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Abstract— We model two systems of two conservation laws
defined on complementary spatial intervals and coupled by a
moving interface as a single non-autonomous port-Hamiltonian
system, and provide sufficient conditions for its Kato-stability.
An example shows that these conditions are quite restrictive.
The more general question under which conditions an evolution
family is generated remains open.
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I. INTRODUCTION

The port-Hamiltonian framework [1], [2], [3] is a systematic
theory for modeling, analysis and control of physical systems
belonging to mechanical, electric, hydraulic, thermal, and
other domains. It rests on two eponymous concepts: the
system’s Hamiltonian (that is, its total energy) stemming
from mechanics [4], and the port-based modeling approach
[1], which is based on the power-conserving interconnection
of various system components by means of ports.

Following the semigroup approach [5], port-Hamiltonian
distributed parameter systems can be represented as abstract
Cauchy problems of the form

ẋ(t) = AQx(t), t > 0,

x(0) = x0 ∈ X,

where AQ : D(AQ) ⊂ X → X is a linear unbounded op-
erator on a Hilbert space X (the so-called port-Hamiltonian
operator) associated with the port-Hamiltonian system. The
port-Hamiltonian operator stores information concerning the
interdomain coupling of the multi-physics system, as well as
the mechanical and physical properties. Frequently, AQ =
J (Q·), where J is a formally skew-symmetric matrix dif-
ferential operator modeling the interdomain coupling, and
Q is a coercive and bounded multiplication operator repre-
senting the physical properties [6, Section 3], [1, pp. 226-
228]. As discussed in [7], [8], a significant research effort
was devoted to the analysis of port-Hamiltonian systems
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connected via interfaces. Such systems appear, e.g., due to
the distinct physical properties on the respective subdomains.
To cover couplings of systems with a non-fixed boundary
between them in port-Hamiltonian terms, in [9] the authors
proposed the port-Hamiltonian formulation for two systems
that are coupled by a moving interface. However, [9] was
concentrated on the modeling, and the well-posedness of the
obtained model has not been investigated in [9].

In [7], we proposed a mathematically rigorous approach for
the study of port-Hamiltonian systems with an interface as
abstract evolution equations. Using the framework of [2],
easy-to-check criteria for boundary and interface conditions
that guarantee that the system with a fixed interface induces
a contraction semigroup were given in [7]. Under somewhat
stronger conditions, exponential stability of such a system
was established in [7]. These findings have been applied
in [7] to two acoustic waveguides coupled by an interface
consisting of some membrane and in [8] to the interface
coupling of two lossless transmission lines.

Contribution. In [7] only systems with a stationary in-
terface have been considered. In this note, we show that
the approach advocated in [7] is applicable also to systems
with a moving interface. In Section II, we consider a port-
Hamiltonian formulation of the system with an interface. We
introduce the formally skew-symmetric differential operator
associated with the aggregate system. Furthermore, we define
the boundary and interface port variables in case of a fixed
interface position, and state an energy balance equation for
this class of systems. In Section III, we shall define a family
of port-Hamiltonian operators that keeps track of the position
of the moving interface, and analyze the resulting time-
variant evolution problem associated with this family. We
present sufficient conditions for the Kato-stability of this
family in the sense of Pazy [10, Section 5.2]. This is a key
property for the further analysis of the system formulation
suggested in [9] and [8].

Notation. Throughout the paper, X is a Hilbert space and
L(X) is the space of linear bounded operators on X . We
denote by C([a, b], X) and Ck([a, b], X) the vector spaces
of X-valued, continuous and k-times continuously differen-
tiable functions f : [a, b] → X . Also, L2([a, b],Rn) denotes
the vector space of Rn-valued square-integrable functions on
the interval [a, b], and L∞([a, b],Rn) is the vector space of
Rn-valued essentially bounded functions on [a, b]. Moreover,
H1([a, b],Rn) denotes the Sobolev space of order 1 on [a, b].
For real, square, symmetric matrices A,B the expression
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A ≤ B means that B−A is symmetric positive semi-definite.
For functions y : [a, b]\{l} → Rn the notations y(l+), y(l−)
denote the right (resp. left) limit of y at l, assuming existence.

