
Undetectable Attacks on Boolean Networks

Shiyong Zhu, Jianquan Lu, Jinde Cao, Lin Lin, James Lam, Michael Ng, and Shun-ichi Azuma

Abstract— In this paper, driven by the ever-increasing cyber-
security threats, we study the undetectable attack problems for
Boolean networks (BNs), which model distributed systems with
a limited capacity of storage and bandwidth of communication.
Given a consistent monitor, undetectable attacks are formalized
for BNs as those do not yield an output sequence out of the
nominal output sequence set. By the graph-theoretic approach,
undetectable attacks are characterized by a reachability prob-
lem of a directed cycle in the augmented transition graph. On
the other hand, the algebraic approach also derives a necessary
and sufficient criterion for undetectable attacks by testing the
existence of the nonzero elements in the constructed matrix.
While all these derived results are only computationally efficient
for relatively small-size BNs. The detection of attack signals is
indeed NP-hard. In other words, there is no polynomial-time
algorithm to check the detectability of an attack signal or an
attack node set unless NP=P.

Index Terms—Boolean networks, Security, NP-hardness, Un-
detectable attacks, Algebraic state space representation.

I. INTRODUCTION

With the ever-expanding distributed monitoring, control,
and communication in the Cyber-Physical Systems (CPSs),
investigations on cybersecurity have gradually become one
prevalent research stream that is of both theoretical and
practical significance. As hinted by a variety of recent
frequent industrial security incidents, e.g., Stuxnet malware
in 2010, the distributed configurations in “networked” sys-
tems inevitably bring a certain level of vulnerability from
the hidden malicious adversaries. In general, CPSs can be
regarded as a combination of two different functional worlds,
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where the behaviors of the physical layer have some dynamic
features with the exploration of external environments while
the basic mechanisms of the cyber layer are implemented for
the targets of perception, computation, decision, and control.
By their nature, the dominating threat of cybersecurity fo-
cuses on the physical layers of CPSs with dynamic features,
especially inspiring a large amount of recent research interest
in the security problems of dynamic systems.

Among the diverse types of models for the physical layer
of CPSs, one prevalent system model is the classical linear
time-invariant (LTI) system. According to different attack
schemes and targets, a variety of attacks has been proposed
to explore the security of CPSs modeled by such LTI systems
including, but not limited to, Denial-of-Service (DoS) attacks
[1], undetectable attacks [2], covert attacks [3], as well as
false data injection attacks [4]. With the full knowledge of
system parameters, one threatening category of attack, also of
particular concern, is the undetectable attacks, which target
the transmission zeros of LTI systems and, thus, hide the
internal state divergence of the considered system in the null
space of outputs, see [2], for example. Such an attack is also
referred to as a zero-dynamics attack. In consideration of
their high destructiveness, undetectable attacks have already
been explored and disserted in the multiagent systems [5],
and distributed optimization [6], apart from LTI systems.

Different from traditional LTI systems with accurate quan-
tization for system states, it is impractical for such a setup
because communications over networks always have limited
capacities for storage and bandwidth. To overcome such
issues, it is of both theoretical and practical significance
to quantize the system states into finite discrete values.
It reminds us of logical networks with evolving system
dynamics along with a series of logical rules. Without
loss of any generality in the techniques and applications,
the logical networks can be reduced to those with binary
variables, namely, Boolean networks (BNs), which have
already been recognized to possess high potential in gene
regulatory networks [7]–[10], multiagent systems [11], smart
homes [12], transportation [13], and robotics [14]. To our
knowledge, there are still no available results concerned with
the cyber security of BNs under undetectable attacks. This
partly inspires our interest in defining and developing the
related results on the undetectable attacks in BNs to mitigate
the security of systems in imperfect cases caused by the
limited capacities of storage and communication.

