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Abstract— This paper considers a linear algebraic equation
over a multiagent network. The coefficient matrix is partitioned
into multiple blocks; each agent only knows a subset of these
blocks in different row and column partitions. Based on a
proximal ADMM algorithm, we design a distributed method
for every agent to find its corresponding parts in one least
square solution of the considered linear algebraic equation.
In every iteration of the designed method, each agent uses
only its information and communicates with its neighbors.
We show that the designed method achieves an exponentially
fast convergence for an arbitrarily initial setup. Numerical
simulations in MATLAB are provided to verify the effectiveness
of the designed method.

I. INTRODUCTION

The control and optimization problems of multiagent sys-
tems have become popular in many applications. The main
reason is inherent complexity of large-scale problems and
memory dispersion with the growth of big data. Depending
on the communication network among agents, a multiagent
system can have a hierarchical or distributed scheme. In a
hierarchical setup, one master agent plays as a coordinator.
This agent communicates with and/or assigns tasks to all
others. In a distributed setup, agents work in parallel, and
each agent can exchange information with only its neighbors.
Because of the scalability and privacy protection require-
ments, distributed ones have become more desired recently.

Many fundamental problems in various engineering ap-
plications can be deduced into finding one exact or least
square solution of a linear algebraic equation Hz = h
where H and h are coefficient matrix and vector. For
example, parameter estimation [1] and data filtering [2].
Various distributed methods have been developed to solve
the linear algebraic equation Hz = h when each agent
knows only a subset of rows in H and h. The first approach
considers constrained consensus problems [3]–[9]. By using
an orthogonal projection of the kernel of the local coefficient
matrix, the estimated solution at every iteration of each agent
always satisfies its linear equations. Distributed consensus
schemes are exploited to drive estimated solutions of all
agents to converge to an agreement. The method in [3]
is continuous-time, and the ones in [4]–[9] are discrete-
time. The convergence of these methods is guaranteed if the
considered linear algebraic equation has at least one exact
solution. Another approach considers the problem of solving
a distributed linear algebraic equation as finding the optimal
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solution of a multiagent optimization problem [9]–[15]. The
local cost function in each agent is the total square error of its
local linear equations, and the constraints are added to force
the agreement for estimated solutions among neighboring
agents. Various distributed optimization algorithms can be
applied to solve the optimization problem. Some of them
can be listed by subgradient-based methods (as in [10]–
[13]), zero-gradient-sum algorithm (as in [14]). When the
considered linear algebraic equation has one or several exact
solutions, all agents can asymptotically determine one of
such points [15]. If the exact solution does not exist, the
final converged solution is one least square solution, which
minimizes the total square errors, of the considered linear
algebraic equation [9]–[14].

In the works mentioned above [3]–[15], the authors con-
sider a distributed linear algebraic equation Hz = h assuming
that the coefficient matrix H is divided into multiple row
partitions and each agent knows one of these partitions.
Consequently, in their proposed algorithms, except for the
one in [5], every agent controls a state vector having the same
dimension as the unknown vector z in its update. In [5], the
dimension of the state vector controlled by one agent can be
reduced when considering the sparsity in its row partition.
Different from [3]–[15], the authors in [16] assume that the
coefficient matrix H is first divided into either multiple row
partitions or column partitions. Then, each of these partitions
is further divided into multiple blocks. Only one agent can
access each block. These setups are more suitable than those
in [3]–[15] when the coefficient matrix H has large rows and
columns. However, the algorithms proposed in [16] require
a hierarchical structure. Each agent belongs to a cluster
corresponding to one row or column partition. Each cluster
has one aggregator to collect information on agents in this
cluster and exchange information with aggregators of others.

