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Abstract— This paper proposes a time-varying matrix so-
lution to the Brockett stabilization problem. The key matrix
condition shows that if the system matrix product CB is a Hur-
witz H-matrix, then there exists a time-varying diagonal gain
matrix K(t) such that the MIMO minimum-phase linear system
with decentralized output feedback is exponentially convergent.
The proposed solution involves several analysis tools such as
diagonal stabilization properties of special matrices, stability
conditions of diagonal-dominant linear systems, and solution
bounds of linear time-varying integro-differential systems. A
review of other solutions to the general Brockett stabilization
problem (for a general unstructured time-varying gain matrix
K(t)) and a comparison study are also provided.

I. INTRODUCTION

In [1], Brockett proposed the following stabilization prob-
lem

• “Given a family of constant matrices

(A,B1, B2, · · · , Br, C1, C2, · · · , Cr) (1)

under what circumstances do there exist time-dependent
matrices

K1(t),K2(t), · · · ,Kr(t)

such that the system

ẋ(t) = Ax(t) +

r∑
i=1

BiKi(t)Cix(t) (2)

is asymptotically stable?”
This paper aims to provide a time-varying matrix solution

and controller design method to the Brockett stabilization
problem with a structured time-dependent diagonal gain
matrix K(t) = diag(Ki(t)).

A. Background and relevant literature

Output feedback stabilization has been a classical problem
in the development of linear control theory. Early develop-
ment and solutions of static output feedback include the
decision method and algebraic geometry method [2], [3],
Lyapunov and linear matrix inequality method [4], and
polynomial function method [5] etc., which were reviewed
in [6]. The problem of decentralized stabilization, where
the output gain matrix K has structured conditions such
as a (block) diagonal matrix, was first discussed in the
seminal paper [7] that presented conditions for decentralized
stabilizability. The development of decentralized stabilization
is also rich in the literature; see e.g., [8] on decentralized
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pole placement and stabilization, and [9] for the most recent
update on decentralized control systems.

The Brockett time-varying stabilization problem [1] sug-
gests the means of using memoryless output feedback with
a time-varying gain matrix for system stabilization, which
is one of the challenging open problems in systems and
control as documented in [10]. Even in the general setting
with no diagonal structure constraint on K(t) of the Brockett
stabilization problem, there are only partial solutions re-
ported in the literature [11]–[13]. These solutions involve
either periodic scalar control gains [11], [12], [14], or some
very strong conditions on the system matrix [13], which
may not be satisfied in practice. A more recent review on
the linear time-invariant system stabilization problem and
available solutions to output stabilization control is presented
in [15]. However, a solution to the Brockett decentralized
stabilization under a structural gain matrix K(t) still remains
open.

B. Solutions proposed in this paper

This paper presents a first attempt to solve the Brockett
decentralized stabilization problem under a time-varying
diagonal gain matrix. The proposed solution has its root in
the stabilization control of minimum-phase linear systems
[16], while we incorporate several analysis tools including
the properties of special matrices, stability conditions of
diagonal-dominant linear systems, and solution bounds of
linear time-varying integro-differential systems. The key
matrix condition shows that if the system matrix product
CB is a Hurwitz H-matrix, then there exists a time-varying
diagonal gain matrix K(t) such that the minimum-phase
linear system with decentralized output feedback is expo-
nentially convergent. We also present several easy-to-verify
lower bounds to guarantee the existence of a time-varying
gain K(t) for system stabilization.

The paper is organized as follows. Section II provides a
formal formulation of the time-varying stabilization problem
under a diagonal gain K(t). Preliminaries and supporting
lemmas are provided in Section III. The main result with
the key matrix condition is discussed in Section IV, with a
detailed proof of the time-varying matrix solution. Section V
gives a review and discussion of other solutions to the
Brockett stabilization problem, followed by conclusions in
Section VI that close this paper.

II. PROBLEM FORMULATION

Motivated by the Brockett stabilization problem reviewed
in Introduction, we formally formulate the stabilization
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problem as follows. Consider the following multivariable
multi-input multi-output (MIMO) linear system with m local
controls:

ẋ(t) = Ax(t) +

m∑
i=1

Biui(t),

yi(t) = Cix(t), (3)

where x ∈ Rn is the state, ui ∈ R and yi ∈ R are,
respectively, the input and output of the i-th local control
system; A ∈ Rn×n is the system matrix, and Bi ∈ Rn×1

and Ci ∈ R1×n are constant vectors for each stabilization
channel. We define u = [u1, u2, · · · , um]T ∈ Rm as the
control input vector, and y = [y1, y2, · · · , ym]T ∈ Rm as the
output vector. The stabilization control law is a memoryless
output feedback control

u(t) = Ky(t), (4)

where K(t) = diag(Ki(t)) ∈ Rm×m is the (possibly time-
varying) control gain matrix. Now we define

B = [B1, B2, · · · , Bm] ∈ Rn×m, C =


C1

C2

...
Cm

 ∈ Rm×n.