To date, plentiful research on BNs mainly focuses on
their dynamics and control synthesis, e.g., controllability
[15], [16], observability [17]–[20], stabilization [21]–[24],
decoupling problem [25], and optimal control [26], [27].
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Such research enthusiasm undeniably has led to a new
peak by applying the algebraic state space representation
(ASSR) approach based on the semi-tensor product (STP)
of matrices, see monograph [28] and the references therein.
By writing each binary variable into its canonical form,
the ASSR approach provides an equivalent transformation
to represent the nonlinear logical systems in a linear form
so that several concepts and results in classical control
theory have been developed in this area. Noting that the
resulting equivalent systems do not have the same topological
structures, it does not possess the transmission zeros as LTI
systems. This renders the existing results on the undetectable
attacks in the LTI systems not applicable to this field (cf.,
e.g., [2], [29], [30]).

In this paper, we define the undetectable attacks on the
BNs and seek to develop a series of necessary and sufficient
criteria. The detailed contributions of this paper are summa-
rized as follows:

(a) First of all, undetectable attacks are proposed for BNs
to capture the dynamics of physical systems with lim-
itations on the both capacities of storage and com-
munications. Different from the traditional framework
to address the undetectable attacks in [2], [29], and
[30], several necessary and sufficient criteria are derived
to check if an attacked node set is undetectable by
resorting to the ASSR approach.

(b) From the graph-theoretic and matrix algebraic stand-
points, respectively, these derived conditions are fairly
efficient for relatively small-scale BNs.

(c) The computational complexity of judging if a BN is
attacked is elaborated, for which we also verify that
this problem is NP-hard. Thus, there is no algorithm
in a polynomial-time amount of time subject to node
number unless NP=P. We remove the detailed proofs
of the main theoretic results in this version because of
the page limitations and refer interested readers to our
subsequent journal version.

The remainder of this paper is organized as follows.
Section II defines the undetectable attacks on BNs, where
several lemmas are given to serve as the cornerstone of the
following research. In Section III, with the help of the ASSR
technique, we capture the undetectable attacks by graph-
theoretic and matrix algebraic approaches, respectively. Here,
the fundamental time complexity to test our criteria is
also analyzed. Finally, Section IV gives a brief concluding
remark.

We end this section by defining several necessary math-
ematical notations. Given two integers a and b with a < b,
[a,b]N denotes the integers between a and b. Let D := {1,0}
and Dn := D×D×·· ·×D . Given a matrix A ∈Rm×n, [A]i j
is its (i, j)-th element, coli(A) is the i-th column of matrix A,
and col(A) is the set composed of all its columns. Given an
integer i ∈ [1,n]N, δ i

n stands for the i-th column of identity
matrix In and ∆n is the set

{
δ i

n|i ∈ [1,n]N
}

. |S| denotes the
number of elements in the set S. “∗” represents the Khatri-
Rao product of matrices A ∈ Rm×n and B ∈ Rm×n, defined

by

A∗B := (col1 (A)⊗ col1 (B) , . . . ,coln (A)⊗ coln (B)) .

“>” is the matrix transport. The matrix A ∈ Rm×n is called
a logical one if it holds that col(A) ⊆ ∆m, for which
expression A = [δ i1

m ,δ i2
m , . . . ,δ in

m ] can be simplified as A =
δm [i1, i2, . . . , in]. Denote by B ∑ the Boolean sum of binary
variables. dm

n e and bm
n c stand for the remainder and modular

of m divided by n, respectively.

II. FORMULATION OF UNDETECTABLE ATTACKS

In this section, we define and study the undetectable
attacks on BNs by using a consistent external monitor.

In general, the standard mathematical model of a BN with
n state nodes and p output measures can be described by{

xi(t +1) = fi([x j(t)] j∈Ni), i ∈ [1,n]N,
yk(t) = hk([x j(t)] j∈Lk), k ∈ [1, p]N

(1)

where fi : D |Ni| → D and hk : D |Lk| → D are
Boolean functions with system states xi, i ∈ [1,n]N
as their variables. yk ∈ D , k ∈ [1, p]N are output
measures. x(t) := [x1(t),x2(t), . . . ,xn(t)]> ∈ Dn and
y(t) := [y1(t),y2(t), . . . ,yp(t)]> ∈ D p stand for the compact
representation of system state and output measures,
respectively. Noting that BN (1) does not suffer from
malicious attacks, it is referred to as the nominal one.