II. PORT-HAMILTONIAN FORMULATION

Let a < 0 < b and l ∈ (a, b) be the fixed interface position.
Consider two systems of two scalar conservation laws each
of the form

∂x−

∂t
(z, t) = P1

∂

∂z

(
Q−(z)x−(z, t)

)
, z ∈ [a, l), t > 0,

∂x+

∂t
(z, t) = P1

∂

∂z

(
Q+(z)x+(z, t)

)
, z ∈ (l, b], t > 0,

(1)

defined on the respective interval [a, l) or (l, b], where

P1 =

[
0 −1
−1 0

]
∈ R2×2, (2)

and Q± ∈ L∞([a, b],R2×2) are pointwise symmetric and
satisfy mI2 ≤ Q±(z) ≤ MI2 for suitable 0 < m ≤ M
and a. e. z ∈ [a, b]. Here I2 is the 2 × 2 identity matrix. In
the following, we propose a port-Hamiltonian formulation
of the model (1) on the composed spatial domain [a, b]. We
introduce state variables defined on the composed domain,
and we need to define interface relations at z = l. For a
detailed discussion, we refer to [9], [8, Section 5.2], [7].

Consider the state space X = L2([a, b],R2) and the system

∂

∂t
x(z, t) = Jl

(
Ql(z)x(z, t)

)
, z ∈ [a, b]\{l}, t > 0, (3)

where Jl is defined below, and

Ql = c−l Q
− + c+l Q

+ ∈ L(X) (4)

is a coercive matrix multiplication operator. The functions
c−l and c+l are called color functions and are used to keep
track of the interface position:

c−l (z) =

{
1, z ∈ [a, l),

0, z ∈ [l, b],
c+l (z) =

{
0, z ∈ [a, l],

1, z ∈ (l, b].
(5)

Since, for now, we assume that the interface position is fixed,
the color functions do not depend on time.

We endow X with the inner product 〈·, ·〉Ql
= 1

2 〈·,Ql·〉L2 :

〈x, y〉Ql
=

1

2

∫ b

a

y>(z)Ql(z)x(z) dz, x, y ∈ X, (6)

with associated norm ‖ · ‖Ql
. Note that 〈·, ·〉Ql

is equivalent
to the standard inner product 〈·, ·〉L2 on X . The Hamiltonian
H : X → R on the energy space (X, ‖ · ‖Ql

) is defined as

H(x) =
1

2

∫ b

a

x>(z)Ql(z)x(z) dz = ‖x‖2Ql
, x ∈ X. (7)

The operator Jl : D(Jl) ⊂ X → X is given by

D(Jl) = {x = (x1, x2) ∈ X | x1 ∈ D(d∗l ), x2 ∈ D(dl)} ,

Jlx =

[
0 dl
−d∗l 0

] [
x1
x2

]
=

[
dlx2
−d∗l x1

]
, x ∈ D(Jl), (8)

where the operator dl is given by

D(dl) = H1([a, b],R),

dlx = −
[
d

dz
(c−l x) +

d

dz
(c+l x)

]
, x ∈ D(dl),

(9)

and its formal adjoint (see lines after (13)) d∗l is given by

D(d∗l ) =
{
y ∈ L2([a, b],R) | y|(a,l) ∈ H1((a, l),R),

y|(l,b) ∈ H1((l, b),R)
}
,

d∗l y =

(
−dl −

[
d

dz
c−l +

d

dz
c+l

])
y, y ∈ D(d∗l ).

(10)

For functions x = c−l x
− + c+l x

+ ∈ D(dl) and y = c−l y
− +

c+l y
+ ∈ D(d∗l ), we have in particular that

dlx = −c−l
d

dz
x− − c+l

d

dz
x+, (11)

d∗l y = c−l
d

dz
y− + c+l

d

dz
y+. (12)

For all x ∈ D(dl), y ∈ D(d∗l ), we have the following
relation between the operators dl and d∗l :

〈dlx, y〉L2 = −
[
x(z)y(z)

]b
a

+ x(l)
[
y(l+)− y(l−)

]
+ 〈x,d∗l y〉L2 .