This paper considers a linear algebraic equation Hz = h
when the rows and columns of the coefficient matrix H
are distributed over a network of agents. Let the matrix
H be divided into multiple blocks. Each agent only knows
a subset of the divided blocks, which can be located in
many row and column partitions. Unlike [16], we do not
require an aggregator to collect information from agents
corresponding to the same row or column partition. For
the row partitions whose data are dispensed across multiple
agents, we introduce some virtual variables to transform
their linear equations into local constraints of individual
agents combining coupling constraints among neighboring
agents. Consequently, we obtain a distributed optimization
problem whose optimal solution is one least square solution
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of the considered linear algebraic equation. Then we apply
a proximal ADMM algorithm [17] to design a distributed
method for finding the optimal solution of the obtained
distributed optimization problem. Each agent must only use
its information and communicate with its neighbors. Since
the designed method is discrete-time, the asymptotic conver-
gence of the ADMM-based method implies the exponential
convergence of the estimated solution to the optimal one.
In addition, our designed method has no requirements for
step-size selection or initial point setup.

The remainder of this paper is organized as follows. In
Section II, we introduce distributed linear algebraic equation
setup and optimization-based approach. Then we formulate
a distributed optimization problem whose optimal solution
can be used to determine the least square solution of the
considered linear algebraic equation in Section III. Based
on a proximal ADMM algorithm [17], Section IV designs a
distributed method for solving the formulated optimization
problem. Numerical simulations are provided in Section V to
illustrate the effectiveness of the designed method. Section
VI concludes this paper. In this paper, we skip the proofs
of our theorem and lemma due to space limitations. The
detailed analysis can be found in the full version [18].

A. Notations

We use R,Rn, and Rm×n to denote the set of real
numbers, the set of n-dimension real vectors, and the set
of real matrices having m rows and n columns. Denote by
1n and 0n the vectors in Rn whose all elements are 1 and
0, respectively. Let In be the identity matrix in Rn×n and
0m×n be the zero matrix in Rm×n. When the dimensions
are clear, the subscripts of the matrices In, 0m×n, and the
vector 1n, 0n can be removed. Denote by HT the transpose
matrix of H. We write H � 0 (� 0) means H is a positive
(semi-)definite matrix. Define ||x||2H = xTHx. When H = I,
we write it as ||x||2 for simplicity. If x is a scalar, we write
|x| = ||x||. We use |S| to denote the cardinality of the set S.

Let H = {h1,h2, . . . ,hm} be the list of m
vectors, we define the column vector col H =

col {h1,h2, . . . ,hm} =
[
hT1 ,h

T
2 , . . . ,h

T
m

]T
. For a list

of matrices, H = {H1,H2, . . . ,Hm}, we use blkdiag H
to denote the block-diagonal matrix whose main blocks
are matrices in H. In addition, we define two matrices
blkcol H = blkcol {H1,H2, . . . ,Hm} =

[
HT

1 HT
2 · · · HT

m

]T ,
blkrow H = blkrow {H1,H2, . . . ,Hm} =

[
H1 H2 · · · Hm

]
.

II. PROBLEM FORMULATION

A. Distributed linear algebraic equation

Consider a linear algebraic equation

Hz = h, (1)

where z ∈ Rn is unknown vector, H ∈ Rm×n and h ∈ Rm
are coefficients matrix and vector, respectively. Let zopt be
one least square solution to (1). Then zopt is one optimal
solution to the following optimization problem.

min
z

1

2

∣∣∣∣Hz− h
∣∣∣∣2. (2)

In general, the linear algebraic equation (1) can have one or
more least square solutions. Define Ψopt = 1

2 ||Hzopt − h||2.
We have Ψopt = 0 if the linear algebraic equation (1) has at
least one exact solution. If H is a full column rank matrix, we
have zopt = (HTH)−1HTh is unique and Ψopt = 1

2 hTh −
1
2 hTH(HTH)−1HTh.

In this paper, we are interested in determining one least
square solution to the linear algebraic equation (1) when the
coefficient matrix H can be subdivided into multiple blocks
Hkl, where 1 ≤ k ≤ K and 1 ≤ l ≤ L, as in (3) and each
nonzero block is known by only one agent in a network of
N agents.

H =


H11 H12 · · · H1L

H21 H22 · · · H2L

...
...

. . .
...