For the BN (1) attacked by malicious adversaries, we use
A ⊆ [1,n]N to represent the set of attacked nodes, i.e., the
targeted nodes suffering from attacks, ai : t 7→ D , i ∈ A to
describe the false data signals, and �i, i ∈ A to denote the
operators for attackers to inject the false data signals. The
attacked BN is written by

xi(t +1) = fi([x j(t)] j∈Ni)�i ai(t), i ∈ A,

xi(t +1) = fi([x j(t)] j∈Ni), i ∈ [1,n]N\A,
yk(t) = hk([x j(t)] j∈Lk), k ∈ [1, p]N

(2)

wherein the attack data signals toward BN (1) is denoted by
(�i,ai(t))|i∈A,t∈N+ . The state trajectory of nominal BN (1)
starting from initial state x(0) is denoted by

x(x(0), t)|t∈N+ := {x(0), . . . ,x(n), . . .}

and that of BN (2) starting from initial state x(0) under attack
is

x(x(0),ai, t)|i∈A,t∈N+ := {x(0) , . . . ,x(n,a(n−1)) , . . .}

where a(t) :=
[
a1(t),a2(t), . . . ,a|A|(t)

]>.
Following the monitors for LTI systems proposed in

[2], we define the monitors in a similar manner to
judge if the considered BN is attacked via model dy-
namics and outputs. Formally, a monitor, denoted by χ ,
is a deterministic algorithm with the input data z =
(fi|i∈[1,n]N ,hi|i∈[1,p]N ,yi(t)|i∈[1,p]N,t∈N+) to output “True” and
“False”, which indicate that the BN is attacked and
unattacked, respectively.

Definition 2.1 (see [2]): Consider BN (2) with attack
node set A. A monitor, denoted by χ(z) := (χ1(z),χ2(z)),
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is composed of two parts, wherein χ1(z) captures the
existence of attackers and χ2(z) identifies the attack set A:
(a) χ1(z) = True only if A 6= /0 and (�i,ai)|i∈A,t∈N+

changes the dynamics of BN (1); and χ1(z) = False,
otherwise.

(b) χ1(z) = False if and only if χ2(z) = /0.
(c) χ2(z) = A only if the set A is the unique and

smallest set S ⊆ [1,n]N such that yi(t)|i∈[1,p]N,t∈N+ =
y(x′,ai, t)|i∈S,t∈N+ for a certain state x′ ∈Dn.

In this paper, we are only interested in the “consistent”
monitor χ1, i.e., for inputs z1 =z2, it holds that χ1(z1) =
χ1(z2).

Different from the conditions for monitors in the work of
[2], we also require in condition (a) of Definition 2.1 that
attackers endowed with (�i,ai(t))|i∈A,t∈N+ modify the state
trajectories of BN (1), i.e., the considered attack is mean-
ingful; otherwise, meaningless. This excludes the situation
where the state trajectories of attacked BN (2) starting from
all initial states are not affected by attack signals, due to the
specialty of logical operators.

Remark 2.1: We can simplify the attack operator “�i” to
be XOR without loss of any generality, as operator XOR is
enough to steer the arbitrary state trajectory of attacked nodes
in BN (2) to any desired one by injecting the elaborate attack
signals ai(t)|i∈A,t∈N+ . Therefore, in the following analysis
part, we can also stipulate �i, i ∈ A are all XOR operators.

Definition 2.2: Consider a BN (2) with an attack node set
A. The attack signal (�i,ai(t))|i∈A,t∈N+ is said to be de-
tectable (resp., identifiable) if χ1(z) =True (resp., χ2(z) =
A). Furthermore, the attack set A is said to be detectable if
all attack signals (�i,ai(t))i∈A,t∈N+ are detectable.

Lemma 2.1: The attack signal (�i,ai(t))|i∈A,t∈N+ on BN
(2) is undetectable if and only if x(x0,τ) 6= x(x0,a,τ) and
y(x0, t) = y(x0,a, t) hold for certain initial states x0,x0 ∈Dn,
certain τ ∈ N+, and all t ∈ N+.