(13)

In particular, equation (13) describes the formal adjointness
of dl and d∗l , that is, adjointness up to boundary and interface
evaluations.

On any subinterval of [a, b] not containing the interface
position l ∈ (a, b), the operator Jl simply acts as the matrix
differential operator P1

d
dz , where P1 is defined in (2). Thus,

(3) is a reformulation of (1). Next, we reveal the port-
Hamiltonian structure of (3). As port-Hamiltonian models
are extensions of Hamiltonian systems, it is required that the
associated differential operator is formally skew-symmetric.

II.1 Lemma ([7], Lemma 2.3) The operator Jl : D(Jl) ⊂
X → X defined in (8) is formally skew-symmetric satisfying
for all x = (x1, x2) and y = (y1, y2) ∈ D(Jl),

〈Jlx, y〉L2 + 〈x,Jly〉L2 =
[
x>(z)P1y(z)

]b
a

+ x2(l)
[
y1(l+)− y1(l−)

]
+ y2(l)

[
x1(l+)− x1(l−)

]
.

(14)

Next, we augment the system (3) with boundary and interface
port variables.

For all x ∈ X with Qlx ∈ D(Jl), the boundary flow f∂ =
f∂,Qlx ∈ R2 and the boundary effort e∂ = e∂,Qlx ∈ R2 is[

f∂,Qlx

e∂,Qlx

]
=

[
1√
2
P1[(Qlx)(b)− (Qlx)(a)]

1√
2
[(Qlx)(b) + (Qlx)(a))]

]
, (15)

and the interface flow fI = fI,Qlx ∈ R and the interface
effort eI = eI,Qlx ∈ R are given as follows:

fI,Qlx = (Qlx)2 (l+) = (Qlx)2 (l−), (16)

−eI,Qlx = (Qlx)1 (l+)− (Qlx)1 (l−). (17)
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For all Qlx,Qly ∈ D(Jl), we may write the last expression
of (14) with respect to the boundary and interface port
variables as follows:[

(Qlx)>(z)P1(Qly)(z)
]b
a

+ (Qlx)2 (l)
[
(Qly)1 (l+)− (Qly)1 (l−)

]
+ (Qly)2 (l)

[
(Qlx)1 (l+)− (Qlx)1 (l−)

]
= 〈e∂,Qly, f∂,Qlx〉+ 〈e∂,Qlx, f∂,Qly〉

− fI,QlxeI,Qly − fI,QlyeI,Qlx.

(18)

Let us substitute the relation (18) into equation (14). This
yields for all Qlx,Qly ∈ D(Jl),

〈Jl(Qlx),Qly〉L2 + 〈Qlx,Jl(Qly)〉L2 = 〈e∂,Qly, f∂,Qlx〉
+ 〈e∂,Qlx, f∂,Qly〉 − fI,QlxeI,Qly − fI,QlyeI,Qlx. (19)

Now we express a (power) balance equation for classical
solutions x ∈ C1([0,∞), X) of the first-order system (3) in
terms of the boundary and interface port variables.
II.2 Lemma Let x ∈ C1([0,∞), X) be a classical solution
of the system (3) with Hamiltonian (7). Then for all t ≥ 0,
d

dt
‖x(t)‖2Ql

=
d

dt
H(x(t))=〈e∂(t), f∂(t)〉 − eI(t)fI(t), (20)

where

e∂(t) = e∂,Qlx(t), f∂(t) = f∂,Qlx(t),

eI(t) = eI,Qlx(t), fI(t) = fI,Qlx(t).

For a proof see [7, Lemma 2.4].

Equation (20) states that the change of energy is equal to the
power flow both at the boundary and at the interface position.