(5)

The linear MIMO square system (3) with the output feedback
control (4) results in a closed-loop system

ẋ(t) = Ax(t) +

m∑
i=1

BiKiCix(t)

= Ax(t) +BKCx(t) = (A+BKC)x(t), (6)

and we denote AK = A+BKC for later use. In this paper,
we will study the Brockett stabilization problem with the
structured time-dependent gain matrix K(t) = diag(ki(t)).
With the gain matrix K(t) in a diagonal form, we call the
control of Eq. (4) decentralized output feedback. First, we
make the following assumption on the system matrices.

Assumption 1: The system matrices B and C are of full
rank, i.e., rank(B) = rank(C) = m; and the matrix product
CB is non-singular, i.e., rank(CB) = m.

Remark 1: In decentralized feedback control, each sub-
system (called “agent”) in a local control station uses inde-
pendent channel for the feedback stabilization, which implies
that the columns of B and the rows of C are, respectively,
linearly independent that justifies the rank conditions. The
rank condition rank(CB) = m is the same to that the MIMO
system realization is of relative degree one.

In this paper we aim to address the following problem.
Problem 1: Find matrix conditions and design output

feedback control laws to solve the Brockett decentralized
stabilization problem with a time-varying diagonal gain
matrix K(t).

III. PRELIMINARIES AND SUPPORTING RESULTS

A. Notations

The notations in this paper are fairly standard. The no-
tation In denotes an n × n identity matrix. For a vector
x ∈ Rn, the notation ∥x∥1 denotes the vector 1-norm,
i.e., ∥x∥1 =

∑n
i=1 |xi|. By default, the notation ∥x∥ for a

vector x ∈ Rn is interpreted as the 2-norm, unless otherwise
specified. We use ‘diag(·)’ (resp. ‘blk-diag(·)’) to denote a
diagonal (resp. block diagonal) matrix.

Consider a function f(t) : R≥0 → R that is locally
integrable. Given a fixed p ∈ (0,∞), we say that f(t)
belongs to the Lp space (i.e., f(t) ∈ Lp) if

∫∞
0

|f(s)|pds <
∞.

B. Special matrices

We present definitions of certain special matrices which
will be frequently used in this paper. All matrices discussed
in this paper are real-valued matrices.

• A real square matrix A ∈ Rn×n is Hurwitz if all of its
eigenvalues have negative parts.

• A real square matrix A ∈ Rn×n is called an M-
matrix, if its non-diagonal entries are non-positive and
its eigenvalues have positive real parts.

• A real square matrix A = {aij} ∈ Rn×n is gener-
alized row-diagonal dominant, if there exists x =
(x1, x2, · · · , xn) ∈ Rn with xi > 0, ∀i, such that

|aii|xi >

n∑
j=1,j ̸=i

|aij |xj ,∀i = 1, 2, · · · , n. (7)

• A real square matrix A = {aij} ∈ Rn×n is gen-
eralized column-diagonal dominant, if there exists
x = (x1, x2, · · · , xn) ∈ Rn with xi > 0, ∀i, such that

|ajj |xj >

n∑
i=1,i̸=j

|aij |xi,∀j = 1, 2, · · · , n. (8)

• (Comparison matrix and H-matrix) For a real matrix
A = {aij} ∈ Rn×n, we associate it with a comparison
matrix MA = {mij} ∈ Rn×n, defined by

mij =

{
|aij |, if j = i;
−|aij |, if j ̸= i.

A given matrix A is called an H-matrix if its compar-
ison matrix MA is an M-matrix.

Apparently, the set of M-matrices is a subset of H-
matrices. For readers’ convenience, a more comprehensive
survey on relevant matrices in the stability and stabilization
analysis for linear time-invariant/time-varying systems is
presented in [17] and [18]. The following more general
result shows the equivalence of generalized row-diagonal
dominance, generalized column-diagonal dominance, and H-
matrices.

Theorem 1: Given a matrix A = {aij} ∈ Rn×n, the
following statements are equivalent.