HK1 HK2 · · · HKL

 . (3)

The coefficient matrix H in (3) includes KL blocks corre-
sponding to K row and L column partitions. As each agent
i, where 1 ≤ i ≤ N , knows some nonzero blocks, we have
KL ≥ N in general setting. We define A[Hkl] as an operator
to express the agent knowing the block Hkl. Since there
may be some zero blocks in H, we conventionally define
A[Hkl] = 0 if Hkl = 0. Note that 0 is not an agent. For
each agent i, we define the relation between the block Hkl

and this agent by δi[Hkl] where δi[Hkl] = 1 if A[Hkl] = i

and δi[Hkl] = 0, otherwise. Let B(i)
k = {Hkl : δi[Hkl] =

1,∀1 ≤ l ≤ L} be the set of blocks in the row partition k
known by the agent i, where 1 ≤ k ≤ K and 1 ≤ i ≤ N .

For each row partition k, where 1 ≤ k ≤ K, of the
coefficient matrix H, we define the index list of agents
that have information of blocks in this row partition as
Rk = {A[Hk1],A[Hk2], . . . ,A[HkL]}. Let Cl be the index
list of agents that have information of blocks in the column
partition l, i.e., Cl = {A[H1l],A[H2l], . . . ,A[HKl]}, where
1 ≤ l ≤ L. As Rk and Cl, where 1 ≤ k ≤ K and 1 ≤ l ≤ L,
are lists, they can contain duplicated indexes. We define the
set S(Rk) derived from the list Rk by removing the index 0
and merging duplicated indexes into one element. Similarly,
we define S(Cl) for the list Cl, where 1 ≤ l ≤ L. We can
obtain an equivalent linear algebraic equation to (1) if we
exchange rows in the matrix H and the vector h. So, the rows
in H can be interchanged such that the ones dispensed across
the same list of agents are grouped in the same row partition.
Without loss of generality, we assume that Rk 6= Rk′ if
k 6= k′ for all 1 ≤ k, k′ ≤ K.

B. Optimization approach

Denote by mk, nl the dimensions of the block Hkl ∈
Rmk×nl , where 1 ≤ k ≤ K and 1 ≤ l ≤ L. We
have m =

∑K
k=1mk and n =

∑L
l=1 nl. According to the

partition of the coefficient matrix H, the unknown vector
z and the coefficient vector h can be partitioned as z =
col{z1, z2, . . . , zL} and h = col{h1,h2, . . . ,hK} where

zl = blkrow
{

0nl×∑l−1
j=0 nj

, Inl , 0nl×
(
n−

∑l
j=0 nj

)}z,
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hk = blkrow
{

0mk×∑k−1
j=0 mj

, Imk , 0mk×
(
m−

∑k
j=0mj

)}h.

Here we set m0 = n0 = 0 conventionally. Assume that each
agent i ∈ S(Cl) has a copy z(i)

l for the part zl of the unknown
vector z. We have

L∑
l=1

Hklzl =

L∑
l=1,Hkl 6=0

Hklz
(A[Hkl])
l ,∀1 ≤ k ≤ K. (4)

If A[Hkl] 6= 0, the vector Hklz
A[Hkl]
l is private information of

the agent A[Hkl]. To rewrite the error of the linear equations
corresponding to the row partition k as the sum of local
private functions, we make the following assumption:

Assumption 1: For every row partition k, where 1 ≤ k ≤
K, each agent i ∈ S(Rk) can access to a part of hk (i.e.,
can have partial information of hk). Denote this part as hi,k.
However, the sum of these parts

∑
i∈S(Rk)

hi,k = hk.

Under Assumption 1, we have
L∑
l=1

Hklzl − hk =
∑

i∈S(Rk)

( ∑
Hkl∈B(i)

k

Hklz
(i)
l − hi,k

)
, (5)

for all 1 ≤ k ≤ K. So, we have an equivalent problem of
the optimization problem (2) as follows.

min
z(i)l

1

2

K∑
k=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

i∈S(Rk)

 ∑
Hkl∈B(i)

k

Hklz
(i)
l − hi,k


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

(6a)

s.t. z(i)
l = z(j)

l ,∀i, j ∈ S(Cl), i 6= j,∀1 ≤ l ≤ L. (6b)

It is clear that the optimal cost value Ψopt = 1
2 ||Hzopt−h||2

is also the optimal value for the cost function in the problem
(6). In addition, each optimal solution to the optimization
problem (6) can be used to determine one least square
solution (2) of the linear algebraic equation (1).