In [8, Section 5.4], [7], the system (3) has been studied by
considering the corresponding abstract Cauchy problem

ẋ(t) = AQl
x(t), t > 0,

x(0) = x0 ∈ D(AQl
),

(21)

with suitable boundary and interface conditions defined with
respect to the boundary and interface port variables, respec-
tively. The port-Hamiltonian operator AQl

: D(AQl
) ⊂ X →

X associated with (3) is defined as follows:

D(AQl
) =

{
x ∈ X

∣∣Qlx ∈ D(Jl), fI,Qlx = reI,Qlx,

WB

[
f∂,Qlx

e∂,Qlx

]
= 0

}
,

AQl
x = Jl(Qlx), x ∈ D(AQl

), (22)

where WB ∈ R2×4 and r ∈ R. It has been characterized
under which boundary and interface conditions (i.e., for
which WB and r) the operator AQl

generates a contraction
semigroup (cf. [8, Theorem 5.14], [7, Theorem 4.4]). In
particular, this guarantees well-posedness of the system (21)
in the sense of [11, Definition II.6.8]. Furthermore, sufficient
conditions for the exponential stability of (21) have been
presented (cf. [8, Section 5.4.3], [7, Section 5]). These results
hold for every stationary interface position l ∈ (a, b).

In the next section, we make the first steps towards analyzing
a more complex case of port-Hamiltonian systems with a
moving interface.

III. STABILITY OF THE FAMILY OF INFINITESIMAL
GENERATORS

In this section, we shall analyze the port-Hamiltonian system
(3) in case of a moving interface. We define a family of port-
Hamiltonian operators that encompasses the position of the
interface, and associate this family with an evolution problem
of the form

ẋ(t) = A(t)x(t), 0 ≤ s < t ≤ τ,
x(s) = x0 ∈ X.

(23)

We shall impose conditions guaranteeing that this family is
stable in the following sense.
III.1 Definition: (Kato-stability; [10, Chapter 5]) A fam-
ily (A(t))t∈[0,τ ] of infinitesimal generators of C0-semigroups
on X is called Kato-stable (or just stable) if there exist
constants M ≥ 1 and ω ∈ R, called stability constants, such
that the following holds:

(i) For 0 ≤ t ≤ τ we have (ω,∞) ⊂ ρ(A(t)).

(ii) For every finite sequence 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ τ ,
k ∈ N, it holds that∥∥∥∥∥∥

k∏
j=1

R(λ,A(tj))

∥∥∥∥∥∥
L(X)

≤ M

(λ− ω)k
, λ > ω. (24)

Here ρ(A) denotes the resolvent set of an operator A, and
for λ ∈ ρ(A), R(λ,A) denotes the resolvent of A at λ.

Recall that the model (3) can be defined for arbitrary, but
fixed interface positions l ∈ (a, b) by changing the asso-
ciated operators accordingly. Unfortunately, the state space
(X, ‖·‖Ql

) has to be changed for different interface positions
l ∈ (a, b) to guarantee that the aforementioned statements
hold true. However, we have the following norm equivalence
between ‖ · ‖Q0

and ‖ · ‖Ql
for l ∈ (a, b): for all x ∈ X we

have
m

M
‖x‖2Q0

≤ ‖x‖2Ql
≤ M

m
‖x‖2Q0

. (25)

Note that the constants
√

m
M and

√
M
m are independent of

the interface position l.

Let 0 < τ < ∞, and let l : [0, τ ] → (a, b) be continu-
ously differentiable. Let (A(t))t∈[0,τ ] be a family of port-
Hamiltonian operators, where A(t) := AQl(t)

: D(A(t)) ⊂
X → X is given by

D(A(t)) =
{
x ∈ X |Ql(t)x ∈ D(Jl(t)),

fI(t) = reI(t), WB

[
f∂
e∂

]
= 0
}
,

(26)

where
e∂ = e∂(t) = e∂,Ql(t)x,

eI(t) = eI,Ql(t)x,

f∂ = f∂(t) = f∂,Ql(t)x,

fI(t) = fI,Ql(t)x

are defined from (15)-(17), and also, for all x ∈ D(A(t)),

A(t)x = Jl(t)(Ql(t)x) =

[
0 dl(t)

−d∗l(t) 0

]
(Ql(t)x). (27)
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The operators dl(t) and d∗l(t) constituting the matrix differ-
ential operator Jl(t) : D(Jl(t)) ⊂ X → X given by