Proof: (If) For the inputs

z1 =
{
fi|i∈[1,n]N ,hi|i∈[1,p]N ,y(x0, t)|t∈N+

}
and

z2 =
{
fi|i∈[1,n]N ,hi|i∈[1,p]N ,y(x0,ai, t)|i∈A,t∈N+

}
with certain initial states x0 and x0, one has that χ1(z1) =
χ1(z2) = False, because the considered monitor is a consis-
tent one. Moreover, the condition x(x0,τ) 6= x(x0,a,τ) implies
that the attack signal (�i,ai(t))|i∈A,t∈N+ is undetectable.

(Only if) Assuming that x(x0, t)|t∈N+ = x(x0,ai, t)|i∈A,t∈N+

holds for all initial states x0 ∈ Dn under the attack sig-
nal ai(t)|i∈A,t∈N+ , then this attack signal ai(t)|i∈A,t∈N+ is
meaningless. On the other hand, if y(x0, t) 6= y(x0,a, t) for
any x0 and x0, then this attack signal is detectable as it
contradicts with conditions (b) and (c) in Definition 2.1 no
matter whether the attack signal ai(t)|i∈A,t∈N+ is meaningful.

Remark 2.2: The most essential difference of Lemma 2.1
from Lemma 3.1 in the work of [2] is the condition x(x0,τ) 6=
x(x0,ai,τ)|i∈A for a certain initial state x0 and a certain τ . To

be specific, by the nature of BN (1), if A 6= /0 and � = ⊗,
injecting attack signal ai(t)|i∈A,t∈N+ = xi(t)|i∈A,t∈N+ , will not
modify the state trajectories of BN (1) from any initial state.
Such an attack signal is meaningless as it cannot modify the
attacked system dynamics albeit the attack node set A 6= /0.
Such attack signals are excluded in this paper.

Remark 2.3: Although the attack detection in Definition
2.1 is dependent on the consistent monitors, it is obvious
from Lemma 2.1 that the detectability of attack signal
(�i,ai(t)) |i∈A,t∈N+ only relies on the attack signals and
networks.

Remark 2.4: The concept of attack detection is related to
fault detection in [31]. While the faults in BNs occur by
accident, the attacks here are deliberate and designable.

The detection of attack signals does not rely on the
conventional observability or detectability of BN (1), which
requires the distinguishability of different initial or current
states for BN (1). This claim is evident from the following
BN counter with three nodes.

Example 2.1: Consider the three-node BN counter with
output measure y1(t) = x1(t)∧ x2(t)∧ x3(t). By the graph
construction introduced in Section III, the state transition
graph of this counter is depicted in Fig. 1, where the green
vertex stands for the state outputting variable 1 and the white
vertices describe the ones outputting variables 0. By Theorem
1 in [15], one can readily conclude that this is an observable
BN and, therefore, is also detectable.

Subsequently, we demonstrate that the attacked
node set A = {1} is undetectable. We can set
x0 = x0 = (1,1,1)> with attack signal a1(t)|t∈N+ =
{1,0,0,0,0,0,1,1,1,1,0, . . .}, in which case y (x0, t) =
y(x0,a(t), t) = {1,0,0,0,0,0,0,0,1, . . .}.
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Fig. 1. (a) State transition graph of an observable and detectable BN
counter. (b) State transition graph of BN counter with an attacked node set
A = {1}. Vertices labeled i, i ∈ [1,8]N stand for the state (i1, i2, i3) with
(1− i1)22 + (1− i2)21 + (1− i3)20 + 1 = i. The solid and dashed edges,
respectively, denote transitions corresponding to meaningful attack signals
and meaningless ones.

On the other hand, while the output matrix of the counter
is y1(t) = x2(t)∧ x3(t), this counter is unobservable. In Fig.
2, it claims that the attack node set A= {1} is undetectable
with x0 = (1,1,0)> and x0 = (0,0,1)> attacked by signal
a1(t)|t∈N+ = {1,0,0,1,1,1,1,0,0,0,0,1, . . .}.