C. Communication graph

In this paper, we use an undirected graph G = (V, E)
to illustrate the communication network among agents. In
which, V = {1, 2, . . . } is the node set and E ⊂ V × V is
the edge set. Each node i ∈ V = {1, 2, . . . , N} corresponds
to one agent while an edge (i, j) ∈ E represents that the
agent i can exchange information with the agent j. As G is
an undirected graph, (i, j) ∈ E implies (j, i) ∈ E for every
pair of nodes i, j ∈ V . The neighbor set of the agent i ∈ V
is denoted by Ni = {j ∈ V : (i, j) ∈ E}. Since agents need
to cooperate to find the optimal solution of the problem (6),
the communication graph G is required to be connected. That
means, for any pair i, j ∈ V , there is at least one sequence of
edges (i1, i2), (i2, i3), . . . , (ik−1, ik) such that i1 = i, ik = j
and il ∈ V, (il−1, il) ∈ E ,∀2 ≤ l ≤ k. Let Ṽ be a node
subset, i.e., Ṽ ⊂ V . The subgraph induced by Ṽ is defined
as G̃ = (Ṽ, Ẽ) where Ẽ = {(i, j) ∈ E : i, j ∈ Ṽ}. We define
Gk = (S(Rk), Ek) as the subgraph induced by the node set
S(Rk) for each row partition k, where 1 ≤ k ≤ K. Similarly,
we define Gl = (S(Cl), E l) for each column partition l, where
1 ≤ l ≤ L. The following assumption is necessary.

Assumption 2: The communication graph satisfies that
1) Gl is a connected graph for all 1 ≤ l ≤ L,
2) Gk is a connected graph for all 1 ≤ k ≤ K.

The first item in Assumption 2 is to allow agents in the
set S(Cl) can cooperatively achieve an agreement on the
part zl of the unknown vector z. Under this assumption, the
constraints in (6b) can be converted into coupling constraints
among neighboring agents as follows.

z(i)
l = z(j)

l ,∀j ∈ Ni ∩ S(Cl),∀i ∈ S(Cl), (7)

for all 1 ≤ l ≤ L. When i ∈ S(Rk), the agent i takes part
in the linear equations corresponding to the row partition
k as shown in (5). In general, there may be some row
partitions 1 ≤ k ≤ K where S(Rk) 6= Ni for all i ∈
S(Rk). Since communication is only available between two
neighboring agents, it is difficult for one agent to collect
complete information on the linear equations corresponding
to these row partitions. The second item in Assumption 2
facilitates a transformation of these linear equations into local
linear equations of individual agents combining coupling
constraints among neighboring agents, as presented later in
Section III. Summarizing this section, we state the main
problem of this paper as follows.

Problem 1: Assume that the communication graph of
the considered multiagent network satisfies Assumption 2.
Design a distributed method for each agent to find its cor-
responding parts in one optimal solution of the constrained
optimization problem (6) while using only its information
and communicating with its neighbors in Ni.

III. DISTRIBUTED OPTIMIZATION REFORMULATION

Let z̄i = col{z(i)
l : i ∈ S(Cl),∀1 ≤ l ≤ L} be the

stacked vector of parts corresponding to the agent i ∈ V in
the unknown vector z. For each neighboring agent j ∈ Ni,
define the matrix Pij such that Pij z̄i = col{z(i)

l : i, j ∈
S(Cl),∀1 ≤ l ≤ L}. The constraints in (7) are equivalent to
the following one:

Pij z̄i = Pjiz̄j ,∀(i, j) ∈ E . (8)

Let Ψ(z̄1, z̄2, . . . , z̄N ) be the cost function in (6a). The
optimization problem (6) can be rewritten as

min
z̄i,∀i∈V

Ψ(z̄1, z̄2, . . . , z̄N ) s.t. (8). (9)

Consider a row partition k where there is only one agent i
in the set S(Rk), i.e., S(Rk) = {i}. Under Assumption 1,
the agent i knows the vector hk. In this case, we have