D(Jl(t)) = D(d∗l(t))×D(dl(t)),

Jl(t)x =

[
0 dl(t)

−d∗l(t) 0

]
x, x ∈ D(Jl(t)),

(28)

are defined as in (9) and (10) with respect to the time-varying
color functions

c−l (z, t) =

{
1, z ∈ [a, l(t)),

0, z ∈ [l(t), b],
t ≥ 0, (29)

c+l (z, t) =

{
0, z ∈ [a, l(t)],

1, z ∈ (l(t), b],
t ≥ 0. (30)

Furthermore, the coercive operator Ql(t) ∈ L(X), t ∈ [0, τ ],
is given by

Ql(t) = c−l (·, t)Q− + c+l (·, t)Q+. (31)

We claim that, under certain conditions, (A(t))t∈[0,τ ] is a
stable family on the state space (X, ‖ · ‖Q0

). Using [7, The-
orem 3.4], and due to the equivalence (25) of the norms of the
respective energy spaces (X, ‖·‖Ql(t)

), we can at least under
natural conditions guarantee that the family (A(t))t∈[0,τ ] is
a family of infinitesimal generators of uniformly bounded
C0-semigroups on (X, ‖ · ‖Q0

) (or any other state space
(X, ‖ · ‖Ql̂

) with l̂ ∈ (a, b)). However, as we will see, this
does not prove yet the stability of this family. Thus, we need
to impose more restrictive assumptions, namely:

(A1) The matrix functions Q± ∈ C1([a, b],R2×2) defining
the coercive operator Ql(t) ∈ L(X) are diagonal, i.e.,

Q±(z) =

[
q±11(z) 0

0 q±22(z)

]
, z ∈ [a, b],

and they satisfy

q+11
q−11

(0) = 1 and
q+11
q−11

(z) =
q+22
q−22

(z), z ∈ [a, b].

(A2) r = 0, rank(WB) = 2, and WBΣW>B ≥ 0, where

Σ =

[
0 I2
I2 0

]
∈ R4×4.

Assumption (A1) states first that the Hamiltonian density
function is a separable function, which is the case in
numerous physical models such as the transmission line
[6], the acoustic duct [8] or the isentropic gas model [9].
Secondly, it states that the ratios of the coefficients defining
the energy density functions of the subsystems are identical
on the spatial domain [a, b], and that they even coincide in
z = 0. This happens for instance in the case of the interface
separating two identical fluids, see Example 8 in [9].

Assumption (A2) requires first that r = 0, meaning that for
any value of eI(t), the variables fI(t) = 0, implying that
their power product is zero. This might happen, for instance,
in the case of two gases separated by a mass-less piston
which glides without dissipation. Hence, at the interface,
power flow between the two subsystems can only occur

by the motion of the interface. Also, the matrix inequality
is precisely the condition that A(t) generates a contraction
semigroup on the respective energy space (X, ‖ · ‖Ql(t)

)
for a frozen interface position, see [8, Theorem 5.14] [7,
Theorem 4.4], with eI(t)fI(t) = 0 (as r = 0) and the
output conjugated to the velocity of the interface being the
discontinuity of energy density at the interface [9]

el =
(
−H− (l) +H+ (l)

)
.

To prove Kato-stability, we make use of an extension of a
Lyapunov theorem [12].

III.2 Theorem Let 0 < τ < ∞, and let l : [0, τ ] → (a, b)
be continuously differentiable. Let the assumptions (A1)-(A2)
hold. Consider the family (A(t))t∈[0,τ ] of port-Hamiltonian
operators given by (26)-(31) defined on (X, ‖ · ‖Q0

). Then
there exists some ω > 0 such that for every t ∈ [0, τ ] and for
every x ∈ D(A(t)),

〈A(t)x, x〉Q0
≤ ω‖x‖2Q0

. (32)

Proof: Let t ∈ [0, τ ] be such that for the interface
position we have a < l(t) < 0. In this case, the operator
Jl(t) defined in (28) acts as the operator P1

d
dz on the

subdomains [a, l(t)) and (l(t), b], with P1 defined in (2). As
A(t) generates a contraction semigroup on (X, ‖ · ‖Ql(t)