From this counter, we demonstrate that, no matter whether
BN (1) is observable or unobservable and detectable or
undetectable, the network is always risky to be attacked.
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Fig. 2. (a) State transition graph of an unobservable and undetectable BN
counter. (b) State transition graph of this BN counter with attack node set
A= {1}.

III. ANALYSIS OF UNDETECTABLE ATTACKS

In this section, we shall develop a series of necessary and
sufficient criteria for undetectable attacks with the help of the
STP of matrices. To this end, the ASSR of BNs, developed
in [28], is briefly reviewed here with the STP of matrices.

To begin with, as an extension of the normal matrix
product to break through the requirement of dimensional
matching in matrix product, the STP of matrices can be
defined as follows:

Definition 3.1 (see [28]): Given two matrices M ∈ Rp×q

and N ∈ Rs×t , their STP is defined by

MnN := (M⊗ Iι/q)(N⊗ Iι/s)

where ι is the least common multiple of integers q and s.
To cope with the nonlinear operators in logical dynamics,

we define the bijective correspondence “∼” between binary
variables and its canonical form by ι ∼ δ

2−ι

2 with variable
ι ∈ D . Such correspondence can be naturally extended to
the mapping between Dn and ∆2n by [x1,x2, . . . ,xn]

> ∼
δ

2−x1
2 nδ

2−x2
2 n · · ·nδ

2−xn
2 . By defining the canonical form

of Boolean variables, we can convert arbitrary logical func-
tions into their multilinear form by resorting to the STP of
matrices.

Lemma 3.1 (see [28]): For arbitrary n-ary logical func-
tion f (x1,x2, . . . ,xn) : Dn→D , there exists a logical matrix
M f ∈L2×2n , called the structure matrix of f , such that

f (x1,x2, . . . ,xn)∼M f nn
i=1 xi

where nn
i=1xi := x1 n x2 n · · ·n xn with xi ∼ xi.

Other than breaking the dimensional compatibility rule in
matrix multiplication, the STP of matrices also has some
superior properties to the traditional matrix product. These
properties are briefly provided as follows.

Lemma 3.2 (see [28]): The following calculation proper-
ties hold for the STP of matrices with A ∈Rm×n, v ∈ ∆n and
u ∈ ∆m: (a) vA = (In⊗A)v; (b) uv =W[n,m]vu; (c) v = Ml

duv;
(d) vn v = Mr n v, where W[n,m] := Im⊗ In, Ml

d := 1>m ⊗ In,
and Mr :=

[
δ 1

n nδ 1
n ,δ

2
n nδ 2

2 , . . . ,δ
n
n nδ n

n
]
.

By Lemma 3.1, we can write each Boolean variable into
its canonical form. On the other hand, using the properties
in Lemma 3.2 and defining x := nn

i=1xi, y := np
i=1yi, x :=

nn
i=1xi, y :=np

i=1yi and a=ni∈Aai, we can write the ASSR

of BN (1) and attacked BN (2), respectively, as{
x(t +1) = Fn x(t),

y(t) = Hn x(t)
(3)

with F := F1 ∗F2 ∗ · · · ∗Fn, and{
x(t +1) = F�n x(t)na(t),

y(t) = Hn x(t)
(4)

with F� := Fa1 ∗Fa2 ∗· · ·∗Fan and H :=H1∗H2∗· · ·∗Hp, where
x∈ ∆2n , x∈ ∆2n and a∈ ∆2|A| , Fi, Hi and Fa are the structure
matrices of fi, hi and fi �i ai, respectively.