1) A is an H-matrix;
2) A is generalized row-diagonal dominant;
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3) There exists a positive diagonal matrix D̄ =
diag{d̄1, d̄2, · · · , d̄n}, such that D̄−1AD̄ is row-
diagonal dominant;

4) A is generalized column-diagonal dominant;
5) There exists a positive diagonal matrix D̃ =

diag{d̃1, d̃2, · · · , d̃n}, such that D̃AD̃−1 is column-
diagonal dominant. □

The proof is presented in [19]. Applying the Gershgorin
circle theorem [20], we immediately obtain the following
result as a direct consequence of Theorem 1.

Proposition 1: Let B = {bij} ∈ Rn×n be an H-matrix.
Then B is non-singular. Further suppose that all diagonal
entries of B are negative, i.e., bii < 0,∀i. Then all of its
eigenvalues have negative real parts; i.e., B is a Hurwitz
matrix. □

C. Matrix measure and its applications to diagonal domi-
nant time-varying systems

The matrix measure (or “logarithmic norm”) plays an im-
portant role in bounding the solution of differential equations.
We introduce the definition and some properties of matrix
measure from [21] as follows.

Definition 1: (Matrix measure) Given a real n×n matrix
A, the matrix measure µ(A) is defined as

µ(A) = limϵ↓0
∥I + ϵA∥ − 1

ϵ
, (9)

where ∥ · ∥ is a matrix norm on Rn×n induced by a vector
norm ∥ · ∥′ on Rn. □

The matrix measure is always well-defined, and can take
positive or negative values. Different matrix norms on Rn×n

induced by a corresponding vector norm ∥ · ∥′ give rise to
different matrix measures. In particular, if the vector norm
∥ · ∥′ is chosen as the 1-norm, i.e., ∥ · ∥′ = ∥ · ∥1, then the
induced matrix norm is the column-sum norm, i.e., ∥A∥ =
∥A∥col = maxj

∑
i |aij |. The corresponding matrix measure

is

µ(A) = maxj=1,2,··· ,n

ajj +

n∑
i=1,i̸=j

|aij |

 . (10)

As a direct application of matrix measure in the study of
time-varying linear systems, we recall the following result
(the Coppel inequality [22]) that bounds the solution of a
time-varying linear system via matrix measures (see e.g.,
Chapter 2 of [21]).

Lemma 1: Let A(t) ∈ Rn×n be a continuous matrix
function. Then the solution of the time-varying linear system

ẋ(t) = A(t)x(t) (11)

satisfies the inequalities

∥x(t0)∥′e−
∫ t
t0

µ(−A(t′))dt′ ≤ ∥x(t)∥′ ≤ ∥x(t0)∥′e
∫ t
t0

µ(A(t′))dt′

∀t ≥ t0, (12)

where ∥ · ∥′ denotes a vector norm that is compatible with
the norm in the matrix measure µ(A). □

Lemma 2: (Column-diagonal dominant linear system)
Consider a time-varying linear system ẋ(t) = A(t)x(t),
where A(t) is a continuous-time Hurwitz matrix with
column-diagonal dominant entries ∀t ≥ t0. Then it holds
that

∥x(t)∥1 ≤ ∥x(t0)∥1e
∫ t
t0

αc(t
′)dt′

,∀t ≥ t0, (13)

where αc(t
′) = maxj=1,2,··· ,n

(
ajj(t

′) +
∑n

i=1,i̸=j |aij(t′)|
)

and αc(t
′) < 0. □

Proof: Applying Lemma 1, and choosing the vector
norm as the one-norm with the matrix measure induced by
the vector one-norm in (10), give the desired result. Note that
A(t) being Hurwitz and column-diagonal dominant implies
that αc(t

′) < 0.

D. Solution bounds of time-varying linear integro-
differential systems

In this subsection we recall the following conditions for
the solution bounds of time-varying linear integro-differential
systems, which will be used in the proof of the main results.

Theorem 2: (Conditions for exponential convergence of
linear integro-differential systems, [23]) Consider the follow-
ing integro-differential system

ẋ(t) = a(t)x(t) +

∫ t

0

b(t− s)x(s)ds. (14)

Suppose b(t) ∈ L1 and a(t) ≤ −γ,∀t ≥ 0 with

−γ +

∫ ∞

0

b(t)dt < 0. (15)

Then the system (14) is uniformly asymptotically stable. In
addition, if there exists a positive constant ϵ such that∫ ∞

0

|b(t− s)|eϵtdt < ∞, (16)

then the solution to (14) is exponentially convergent. □
The following lemma presents conditions for exponential

convergence of linear time-varying integro-differential sys-
tems with exponentially decaying perturbations. The proof,
which is omitted here, follows similar steps as in [23] and
the Grönwall’s inequality.