), it
is dissipative, and for all x ∈ D(A(t)) it holds that

〈A(t)x,x〉Ql(t)
=

1

2

∫ b

a

x>(z)Ql(t)(z)[A(t)x](z) dz

=
1

2

∫ l(t)

a

x>(z)Q−(z)P1
d

dz

(
Q−(z)x(z)

)
dz

+
1

2

∫ 0

l(t)

x>(z)Q+(z)P1
d

dz

(
Q+(z)x(z)

)
dz

+
1

2

∫ b

0

x>(z)Q+(z)P1
d

dz

(
Q+(z)x(z)

)
dz ≤ 0.

By dissipativity and since Q± ∈ C1([a, b],R2×2), we have:

〈A(t)x, x〉Q0 = 〈A(t)x, x〉Ql(t)

+
1

2

∫ 0

l(t)

x>(z)
(
Q−(z)−Q+(z)

)
P1

d

dz
(Q+x)(z) dz

≤ 1

2

∫ 0

l(t)

x>(z)

[(
Q−(z)−Q+(z)

)
P1

d

dz
Q+(z)

]
x(z) dz

+
1

2

∫ 0

l(t)

x>(z)
[(
Q−(z)−Q+(z)

)
P1Q+(z)

] d
dz
x(z) dz.

We may choose ω−1 > 0 large enough such that(
Q−(z)−Q+(z)

)
P1

d

dz
Q+(z) ≤ ω−1 Q−(z), z ∈ [a, b],

i.e., there exists some ω−1 such that for all z ∈ [a, b], the
symmetric part of

ω−1 Q−(z)− (Q−(z)−Q+(z))P1
d

dz
Q+(z)
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is positive semi-definite. Now, let us define the matrix
function Q̃ : [a, b]→ R2×2 by

Q̃(z) = (Q−(z)−Q+(z))P1Q+(z)

= −
[

0 q+22(q−11 − q
+
11)

q+11(q−22 − q
+
22) 0

]
(z). (33)

By assumption (A1), we have Q+,Q− ∈ C1([a, b],R2×2),
and so the matrix function Q̃ is continuously differentiable
as well. Moreover, by (A1), it is easy to check that Q̃(z) is
symmetric for all z ∈ [a, b]. Now integration by parts yields∫ 0

l(t)

x>(z)Q̃(z)
d

dz
x(z) dz =

1

2

[
x>(z)Q̃(z)x(z)

]0
l(t)+

− 1

2

∫ 0

l(t)

x>(z)
d

dz
Q̃(z)x(z) dz.

Once again, we may choose ω−2 > 0 large enough such that

− d

dz
Q̃(z) ≤ ω−2 Q−(z), z ∈ [a, b].

Altogether, we obtain for all x ∈ D(A(t)),

〈A(t)x, x〉Q0 ≤
ω−1
2

∫ 0

l(t)

x>(z)Q−(z)x(z) dz (34)

+
1

4

[
x>(z)Q̃(z)x(z)

]0
l(t)+

+
ω−2
4

∫ 0

l(t)

x>(z)Q−(z)x(z) dz.

As x ∈ D(A(t)), the interface relation fI(t) = reI(t)
holds. Recalling the definition of the interface variables (16)-
(17), invoking the assumption that r = 0 together with the
assumption that Q± are diagonal matrix functions, we obtain

0 = fI(t) = fI,Ql(t)x =
(
Ql(t)x

)
2

(l(t)+)

=
(
Q+x

)
2

(l(t)+) = q+22(l(t)+)x2(l(t)+).

As q+22(l(t)+) 6= 0, we obtain that x2(l(t)+) = 0. A similar
computation shows that x2(l(t)−) = 0.