L∑
l=1

Hklzl − hk = Āi,k z̄i − āi,k, if S(Rk) = {i}, (10)

where āi,k = hk and Āi,k = blkrow
{

Hklδi[Hkl] :

i ∈ S(Rk) ∩ S(Cl),∀1 ≤ l ≤ L
}

. Define by M =

{ε1, ε2, . . . , εM} the set of row partitions whose correspond-
ing sets consist of two or more agents, i.e., |S(Rεk)| ≥ 2
for all εk ∈ M. For each row partition εk ∈ M and agent
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i ∈ V , we define the matrix B̄i,εk = blkrow
{

Hεklδi[Hεkl] :

i ∈ S(Rεk) ∩ S(Cl),∀ ≤ l ≤ L
}

and b̄i,εk = hi,εk . We have

L∑
l=1

Hεklzl − hεk =
∑

i∈S(Rεk )

(
B̄i,εk z̄i − b̄i,εk

)
. (11)

Let uεk be the averaged error of the coupling linear equations
in the row partition εk ∈M, i.e.,

uεk =
1

|S(Rεk)|
∑

i∈S(Rεk )

(
B̄i,εk z̄i − b̄i,εk

)
,∀εk ∈M. (12)

For every εk ∈M, we define the vector vij,εk for each edge
(i, j) ∈ Eεk such that

uεk = B̄i,εk z̄i − b̄i,εk +
∑

j∈Ni,εk

(vij,εk − vji,εk) , (13)

for all i ∈ S(Rεk), where Ni,εk ≡ Ni ∩ S(Rεk). We remark
here that there always exists a set {vij,εk : (i, j) ∈ Eεk} that
satisfying (13). Indeed, from (13), we have∑

j∈Ni,εk

(vij,εk − vji,εk) = uεk − B̄i,εk z̄i + b̄i,εk , (14)

for all i ∈ S(Rεk). Consider (14) as a system of linear
equations with {vij,εk : (i, j) ∈ Eεk} is the set of unknown
variables. It is clear that there are |S(Rεk)| linear equations
and 2|Eεk | variables. Since Gεk = (S(Rεk), Eεk) is a con-
nected graph, we have |Eεk | ≥ |S(Rεk)|. This implies that
the linear algebraic equation (14) has infinite roots.

Let v(i)
ij,εk

be the copy of vij,εk − vji,εk ,∀(i, j) ∈ Eεk , in
the agent i ∈ S(Rεk). Under the second item in Assumtion
2, the coupling linear equations in (12) implies that uεk =

B̄i,εk z̄i+
∑
j∈Ni,εk

v(i)
ij,εk
− b̄i,εk if the constraints in (15) are

satisfied for all j ∈ Ni,εk , where i ∈ S(Rεk).∑
l∈Ni,εk

v(i)
il,εk

+ B̄i,εk z̄i − b̄i,εk =
∑

l∈Nj,εk
v(j)
jl,εk

+ B̄j,εk z̄j − b̄j,εk ,

(15a)

v(i)
ij,εk

+ v(j)
ij,εk

= 0. (15b)

Define the setMi = {εk ∈M : i ∈ S(Rεk)} and the stacked
vector v̄i = col

{
col
{

v(i)
ij,εk

: j ∈ Ni,εk
}

: εk ∈Mi

}
for each

agent i ∈ V . In addition, we define the stacked matrix Ai
and the stacked vector ai for each agent i ∈ V as

Ai = blkcol
{

Āi,k : S(Rk) = {i},∀1 ≤ k ≤ K
}
,

ai = blkcol
{

āi,k : S(Rk) = {i},∀1 ≤ k ≤ K
}
.

