∂l

∂u
(0, 0) = 0.

Remark: The purpose of the above assumptions, in some
sense, is to avoid the existence of a large number of controls
near the origin whose cost are infinite. In this case, the
overtaking optimization concepts may be a better option.

Definition 1: A smooth feedback control u∗ is called a
local optimal feedback control of INOC (1)-(2) if for every

smooth feedback control u there exists a neighbourhood Nu

of the origin in Rn such that for every x0 ∈ Nu

J(x0, u
∗) ≤ J(x0, u)

and x(t;x0, u) ∈ Nu and x(t;x0, u
∗) ∈ Nu for all t ≥ 0.

If system (1) is locally exponentially stable when u(t) =
u∗(x(t)), then we call it stable local optimal feedback
control.

Remark: Just as [1], in order to assert the uniqueness of
the optimal control, two controls are taken be to the same if
they coincide on some neighborhood of the origin.

Remark: The infinite-horizon nonlinear optimal control
which arise in many fields of economics has some specific
and challenge mathematical problems. For example, the
standard transversality conditions of the Pontryagin max-
imum principle may fail. Because the unbounded of the
payoff, there may be no value function as in classic dynamic
programming.

Remark: Without special specified, optimal control always
means the minimization of payoff functions in this paper.

C. Linear-quadratic approximation system

By Assumption 1, we know that the functions f and l can
be rewritten as

f(x, u) = Ax+Bu+ o(∥(x, u)∥),
l(x, u) = xTQx+ 2xTSu+ uTRu+ o(∥(x, u)∥2)

where

A =
∂f

∂x
(0, 0), B =

∂f

∂u
(0, 0)

Q =
∂2l

∂x2
(0, 0), S =

∂2l

∂u∂x
(0, 0)

R =
∂2l

∂u2
(0, 0), M =

[
Q S
ST R

]
.

Hence, any analytic INOC (1)-(2) gives a linear-quadratic
optimal control problem (LQCP) as follows: The system
dynamic is {

ẋ(t) = Ax(t) +Bu(t),

x(0) = x0,
(7)

and the payoff function to be minimized is

J(x0, u) =

∫ ∞

0

ω(x(t), u(t))dt

=

∫ ∞

0

e−αt[xT (t), uT (t)]M

[
x(t)
u(t)

]
dt,

(8)

where the matrices A,B and M are defined above.
In fact, the LQCP (7)-(8) is a truncated system of INOC

(1)-(2) (see [1] for the case α = 0), we call it the linear-
quadratic approximation system.

Assumption 2: The LQCP (7)-(8) is regular, i.e., R > 0.

III. PROBLEM FORMULATION

In this section, we will give a general framework of
game-based control system (GBCS) and then formulate the
stabilizable problem.
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A. Game-based Control Systems

Consider the following nonlinear time-invariant affine
GBCS: The system dynamics are described by{

ẋ(t) = f(x(t), u1(t), · · · , uL(t), u(t)),

x(0) = x0,
(9)

with f(0) = 0, and the payoff function to be minimized by
ui(·) of the agent i(i ∈ [L]) is

Ji(x0, ui,u−i, u) =∫ ∞

0

e−αtli(x(t), u1(t), · · · , uL(t), u(t))dt,
(10)

where x ∈ Rn, ui ∈ Rmi(i ∈ [L]), u ∈ Rm, and α ≥ 0
is the common discount rate. In GBCS (9)-(10), u(·) ∈ U
and ui(·) ∈ Ui(i ∈ [L]) are the inputs or strategies of the
regulator and agent i(i ∈ [L]), respectively, where U and
Ui(i ∈ [L]) are their respective admissible control sets.

Remark: The cost function (10) can be written as (see,
e.g., [2, Page 101] or [3])

Ji =
1

L

L∑
j=1

Jj+
1

L

L∑
j=1

(Ji−Jj) = Jcp+Jsf,i, i ∈ [L], (11)

where Jcp is an overall cooperative team cost and Jsf,i a
noncooperative or selfish cost for agent i. This becomes a
zero-sum game when Jcp = 0.