Lemma 3: Consider the integro-differential system (14)
and its perturbed version with a perturbation term

ẋ(t) = a(t)x(t) +

∫ t

0

b(t− s)x(s)ds+ f(t), (17)

where |f(t)| ≤ Me−βt with positive constants M > 0, β >
0. If the solution to (14) is exponentially convergent, then
the solution to (17) is also exponentially convergent. □

IV. MAIN RESULT

In this section, we present the main result that involves a
structural matrix condition as a sufficient condition to ensure
the solvability of the Brockett decentralized stabilization
problem.

Theorem 3: Suppose the system (3) with (A,B,C) is of
minimum phase and consider a time-varying decentralized
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output feedback u(t) = K(t)y(t), with a time-varying
diagonal matrix gain K(t). Suppose the matrix CB is a
Hurwitz H-matrix. Then there exist individual positive
constants k̄i, i = 1, 2, · · ·n such that if the time-varying
scalar gain functions ki(t) are chosen to satisfy ki(t) ≥ k̄i >
0,∀t ≥ t̄ uniformly with a finite time t̄, the closed-loop
system is exponentially convergent with the decentralized
output feedback gain K(t) = diag{k1(t), k2(t), · · · , kn(t)}.

□
Proof: Firstly we follow the system decomposition

technique in [16], [24] to perform a coordinate transform
for the multivariable MIMO linear system (3) under the
minimum-phase condition. Choose matrices M ∈ Rn×(n−m)

and N ∈ R(n−m)×n, such that

NB = 0, CM = 0, N = (MTM)−1MT (In −B(CB)−1C).
(18)

Note that NM = In−m. Consider the system coordinate
transformation x̄ = Tx, with the transformation matrix

T =

[
N
C

]
, with T−1 =

[
M, B(CB)−1

]
. (19)

We obtain the following transformed system matrix

ĀK(t) = TAK(t)T
−1

= TAT−1 + T (BK(t)C)T−1

=

[
NAM NAB(CB)−1

CAM CAB(CB)−1

]
+

[
0 0
0 CBK(t)

]
=

[
NAM NAB(CB)−1

CAM CAB(CB)−1 + CBK(t)

]
:=

[
Ā11 Ā12

Ā21 Ā22 + CBK(t)

]
. (20)

The minimum phase condition implies that the submatrix
Ā11 := NAM (if the system zeros exist) is Hurwitz [16],
[24].

According to Theorem 1 and Proposition 1, with the
condition that CB is a Hurwitz H-matrix, there exists a
diagonal matrix D, such that D(CB)D−1 is Hurwitz and
column-diagonal dominant. Note that all diagonal entries of
D(CB)D−1 are negative.

Now consider a block diagonal matrix D̄ = blk-diag(I,D)
with the above chosen diagonal matrix D such that

ĀDK(t) = D̄ĀK(t)D̄
−1

=

[
Ā11 Ā12D

−1

DĀ21 DĀ22D
−1 +DCBK(t)D−1

]
.

(21)

where DCBK(t)D−1 = DCBD−1K(t) since D−1 and
K(t) commute as both are diagonal matrices. With the
above two transformations in (20) and (21), we obtain the
transformed system states

x̄ =

[
x̄1

x̄2

]
= D̄Tx (22)

with x̄1 ∈ Rn−m and x̄2 ∈ Rm corresponding to the sub-
states after the coordinate transformation. The dynamics of
the transformed system are given by

˙̄x1 = Ā11x̄1 + Ā12D
−1x̄2, (23a)

˙̄x2 = DĀ21x̄1 +
(
DĀ22D

−1 + (DCBD−1)K(t)
)
x̄2,
(23b)

where we recall that Ā11 is Hurwitz and DCBD−1is
column-diagonal dominant. To ease notations, we now de-
note Ã12 := Ā12D

−1, Ã21 := DĀ21, and Ã22,K(t) :=
DĀ22D

−1 + (DCBD−1)K(t).
The solution to the above sub-system (23a) is given in the

form of

x̄1(t) = eĀ11tx̄1(0) +

∫ t

0

eĀ11(t−s)Ã12x̄2(s)ds, (24)

and therefore

˙̄x2 =
(
Ã22,K(t)