For simple notation, we assume Ai = 0 and ai = 0 for
agent i ∈ V if S(Rk) 6= {i},∀1 ≤ k ≤ K, i.e., the agent
i does not know all nonzero blocks in any row partition of
the coefficient matrix H. From (10), (12) and (15), we have
Ψ(z̄1, z̄2, . . . , z̄N ) =

∑
i∈V Ψi(z̄i, v̄i) where Ψi(z̄i, v̄i) =

1
2

∣∣∣∣Aiz̄i − ai
∣∣∣∣2 +

∑
εk∈Mi

|S(Rεk )|
2

∣∣∣∣∣∣ ∑
j∈Ni,εk

v(i)
ij,εk

+ B̄i,εk z̄i −

b̄i,εk
∣∣∣∣∣∣2. Consider the following optimization problem:

min
z̄i,v̄i,∀i∈V

∑
i∈V

Ψi(z̄i, v̄i) s.t. (8), (15)∀εk ∈M. (16)

We have the following result:
Lemma 1: Let col{col{z̄opti , v̄opti } : i ∈ V} be one optimal

solution to the problem (16). Then z̄opti ,∀i ∈ V, is the
stacked vector of the parts corresponding to the agent i in a
least square solution to the linear algebraic equation (1).

Proof: See [18].
Remark 1: In [18], we provide an example to illustrate

the definitions (of lists and sets) in distributed setup and the
reformulation of distributed linear algebraic equation (10-11)
into the distributed optimization problem (16).

IV. DISTRIBUTED ADMM-BASED METHOD

In this section, we apply the proximal ADMM algorithm
proposed in [17] to design a distributed method for solving
the optimization problem (16). The designed method is
guaranteed to have exponential convergence.

A. ADMM based solution
Define xi = col{z̄i, v̄i} as the collection of all local vari-

ables of the agent i ∈ V . Let n̄i be the length of the vector z̄i
for every agent i ∈ V . We have z̄i = blkrow{In̄i , 0}xi,∀i ∈
V . Define u(i)

εk as the copy of the vector uεk in (13) and the
stacked vector ūi = col{u(i)

εk : εk ∈ Mi}. Then we have
ūi = Cixi − ci where ci = col{b̄i,εk : εk ∈Mi} and

Ci =

[
blkrow{B̄Ti,εk : εk ∈Mi}

blkdiag
{

blkcol
{

Imk : j ∈ Ni,εk
}

: εk ∈Mi

}]T .

The local cost function Ψi(z̄i, v̄i) of the agent i ∈ V has
the quadratic form as

Ψi(z̄i, ūi, v̄i) =
1

2
xTi Qixi + qTi xi + aTi ai + DicTi ci.

where Qi = blkdiag
{

ATi Ai, 0
}

+ DiCTi Ci, qi =

col{−ATi ai, 0}+DiCTi ci, and Di = blkdiag{|S(Rεk)| : εk ∈
Mi}. It is easy to verify that Qi is a symmetric and positive
semidefinite matrix, ∀i ∈ V .

For two agents i, j ∈ S(Rεk), where (i, j) ∈ E and εk ∈
M, we assume that they choose the pair of matrices Dij,εk
and Dji,εk such that if Dij,εk = I then Dji,εk = −I and
if Dij,εk = −I then Dji,εk = I and vice versa. Define the
matrices Eij ,∀j ∈ Ni, such that

Eijxi = col{Pij z̄i, col{u(i)
εk
,Dij,εkv(i)

ij,εk
: εk ∈Mi ∩Mj}}.

(17)
It is clear that Eijxi = Ejixj ,∀(i, j) ∈ E . The optimization
problem (16) can be rewritten in the following form:

min
xi,∀i∈V

(yij ,yji)∈Yij ,∀(i,j)∈E

∑
i∈V

(
1

2
xTi Qixi + qTi xi

)
(18a)

s.t. Eijxi = yij ,∀j ∈ Ni,∀i ∈ V. (18b)

where Yij = {(yij , yji) : yij = yji} for all (i, j) ∈ E . The
coupling constraints (8) and (15) between two neighboring
agents i and j, where (i, j) ∈ E , are replaced by the equality
constraints in (18b) combining the constraint (yij , yji) ∈
Yij . It is easy to verify that the problem (18) has the form
of the convex optimization problem (19).

min
x,y∈Y

Ψx(x) + Ψy(y) s.t. Fxx + Fyy = f, (19)
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with the variable vectors x = col{x1, x2, . . . , xN}, y =
col{col{yij , yji} : (i, j) ∈ E}, the cost functions Ψx(x) =∑
i∈V

{
1
2 xTi Qixi + qTi xi

}
,Ψy(y) = 0, and Y =

∏
(i,j)∈E

Yij .