It is well known that the information structure and the
timing of actions play a crucial role in differential games
[4], [5]. The basic information structures in GBCS are as
follows:

• The data {f, α, li(x), i ∈ [L]} and the initial system
state x(0) are “common knowledge”, which is a termi-
nology used for information in game theory [6, Chapter
14].

• Agents use stationary feedback strategies, i.e., ui(t) =
ki(x(t)) for some function ki(x) (i ∈ [L]). In this case,
all rational agents can measure the system states.

• The regulator will first make and announce its macrode-
cision, and then each agent makes a decision to min-
imize its own payoff function. The lower level agents
have access to information about the regulator’s input
but do not know other agents’ inputs when making their
own decisions.

Hence, for any given decision of the regulator, the agents in
GBCS will form a noncooperative differential game and the
actions space of agent i (i ∈ [L]) is

Ui = {ui(·) = ki(x(·)) | ki is smooth}. (12)

Remark: Depending on the information available to the
agents, there are two major kinds of strategies in nonco-
operative differential games: open-loop and feedback [8].
Feedback strategy is more reasonable in the infinite-planning
horizon case. More details about the GBCS can be found in
[7], [8].

We also limit the regulator’s admissible controls to the
stationary feedback strategies, i.e.,

U = {u(·) = k(x(·)) | k is smooth}. (13)

Definition 2: For any given regulator’s strategy u ∈ U ,
we call the game formed by agents in GBCS (9)-(10) has a
local Nash equilibrium uF∗ = (u∗

1, · · · , u∗
L), if the following

conditions hold:
1) For any i ∈ [L] u∗

i ∈ Ui.
2) For any i ∈ [L], u∗

i is a local optimal control of
the optimal control problem for the agent i when
u−i = u∗

−i in GBCS (9)-(10), where u−i represents
the strategy profile of all agents except for agent i.

If u∗
i is a global optimal control for all i ∈ [L] in Con-

dition 2), then we call it global Nash equilibrium or Nash
equilibrium.

The Nash equilibrium defined here is the sub-game perfect
Nash equilibrium or feedback Nash equilibrium which has
the time-consistence property.

From the assumption of the rational agents, the system
dynamics are essentially determined by equation{

ẋ(t) = f(x(t), u∗
1(t), · · · , u∗

L(t), u(t)),

x(0) = x0.
(14)

Hence, GBCS (9)-(10) is a control system rather than a
noncooperative differential game. Its control input is the
regulator’s strategy which regulate the system by intervening
in the game formed by the agents.

B. Stabilizability Problem

As a control system, there are many interesting problems
to be investigated. The controllability problem has been
investigate by [7], [8]. Here, we are interested in whether
or not the system can be stabilized by the intervention of
the regulator, which can be captured by the concept of
stabilizability defined in this section.

We note that the system may not be stable when the Nash
equilibrium exists and the agents use the Nash equilibrium
control uF∗. In [9], the author restrict the admissible controls
of the agents as

F = {F = (F1, · · · , FL) : A+

L∑
i=1

BiFi is stable}, (15)

which means that the strategy spaces of the agents are in-
terdependent. Because all the lower level agents are rational
and they only concern about their own payoff, just as the
author of [9] says, the constraint presupposes that there are
some coordination between the agents and is a bit unwieldy.
More practically, the stability of the system is guaranteed by
the control of a macro regulator, a third party, or a syndicate.

Definition 3. GBCS (9)-(10) is called locally stabilizable,
if there exists a control u(·) = F (x(·)) ∈ U of the regulator
such that the noncooperative differential game formed by the
agents has a local Nash equilibrium uF∗ = (F ∗

1 , · · · , F ∗
L)

and the system (9) is locally exponentially stable when
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u(·) = F (x(·)) and ui(·) = F ∗
i (x(·)) (i ∈ [L]). GBCS (9)-

(10) is called (globally) stabilizable if the Nash equilibrium
is global and the system is global asymptotic stable.