)
x̄2

+ Ã21

(
eĀ11tx̄1(0) +

∫ t

0

eĀ11(t−s)Ã12x̄2(s)ds
)
. (25)

Since Ā11 is Hurwitz, there exist positive constants M11 > 0
and β11 > 0 such that

∥eĀ11t∥ ≤ M11e
−β11t,M11 > 0, β11 > 0, ∀t ≥ 0. (26)

Let µ1(Ã22,K(t)) denote the matrix measure of Ã22,K(t)

induced by the vector 1-norm. For the evolution of the 1-
norm of the solution vector x̄2(t), we obtain the following
bound inequality of (27) (shown in the next page), where
D+ denotes the upper right-hand Dini derivative [25], and
the matrix norm is chosen by the induced 1-norm.

Combining all terms of (27), we further consider the
following scalar system involving a scalar state z(t) in an
integro-differential form

ż =µ1

(
Ã22,K(t)

)
z(t) + ∥Ã21∥∥x̄1(0)∥M11e

−β11t

+M11∥Ã21∥∥Ã12∥
(∫ t

0

e−β11(t−s)z(s)ds
)
. (28)

The comparison lemma for integro-differential systems (see
e.g., [26, Theorem 1.4.2]) indicates that ∥x̄2(t)∥1 ≤ z(t) if
∥x̄2(0)∥1 = z(0) > 0. If z(t) is exponentially convergent,
then the evolution of ∥x̄2(t)∥1 is upper bounded by that
exponentially convergent function, which in turn implies that
the solution x̄2(t) is also exponentially convergent by the
equivalence of the vector norms. According to Theorem 2,
a sufficient condition to ensure the exponential convergence
of the solution z(t) is that there exists a finite time t̄, such
that

µ1

(
Ã22,K(t)

)
= µ1

(
DĀ22D

−1 + (DCBD−1)K(t)
)

< −γ, ∀t ≥ t̄, (29)

where

γ = M11∥Ã21∥∥Ã12∥
∫ ∞

0

e−β11tds = M11∥Ã21∥∥Ã12∥/β11.

(30)
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D+∥x̄2(t)∥1 ≤ µ1(Ã22,K(t))∥x̄2(t)∥1 + ∥Ã21∥∥x̄1(0)∥M11e
−β11t +M11∥Ã21∥∥Ã12∥

(∫ t

0

e−β11(t−s)∥|x̄2(s)∥1ds
)
.

(27)

We claim that with sufficiently large ki, the above integro-
differential (28) system is exponentially stable by meeting
the matrix measure condition of (29). Again, we recall
that the matrix condition of CB being an H-matrix im-
plies that there exists a positive diagonal matrix D =
diag{d1, d2, · · · , dn} such that B̃ = {b̃ij} := DCBD−1

is strictly column-diagonal dominant.
Note that the diagonal entries of DCBD−1 satisfy b̃jj :=

(DCBD−1)jj = (CB)jj ,∀j, which are negative by the
condition that CB is a Hurwitz H-matrix; i.e.,

b̃jj < 0, ∀j;

b̃jj +
∑

i=1,i̸=j

|b̃ij | < 0, ∀j. (31)

Let ãij denote the (ij)-th entry of the matrix DĀ22D
−1.

Now by choosing k̃j such that

kj(t) > k̃j =

∑
i=1,i̸=j |ãij |+ ãjj + γ

−
(
b̃jj +

∑
i=1,i̸=j |b̃ij |

) ,∀t > t̄ (32)

it holds that

kj(t)b̃jj + ãjj +

 ∑
i=1,i̸=j

(|ãij |+ kj(t)|b̃ij |)

 < −γ.

(33)

Since all entries of the constant matrices DCBD−1 and
B̃ are bounded, all k̃j ,∀j are also bounded. Choose k̃ :=
maxj k̃j and further let kj(t) ≥ k̃, ∀j,∀t > t̄. Then we
obtain the key condition of (34) (shown in the next page),
which is exactly the matrix measure condition in (29). By
Theorem 2, this proves that the z system (28) converges to
zero exponentially fast, ∀t > t̄. This in turn implies that the
transformed system state x̄ of the linear time-varying system
(23a) and (23b) converges to zero exponentially fast, and
so does the original system state x(t) with the convergence
scaled by the coordinate transform x := (D̄T )−1x̄.