Define λij , ∀j ∈ Ni, as the dual variables corresponding
to the equality constraints in (18b) of the agent i ∈ V .
These dual variables can be stacked into a vector λ =
col{col{λij ,λji} : (i, j) ∈ E}. The augmented Lagrangian
function of the problem (18) is given by Lρ(x, y,λ) =∑
i∈V

{
1
2 xTi Qixi+qTi xi+ ρ

2

∑
j∈Ni

||Eijxi−yij− 1
ρλij ||

2
}

where

ρ > 0 is the penalty parameter.
The proximal ADMM algorithm proposed in [17] for

solving the convex optimization problem (19) is given in (20)
where G is a symmetric and positive semidefinite matrix, and
the initial point (x(0), y(0),λ(0)) can be chosen arbitrarily
such that y(0) ∈ Y .

x(s+ 1) = arg min
x

{
Lρ(x, y(s),λ(s)) + 1

2 ||x− x(s)||2G
}
, (20a)

y(s+ 1) = arg min
y∈Y
Lρ(x(s+ 1), y,λ(s)), (20b)

λ(s+ 1) = λ(s)− ρ
(

Fxx(s+ 1) + Fyy(s+ 1)− f
)
. (20c)

B. Detailed algorithm

Due to the separation of the augmented Lagrangian func-
tion L(x, y,λ), the equations (20a) and (20b) are equivalent
to the equations (21) and (22), respectively. Here, the matrix
G = blkdiag{Gi : i ∈ V} where Gi is a positive semi-
definite matrix chosen by the agent i ∈ V . Assume that Gi is
chosen such that the matrix Q̂i (defined in (23b)) is positive
definite, the update (21) is equivalent to (23), ∀i ∈ V .

xi(s+ 1) = −Q̂
−1

i q̂i(s), (23a)

where Q̂i = Qi + Gi + ρ
∑
j∈Ni

ETijEij , (23b)

q̂i(s) = qi−Gixi(s)−
∑
j∈Ni

ETij
(
ρyij(s) + λij(s)

)
. (23c)

Consider the optimization problem in (22). From its KKT
conditions, we have

yij(s+ 1) =
1

2

(
Eijxi(s+ 1)− 1

ρ
(λij(s)

)
+

1

2

(
Ejixj(s+ 1)− 1

ρ
λji(s)

)
, (24)

for all (i, j) ∈ E . According to (20c), the update of the dual
variables λij ,∀(i, j) ∈ E , are given as

λij(s+ 1) = λij(s)− ρ
(
Eijxi(s+ 1)− yij(s+ 1)

)
. (25)

We provide Algorithm 1 to present the implementation of
our designed method for one agent. It is easy to verify that
this algorithm requires only local information for each agent
except the common penalty parameter ρ as global informa-
tion. However, this information can be easily achieved by
the agreement among agents. In the iteration update (23-25),
every agent i ∈ V uses only information belonging to itself
or received from its neighbors in Ni.

Algorithm 1 Distributed method for agent i ∈ V to find z̄optSi .

1: Agree a common positive penalty parameter ρ > 0
2: Choose Gi � 0 such that Q̂i � 0 (given in (23b))
3: Initiate: s = 0, xi(0) = 0 and yij(0) = 0,∀j ∈ Ni.
4: Repeat until convergence:
5: xi(s+ 1)← (23),
6: Send Eijxi(s+ 1)− 1

ρλij(s) to all j ∈ Ni,
7: Receive Ejixj(s+ 1)− 1

ρλji(s) from all j ∈ Ni,
8: yi(s+ 1)← (24), ∀j ∈ Ni,
9: λij(s+ 1)← (25), ∀j ∈ Ni,

10: s← s+ 1,
11: Finish algorithm: zoutputi = blkrow{In̄i , 0}xi(s)

Let wi(s) = col
{

xi(s), col
{

yij(s),λij(s) : j ∈ Ni
}}

be
the stacked vector corresponding to the estimated solution of
the agent i ∈ V at the iteration step s in the update (23-25).
Based on the convergence results of the proximal ADMM
algorithm in [17], [19], we have the following theorem:

Theorem 1: Let every agent i ∈ V apply Algorithm 1.
The estimated solution w(s) = col{wi(s) : i ∈ V} converges
exponentially to w∞ where w∞ = col{w∞i : i ∈ V} is one
optimal solution of the optimization problem (18).