Remark: The macrocontrol of the regulator has two goals.
The first is to make the lower-level differential game has
at least one (local) Nash equilibrium through some proper
macrocontrol. Another goal is to make the system stable at
Nash equilibrium.

Remark: The third party (macroregulator) coordination
approach is very different from the way the admissible
controls of the agents are restricted in (15). For the former,
there is no unwieldy dependence between the strategy spaces
of the agents and once all agents adopt the selected stable
equilibrium strategies, no individual has the motivation to
deviate form the equilibrium. But for the latter, in some
cases, one agent can further minimize its payoff function
unilaterally by choosing a linear feedback control for which
the system will be unstable [9, Example 8.7].

IV. MAIN RESULTS

In [10], the authors have investigated the stabilizability
of linear-quadratic GBCS. Just like the Lyapunov inderect
method, we will study the stabilizability relationship between
the linear-quadratic GBCS and the nonlinear GBCS.

A. Nonlinear and linear-quadratic optimal control

The following theorem is the main result of this section.
Using symplectic geometry method, the author of [11] has
investigated the solvability relationship between the non-
linear Hamilton-Jacobi equation and the algebraic Riccati
equation, using which we can get the solvability relationship
between the nonlinear and linear optimal control problems
when α = 0.

Through the corresponding results can not deal with the
general case (α ≥ 0), the method in [11] can be adapted
to solve the general case by using contact geometry which
can extend the Hamilton-Jacobi theory for contact Hamilton
systems.

Here we first introduce some mathematical background of
the contact geometry.

Let M be a n-dimensional smooth manifold and T ∗M
be the cotangent vector bundle. Then T ∗M × R equipped
with the canonical contact form η = dz − ηM is a contact
manifold, where z is a global coordinate in R and ηM the
Liouville form on T ∗M . A submanifold L ⊆ T ∗M × R
is called a Legendre submanifold is Dim(L) = n and
furthermore η|L = 0, i.e., the restriction of η on L is zero
(see e.g., [14] for more details). The Reeb vector field is

ξ =
∂

∂z
.

For any smooth function H : T ∗M × R → R there is
a corresponding contact vector field XH on T ∗M × R. By
contact Darboux’s theorem (see e.g. [12]), there exists local
coordinates (x1, · · · , xn, p1, · · · , pn, z) for T ∗M × R such
that

η = dz −
n∑

i=1

xidpi,

and so the contact vector field of H is

XH =

n∑
i=1

∂H

∂pi

∂

∂xi
−

n∑
i=1

(∂H
∂xi

+ pi
∂H

∂z

) ∂

∂pi

+

n∑
i=1

(
pi
∂H

∂pi
−H

) ∂

∂z
.

Consider the special smooth function H(x, p, z) = H(x, p)−
αz with H(0, 0) = 0. Then the flow of the contact vector
field XH is described by the following contact Hamilton
equations: 

ẋi(t) =
∂H

∂pi
,

ṗi(t) = − ∂H

∂xi
+ αpi,

ż(t) = pi
∂H

∂pi
−H + αz,

(16)

where the origin 0 is an equilibrium. We should note that the
evolution of z does not affect xi and pi for all i = 1, · · · , n,
and the differential equations of x and p are the same form
of the necessary conditions of the maximum principle for
discounted nonlinear optimal control [13, Chapter 6.2].

Consider the Jacobian matrix DXH(0) at origin. In the
Darboux’s coordinates, it is given as

DXH(0) =

 ∂2H
∂x∂p

∂2H
∂p2 0

−∂2H
∂x2 − ∂2H

∂p∂x + αIn 0
∂H
∂x 0 α

 .