Furthermore, by assumption (A1), Q± coincide in z = 0.
Consequently, the expression

[
x>(z)Q̃(z)x(z)

]0
l(t)+

, i.e.,

x1(l(t)+)x2(l(t)+)
[
q+22(q−11 − q

+
11) + q+11(q−22 − q

+
22)
]

(l(t))

− x1(0)x2(0)
[
q+22(q−11 − q

+
11) + q+11(q−22 − q

+
22)
]

(0),

vanishes. With the choice ω− = max{ω−1 ,
ω−2
2 } we deduce

from (34) that for all x ∈ D(A(t)), where t ∈ [0, τ ] is chosen
such that a < l(t) < 0, it holds that

〈A(t)x, x〉Q0
≤ ω−‖x‖2Q0

.

Now, let t ∈ [0, τ ] such that for the interface position we
have 0 < l(t) < b. Analogously to the previous case, we
have for all x ∈ D(A(t)),

〈A(t)x, x〉Q0

≤ 1

2

∫ l(t)

0

x>(z)

[(
Q+(z)−Q−(z)

)
P1

d

dz
Q−(z)

]
x(z) dz

+
1

2

∫ l(t)

0

x>(z)
[(
Q+(z)−Q−(z)

)
P1Q−(z)

] d
dz
x(z) dz.

One can readily see that the previous arguments apply, and
so there exists some ω+ > 0 such that

〈A(t)x, x〉Q0
≤ ω+‖x‖2Q0

for all x ∈ D(A(t)) with 0 < l(t) < b. If l(t) = 0 for some
t ∈ [0, τ ], then A(t) is dissipative on (X, ‖·‖Q0

). Altogether,
the choice ω = max{ω−, ω+} yields the estimate (32) for
all t ∈ [0, τ ] and for all x ∈ D(A(t)).

Using Theorem III.2, we have the following:

III.3 Corollary Let 0 < τ < ∞, and let l : [0, τ ] → (a, b)
be continuously differentiable. Let the assumptions (A1)-
(A2) hold. Then each A(t) generates a quasi-contractive
semigroup, and the family (A(t))t∈[0,τ ] of port-Hamiltonian
operators given by (26)-(31) is Kato-stable on (X, ‖ · ‖Q0

).

Proof: By (32), for all x ∈ D(A(t)) and s ≥ 0

1

2

d

ds
‖St(s)x‖2Q0

= 〈A(t)St(s)x, St(s)x〉Q0
≤ ω‖St(s)x‖2Q0

.

Grönwall’s Lemma (see, e.g., [13, Section 2.4]) yields

‖St(s)x‖2Q0
≤ ‖x‖2Q0

e2ωs, s ≥ 0.

As D(A(t)) is a dense subset of X , we conclude that

‖St(s)‖L(X,‖·‖Q0
) ≤ eωs, s ≥ 0.

Altogether, for all t ∈ [0, τ ], (St(s))s≥0 is a quasicontractive
semigroup on (X, ‖ · ‖Q0

).

By the Hille-Yosida Theorem (see [11, Theorem II.3.8]) we
have (ω,∞) ⊂ ρ(A(t)) for all t ∈ [0, τ ]. Furthermore, for
every finite sequence 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ τ , k ∈ N,
and for all λ > ω it holds that∥∥∥∥∥∥
k∏
j=1

R(λ,A(tj))

∥∥∥∥∥∥
L(X,‖·‖Q0

)

≤
k∏
j=1

‖R(λ,A(tj))‖L(X,‖·‖Q0
)

≤
k∏
j=1

1

λ− ω
=

1

(λ− ω)k
.

Thus, the family (A(t))t∈[0,τ ] is Kato-stable with stability
constants M = 1 and ω > 0.

Note that, while the stability of the family (A(t))t∈[0,τ ] is
a crucial result, it is not sufficient for well-posedness of the
corresponding evolution problem (23), see, e.g., [10, Chapter
5], [14], [15]. In fact, another important prerequisite is the
existence of a densely and continuously embedded Banach
space Y ⊂ X satisfying

Y ⊂
⋂

t∈[0,τ ]

D(A(t)). (35)

However, due to the fact that the interface conditions (16)-
(17) and fI,Qlx = reI,Qlx (with r = 0) have to be satisfied
for all interface positions in ran(l), such a subspace only
exists for the trivial case that l(t) remains constant over
time. Hence, standard tools for verifying that the family
(A(t))t∈[0,τ ] generates an evolution family fail immediately.
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IV. A COUNTEREXAMPLE