Proof: See [18].
According to Theorem 1, z̄i(s) = blkrow{In̄i , 0}xi(s) con-
verges exponentially to z̄∞i = blkrow{In̄i , 0}x∞i ,∀i ∈ V .
Lemma 1 guarantees that the stacked vector z̄∞i ,∀i ∈ V,
consists of parts corresponding to the agent i in one least
square solution of the linear algebraic equation (1).

V. NUMERICAL SIMULATIONS

This section considers a distributed linear algebraic equa-
tion, which can be represented in the form of (10-11), over
a network of 24 agents. Assume that each agent has a
local variables vector z̄i ∈ R20, ∀i ∈ {1, 2, . . . , 24}, and
there is one coupling row partition across all agents, i.e.,
M = {ε1} and Rε1 = {1, 2, . . . , 24}. Let the communication

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

Fig. 1: Communication graph: nodes represent agents and
edges represent available communication among agents.

graph be given in Fig. 1 and B̄i,ε1 =
[
05×15 I5

]
,∀i ∈

{1, 2, . . . , 24}. Every vector b̄i,ε1 is chosen randomly. In
addition, we assume that the first 5 elements in local variable
vectors z̄i,∀i ∈ {1, 2, . . . , 24}, are common variables.

We use MATLAB to test the effectiveness of our de-
signed method in finding least square solutions to one
hundred numerical examples. In each example, we choose
Ai ∈ R20×20, ai ∈ R20 randomly, ∀i ∈ {1, 2, . . . , 24}.
The ADMM-based method (23-25) is run with the se-
lection of ρ = 1. Fig. 2 shows the simulation results
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xi(s+ 1) = arg min
xi

1

2
xTi Qixi + qTi xi +

ρ

2

∑
j∈Ni

∣∣∣∣∣∣Eijxi − yij(s)−
1

ρ
λij(s)

∣∣∣∣∣∣2 +
1

2

∣∣∣∣∣∣xi − xi(s)
∣∣∣∣∣∣

Gi

 ,∀i ∈ V. (21)

(yij , yji)(s+1) = arg min
yij=yji

(∣∣∣∣∣∣Eijxi(s+ 1)− yij −
1

ρ
λij(s)

∣∣∣∣∣∣2 +
∣∣∣∣∣∣Ejixj(s+ 1)− yji −

1

ρ
λji(s)

∣∣∣∣∣∣2) ,∀(i, j) ∈ E . (22)

Fig. 2: The convergence to the least square solution of the
second example. Algorithm 1 requires 370 iterations (23-25).

of two examples having the fastest (blue lines) and the
slowest (red lines) convergence rates. In this figure, the
solid lines represent the convergence of the estimated
solution by Algorithm 1 to one optimal solution xopt
of the problem (18). The dashed lines illustrate to the
evolution of the function |Ψ(s) − Ψopt| where Ψ(s) =∑24
i=1

(
xi(s)TQixi(s) + qTi xi(s) + aTi ai + DicTi ci

)
. It is

easy to verify the exponential convergence of the estimated
solution to the optimal one. A practical solution can be
achieved after about 2000 iterations. In addition, we mea-
sure the computation time required by each agent in every
iteration step. The maximum time required by one agent
for 2000 iterations is 0.5 second. In [18], we provide more
numerical simulations to compare the effectiveness of our
designed method with some existing works.

VI. CONCLUSION

This paper considers a linear algebraic equation Hz = h
where rows and columns of the coefficient matrix H are
dispensed across a network of agents. By introducing some
virtual variables, the problem of finding one least square
solution is reformulated into a distributed optimization prob-
lem. Then, we apply a proximal ADMM algorithm to design
a distributed method for agents to solve the formulated
optimization problem cooperatively. The estimated solution
of every agent converges exponentially to its corresponding
parts in one exact least square solution of the considered
linear algebraic equation.
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