Now assume that α > 0, then 0 is a hyperbolic equilibrium
if and only if the matrix[

∂2H
∂x∂p

∂2H
∂p2

−∂2H
∂x2 − ∂2H

∂p∂x + αIn

]

has no imaginary eigenvalues. If ∂2H
∂p2 > 0, then it can imply

that 0 is a hyperbolic equilibrium if and only if the matrix

Hα =

[
∂2H
∂x∂p − α

2 In
∂2H
∂p2

−∂2H
∂x2 − ∂2H

∂p∂x + α
2 In

]
has no imaginary eigenvalues, which is a Hamilton matrix.

Hence, if 0 is a hyperbolic equilibrium, then the matrix
DXH(0) has n eigenvalues whose real parts are negative
and n+ 1 eigenvalues whose real parts are positive. By the
stable manifold theorem there exists a global invariant stable
submanifold S of T ∗M × R through 0 which is tangent at
0 to the generalized stable eigenspace of DXH(0), i.e.,

T0S = X−(DXH(0))

where X−(DXH(0)) is the n-dimensional eigenspace of
the matrix DXH(0) corresponding to it n eigenvalues with
negative real part.

Lemma 1: Let (T ∗M × R, η) be the contact manifold
mentioned above and H(x, p, z) = H(x, p)−αz be a smooth
function with H(0, 0) = 0. If 0 is a hyperbolic equilibrium
for the contact vector field XH , then the global stable
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invariant submanifold S of XH through 0 is a Legendre
submanifold of T ∗M × R.

Proof: By the argumentation above, we know that
Dim(S) = n.

Because XH is the contact vector field corresponding to
contact Hamilton H , then we have

LXH
η = −ξ(H)η = αη,

where LX denotes the Lie derivative with respected to vector
field X .

Let ϕt be the flow of the vector field XH on S. Then we
have

d

dt
(ϕ∗

t η) = ϕ∗
t (LXH

η) = ϕ∗
t (αη) = α(ϕ∗

t η),

which implies that
ϕ∗
t η = eαtη.

Then for any p ∈ S and v ∈ TpS, we have

ηp(v) = e−αtηϕt(p)(ϕt(p)∗v).

Because S is the stable manifold, then

ϕt(p)∗v → 0, t → ∞,

and so ηp(v) = 0.
Lemma 2. Let (T ∗M × R, η) be the contact manifold

mentioned above and H(x, p, z) = H(x, p)−αz be a smooth
function with H(0, 0) = 0. If 0 is a hyperbolic equilibrium
for the contact vector field XH and there exists canonical
coordinates (x1, · · · , xn, p1, · · · , pn, z) around 0 such that
S is locally given as

{(x1, · · · , xn, p1 =
∂V

∂x1
(x), · · · ,

pn =
∂V

∂xn
(x), V (x)) : x around 0}.

Then V is a local solution of the Hamilton-Jacobi equation

αV (x)−H(x,
∂V

∂x
(x)) = 0, x around 0.

Proof: Using Proposition 6.7.16 in [12] and the fact that
H is preserved by the flow of XH

H(x, p, z) = H(ϕt(x, p, z)) → H(0, 0, 0) = 0,

we can prove the result.
Theorem 1: Suppose that Assumptions 1 and 2 hold. If

LQCP (7)-(8) has a stable optimal control which is linear
feedback form, then INOC (1)-(2) has a stable local optimal
feedback control.

Proof: The results in [11] imply the theorem when α = 0.
Now we assume that α > 0.

Consider the INOC (1)-(2), the pseudo-Hamilton is

H(x, p, u) = pT f(x, u) + l(x, u)

If the LQCP (7)-(8) is regular, i.e., R > 0, then there
is a unique smooth function u = u∗(x, p) such that in a
neighbourhood of the origin we have

H(x, p) ≜ H(x, p, u∗(x, p)) ≥ H(x, p, u).

The space (R2n+1, η) with the global coordinate
(x1, · · · , xn, p1, · · · , pn, z) and

η = dz −
n∑

i=1

xidpi

is a standard contact manifold. Consider the Hamilton
H(x, p, z) = H(x, p)− αz.