In the case that the system has no zeros (which is equiva-
lent to that the system matrices B and C are square matrices
of full rank), the transformation matrix T can be chosen as
T = C and the transformed system matrix (20) simplifies to

ĀK = TAKT−1 = CAC−1 + C(BKC)C−1

= CAC−1 + CBK. (35)

In this case, the above proof can be further simplified by only
considering the exponential convergence of the transformed
system ˙̄x2 =

(
DĀ22D

−1 + (DCBD−1)K(t)
)
x̄2 while the

remaining steps of the proof remain the same. This completes
the proof of the theorem.

V. DISCUSSIONS AND COMPARISONS WITH OTHER
SOLUTIONS

A. The Brockett stabilization problem with an unstructured
time-varying K(t)

In [1] Brockett also proposed the following stabilization
problem

• “Given a triple constant matrices (A,B,C) under what
circumstances does there exist a time-dependent matrix
K(t) such that the system

ẋ(t) = Ax+BK(t)Cx (36)

is asymptotically stable?”
In the general case where there is no structural constraints

on K(t), the problem still remains open though some
partial solutions (in terms of either necessary or sufficient
conditions) are available. In the below, we review some
matrix conditions and control design solutions reported in
the literature, and compare them with the solution proposed
in this paper.

B. Scalar/matrix gain conditions and time-varying stabiliza-
tion solutions in the literature

A common attempt to solve the Brockett stabilization
problem with a time-varying gain matrix is to employ
periodic scalar gains. For example, the paper [11] suggested
the following periodic gain function

k(t) = k1 + k2ωsin(ωt), ω ≫ 1 (37)

for a single-input single-output (SISO) second-order system,
and a similar periodic gain function

k(t) = k1 + k2ω
2sin(ωt), ω ≫ 1 (38)

for a third-order system. These methods are based on av-
eraging theory and time-varying coordinates transformation,
while the structured gain matrix K(t) was not considered.

Furthermore, the paper [12] presented a first step toward
the solution of the general Brockett problem based on
periodic and piecewise constant output feedback, while the
scalar gain matrix k(t) is designed to switch between two
constants. The proposed condition for asymptotic stabiliza-
tion with periodic output feedback in [12] has to check all
eigenvalues of a matrix exponential involving state matrices.
A modified condition was also proposed in [12] that involves
a bilinear matrix inequality. A comprehensive study of non-
stationary stabilization of controllable linear systems with
periodic control gains was reported in [14]. We note that
these conditions, which are limited to SISO systems or lower-
order systems, may also be hard to verify and compute in
practice.
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maxj=1,2,··· ,n

kj(t)b̃jj + ãjj + kj(t)
∑

i=1,i̸=j

|b̃ij |+
n∑

i=1,i̸=j

|aij |

 < −γ. (34)

In the general setting of linear MIMO systems with output
feedback and time-varying matrix gains, the paper [13]
proposed several matrix conditions involving logarithmic
norms and Hurwitz matrix property. One such condition is
summarized as below:

1) The time-varying matrix Q(t) := A + BK(t)C is
Hurwitz and diagonal dominant; and

2) The matrices B and C are square and inevitable.
Then a simple yet trivial result follows for the time-varying
gain K(t) as

K(t) = B−1(Q(t)−A)C−1. (39)

These matrix conditions are very strong and restrictive,
though they are simple to verify in practice. The trivial
solution of (39) under the strong matrix conditions still does
not consider the structured constraint on K(t), and it does
not guarantee that the obtained gain matrix K(t) is diagonal
(or block diagonal) either.

VI. CONCLUSION

In this paper we revisit the Brockett stabilization problem
proposed in [1], under a structured condition that the time-
varying gain matrix K(t) is a diagonal matrix. This structural
stabilization problem has remained open in the literature,
while in this paper we present a critical matrix condition
to solve this stabilization problem. The key condition is that
the system matrix product CB is a Hurwitz H-matrix, which
guarantees the existence of a time-varying diagonal gain
matrix K(t) such that the closed-loop minimum-phase linear
system with decentralized output feedback is exponentially
stable. The proof of the main result involves a close interplay
of several analysis tools including the properties of special
matrices such as H-matrix, matrix measure, convergence
conditions of diagonal-dominant linear systems, and solution
bounds of linear time-varying integro-differential systems.

The main result can be generalized to the more general
structural setting that the output feedback gain matrix K(t)
is a time-varying block-diagonal matrix. In addition, the H-
matrix condition for the product CB also suggests an adap-
tive control solution (which follows the distributed adaptive
stabilization design in [19]) to solve the Brockett stabilization
problem with unknown system matrices. These results will
be reported in a future paper.
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