In this section, we show that in the absence of condition
(A1), we cannot expect that the strategy of proof for Kato-
stability works. While this does not show that the family is
indeed not Kato-stable, it indicates obstacles for proving this.
IV.1 Example Here we show that in the absence of as-
sumption (A1) the result of Theorem III.2 does not hold.
Namely, there exist Q± ∈ C1

(
[−2, 2] ,R2×2) both diagonal,

coercive and bounded and such that for the induced operator
Q−1 there exists xk ∈ C∞

([
− 3

4 ,−
1
4

]
,R2

)
, k ∈ N, with

‖xk‖2 ≤ 1, k ∈ N, and

〈AQ−1
xk, xk〉Q0

→∞ .

Note that as the support of xk is contained in
[
− 3

4 ,−
1
4

]
, the

boundary conditions at z = −2,−1, 0, 2 are automatically
satisfied so this does not play a role in the sequel.

For any smooth x ∈ X with suppx ⊂
[
− 3

4 ,−
1
4

]
, we have

x ∈ D
(
AQ−1

)
and

〈AQ−1
x, x〉Q0

=

∫ − 1
4

− 3
4

x>Q−P1
d

dz

(
Q+x

)
dz

=

∫ − 1
4

− 3
4

x>Q−P1Q+′x dz +

∫ − 1
4

− 3
4

x>Q−P1Q+x′ dz .

The first summand can be bounded in absolute value in
terms of ‖x‖2. We thus only need to consider the second
term. For simplicity, write Q− = diag

(
q̃1, q̃2

)
and Q+ =

diag
(
r̃1, r̃2

)
. Then the second term becomes

=

∫ − 1
4

− 3
4

x>
[

0 −q̃1r̃2
−q̃2r̃1 0

]
x′ dz

=

∫ − 1
4

− 3
4

−q̃2r̃1x2(z)x′1(z)− q̃1r̃2x1(z)x′2(z) dz .

We now assume that for some ε > 0, q̃1r̃2 = ε and
q̃2r̃1 = ε+χ[ξ1,ξ2] +η1, where [ξ1, ξ2] ⊂

(
− 3

4 ,−
1
2

)
, χ[ξ1,ξ2]

is the characteristic function of [ξ1, ξ2], and η1 is a function
guaranteeing smoothness of q̃2r̃1 and with small L2-norm.
The constant integral (from ε) evaluates to zero, so

= −
∫ ξ2

ξ1

x2(z)x′1(z) dz −
∫ ξ4

ξ3

x1(z)x′2(z) dz + δ(η1) .

Now choose x2 smooth with x2(z) = −1, z ∈ [ξ1, ξ2] and
‖x2‖2 = 1

3 . Then we can continue

=

∫ ξ2

ξ1

x′1(z) dz + δ = x1(ξ2)− x1(ξ1) + δ .

It is well known that the last expression can be arbitrarily
large for smooth functions x1 with bounded L2-norm.

V. CONCLUSIONS

We have considered port-Hamiltonian systems on a one-
dimensional domain with a moving interface. For a partic-
ular case, it can be shown that the family of generators

corresponding to fixed interfaces is Kato-stable. Even in
the setting of this paper, the question of generation of an
evolution family remains open. An example shows that the
argument for Kato-stability fails in more general situations,
even though the associated generators for fixed interfaces are
benign and can be treated by the methods developed in [8].

For future elaboration, one could consider the additional port
variables associated with the velocity of the interface as well
as general port variables at the interface defined as in (15)
and consider some passivity properties of interconnection
models at the interface.

In [7], using semigroup methods, we have fully characterized
boundary conditions making a port-Hamiltonian system with
an interface a well-posed system governed by a contraction
semigroup. Alternatively, the well-posedness analysis could
be approached using the methods of the theory of PDEs with
moving boundaries, which is well-developed for the case
of parabolic equations [16], [17], but is also analyzed for
hyperbolic systems [18].

REFERENCES

[1] V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx, Eds.,
Modeling and Control of Complex Physical Systems, 2009.

[2] B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-
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