For notations simplicity and without loss generality, we
assume that S = 0. The case S ̸= 0 can be transformed
to the special case. Because LQCP (7)-(8) has a stable
optimal control which is linear feedback form, we have that
there exists a solution K to the following algebraic Riccati
equaiton

(A− α

2
In)

TK +K(A− α

2
In) +Q−KBR−1BTK = 0

satisfying

σ(A− α

2
In −BR−1BTK) ⊆ C<.

Equivalently,

Span

[
In
K

]
is the generalized stable eigenspace of the Hamiltonian
matrix

Ham =

[
A− α

2 In −BR−1BT

−Q −(A− α
2 In)

T

]
.

Hence, Ham has no imaginary eigenvalues, which is pre-
cisely the matrix Hα corresponding to the Hamiltonian H .
Denote the global stable manifold of H as S, by Lemma 1,
we know that S is a Legendre submanifold of (R2n+1, η).
Furthermore,

T0S = Span

[
In
K

]
.

By Lemma 2, we know that there exists a local smooth
solution of the Hamilton-Jacobi equation

αV (x)−H(x,
∂V

∂x
(x)) = 0.

Using the solution one can construct an local optimal
feedback control which make the system asymptotic stable.

B. Linear-quadratic approximation GBCS

For the symbolic simplicity, we will only consider the
following special situation

f(x, u1, · · · , uL, u) = h(x) +

n∑
i=1

gi(x)ui + g(x)u,

li(x, u1, · · · , uL, u) = xTQi(x)x+

L∑
i=1

uT
i Rij(x)uj ,

where Ri(0) > 0 and h(0) = 0. More general nonlinear case
can be treated using the similar method.
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Define the following matrices

A =
∂h

∂x

∣∣∣
x=0

, B = g(0), Bi = gi(0),

Qi =
∂2Qi(x)

∂x2

∣∣∣
x=0

, Rij = Rij(0), i ∈ [L]

Qi = Qi(0), Ri = Ri(0).

(17)

Using these matrices, we can construct a linear quadratic
GBCS as follows. ẋ(t) = Ax(t) +

L∑
i=1

Biui(t) +Bu(t),

x(0) = x0,

(18)

and the payoff function to be minimized by ui(·) of the agent
i(i ∈ [L]) is

Ji(x0, ui, u−i, u)

=

∫ ∞

0

e−αt
[
xT (t)Qix(t) +

L∑
i=1

uT
i (t)Rijuj(t)

]
dt,

(19)

We call the GBCS above the linear-quadratic approximation
of the GBCS (9)-(10) at 0.

The stabilizability of the linear-quadratic GBCS has been
investigated in [10]. In the linear case, we mainly concern
the linear-feedback control and linear-feedback Nash equi-
librium. The reason for this can be found in Reference [10].
The following is the definition of the stabilizability in the
reference which will be used in the next subsection.

Definition 4: The linear-quadratic GBCS (18)-(19) is sta-
bilizable, if there exits a control u = Fx of the regulator
such that the noncooperative differential game formed by
the agents has a linear feedback Nash equilibrium (u1 =
F1x, · · · , uL = FLx) and the system is asymptotically stable
(or equivalent to exponentially stable) when u = Fx and
(u1 = F1x, · · · , uL = FLx) for any initial state x0 ∈ Rn.

C. Stabilizability of GBCS

Before give the main result, we give some assumptions
which are weak conditions for making the optimization
problem well-posed.

Assumption 3: All the functions in GBCS (9)-(10) are
smooth, h(0) = 0 and Rii > 0.

Theorem 2: Suppose Assumption 3 holds and L = 1. If
the linear-quadratic GBCS (18)-(19) is stabilizable, then the
nonlinear GBCS (9)-(10) is locally stabilizable.

Proof: By the condition of the theorem, there exists u =
Fx such that the linear-quadratic optimal control of the agent
has a stable linear-feedback control u1 = Kx.

Now let the regulator’s control of the nonlinear GBCS
(9)-(10) be u = Fx. Then the optimal control (18)-(19)
is just a linear-quadratic approximation of the nonlinear
optimal control in (9)-(10). By Theorem 1, we get that
the nonlinear optimal control problem admits a stable local
optimal feedback control. By definition, the GBCS (9)-(10)
is stabilizable.

Theorem 3: Suppose Assumption 3 holds, L = 2 and l1+
l2 = 0. If the linear-quadratic GBCS (18)-(19) is stabilizable,
then the nonlinear GBCS (9)-(10) is locally stabilizable.

Proof: Under the assumptions of the theorem, the game
formed by the agents is zero-sum and we can use a non-
coupled nonlinear Hamilton-Jacobi equation to characterize
the Nash equilibrium. In linear-quadratic GBCS case, the
equation degenerates to a algebraic Riccati equation. So
we can prove this result using a method similar to that of
Theorem 2.

V. CONCLUSIONS

In this paper, we have investigated the stabilizability
of Nash equilibrium of the nonlinear game-based control
systems (GBCSs). The motivation for studying it comes from
the Lyaupunov indirect method, which uses the linearization
of a system to determine the local stability of the original
system. In this paper, we first study the relationship between
the nonlinear and linear-quadratic optimal control problems
using the method of contact geometry, then using the corre-
sponding results gives some conditions for the stabilizability
of nonlinear GBCS. It is obvious that this is just a few
steps towards the stabilizability problem of general GBCS
and there are many problems to be further studied.

REFERENCES

[1] D. L. Lukes, Optimal regulation of nonlinear dynamical systems,
SIAM J. Control and Optimization, February, 1969, vol. 7, no. 1,
pp. 75-100.

[2] M. A. Johnson, Differential game-based control methods for uncertain
continuous-time nonlinear systems, Doctor of Philosophy, University
of Florida, 2011.

[3] K. G. Vamvoudakis and F. L. Lewis, Multi-player non-zero-sum
games: online adaptive learning solution of coupled Hamilton-Jacobi
equations, Automatica, 2011, vol. 47, no. 8, pp. 1556-1569.

[4] Y. Ho, P. B. Luh and R. Muralidharan, Informatoin structures: Stack-
elberg games, and incentive controllability, IEEE Trans. Automatic
Control, 1981, vol. AC-26, no. 2, pp. 454-460.

[5] T. Chang and Y. Ho, Stochastic Stackelberg games: Nonnested multi-
stage incentive problems, IEEE Trans. Automatic Control, 1983, vol.
AC-28, no. 4, pp. 477-488.

[6] D. Fudenberg and J. Tirole, Game theory, Princeton: Princeton Uni-
versity Press, 2012.

[7] R. Zhang and L. Guo, Controllability of Nash equilibrium in game-
based control systems, IEEE Trans. Automatic Control, 2019, vol. 64,
no. 10, pp. 4180-4187.

[8] R. Zhang and L. Guo, Controllability of stochastic game-based control
systems, SIAM J. Control and Optimization, 2019, vol. 57, no. 6, pp.
3799–3826.

[9] J. Engwerda, LQ dynamic optimization and differential games, John
Wiley and Sons, 2005.

[10] R. Zhang and L. Guo, Stabilizability of game-based control sys-
tems, SIAM J. Control and Optimization, 2021, vol. 59, no. 5, pp.
3999–4023.

[11] A. J. Schaft, L2-gain analysis of nonlinear systems and nonlinear state
feedback H∞ control, IEEE Trans. Automatic Control, 1992, vol. 37,
no. 6, pp. 770-784.

[12] A. Mclnerney, First steps in differential geometry, Springer, 2013.
[13] D. A. Carlson, A. B. Haurie and A. Leizarowitz, Infinite horizon

optimal control: deterministic and stochastic systems (2ed), Springer-
Verlag, 1991.

[14] A. C. Silva, Lectures on symplectic geometry (2ed), Springer, 2008.
[15] E. K. Boukas, A. Haurie and P. Michel, An optimal control problem

with a random stopping time, Journal of Optimization Theory and
Applications, 1990, vol. 64, no. 3, pp. 471-480.

8181