A. Graph-Theoretic Criteria

In this subsection, we first characterize the undetectable
attack set A on the basis of state transition graphs of BNs,
which can be built from the network transition matrix F in
BN (3). Notice that the system matrix F in BN (3) is a
Boolean matrix, thus it is associated with a directed graph
G, written by an ordered pair G := (V,E), where V :=
{1,2, . . . ,2n} is the vertex set of this constructed directed
graph, and a solid directed edge (i, j) joining i to j exists in
the directed graph G, i.e., (i, j)∈E if and only if F ji = 1. In a
similar manner, the transition matrix F� can be split into 2|A|

blocks as F� =
[
(F�)1,(F�)2, . . . ,(F�)2|A|

]
in accordance

with the different attack signals a, where each submatrix
(F�)i, i ∈ [1,2|A|] is also Boolean. Therefore, we can build
2|A| labeled state transition graphs Ga

i = (V,Ei, li), which
are associated with a dashed edge set in set Ei\E and solid
edges in set Ei∩E. In this way, the labeled state transition
of attacked BN (2) is jointly represented by

Ga :=
2|A|⋃
i=1

Ga
i =

V,
2|A|⋃
i=1

Ei,
2|A|⋃
i=1

li

 .

As a consequence, the state transition information of BNs (3)
and (4) are, equivalently, characterized by these two directed
graphs G and Ga. Hereafter, they are referred to as the state
transition graph of BN (3) and labeled state transition graph
of BN (4), i.e., the graphic representation of BNs.

Finally, we color the vertices of these two graphs in
accordance with the output measures satisfying that the
colors of vertices i and j are the same if and only if
coli (H) = col j (H).

In what follows, we focus on their state transition graphs
and proceed to explore the undetectable attacks of BNs.

Theorem 3.1: Attack signal (�i,ai(t))|i∈A,t∈N+ in BN (2)
is undetectable if and only if there exists a vertex vo in the
state transition graph Ga such that the color sequence C of
BN (2), driven by attack signal ai(t)|i∈A,t∈N+ , satisfies that
(a) sequence C shapes a periodic sequence with length l,

denoted by {c1,c2, . . . ,cl}, after T -step transitions;
(b) there is a directed cycle C = {q1,q2, . . . ,ql} in the

state transition graph G with the same color sequence
{c1,c2, . . . ,cl};

(c) for the prefix T of output color sequence, there is a
vertex v′o to q1 in the state transition graph G with the
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same color as the first T colors in the set C ;
(d) the directed path driven by signal ai(t)|i∈A,t∈N+ from

the initial vertex v0 contains a dashed arc.
Having roughly characterized the undetectable attack sig-

nal ai(t)|i∈A,t∈N+ , we proceed to concern the undetectable
attack node set.

Theorem 3.2: Attack node set A in BN (2) is undetectable
if and only if state transition graphs G and Ga contain
the same colored cycles and the same colored prefix chain
starting from a dashed edge.

Arguably, even if the above propositions capture the
undetectable attacks necessarily and sufficiently, they are not
easily checkable. This inspires us to follow the approach in
[32] by augmenting the state transition graphs G and Ga to
develop a more computationally checkable algorithm.

Here, the augmented directed graph G= (V,E) combines
the vertex set with its duplicate to get a vertex pair (i, j), i.e.,
V = V ×V . As for the edge set E, ((i, j),(s, t)) ∈ E if and
only if (i,s)∈G and ( j, t)∈Ga hold and pair (i, j) and (s, t)
are the same colored. Moreover, it is labeled if and only if
( j, t) 6∈ G.

Theorem 3.3: Attack node set A in BN (2) is undetectable
if and only if there is a directed cycle in the augmented graph
G reachable from a vertex v at the tail of a labeled edge.

Remark 3.1: Finally, we analyze the total time complexity
of the above graph-theoretic criteria. For BN (4) with 2n

state variables, 2|A| attack variables, and 2p output variables,
it takes time O

(
22n+|A|+p

)
to establish the corresponding

augmented directed graph G. On the other hand, we also
spend O(22n+|A|) time to check the directed cycles with the
same color and time O(22n+|A|+p) on the depth-first search to
find the reachability from a certain labeled edge. Therefore,
the total time complexity is O(22n+|A|+p) for Theorem 3.3,
which essentially can only be applied to relatively small-size
BNs.

B. Algebraic Criteria

In the above subsection, we have established several
necessary and sufficient conditions for BNs on the basis of
their state transition graphs. In the sequel, we shall develop
an algebraic approach to deal with the undetectable attack
node set A in BN (4) with relatively small sizes.

Towards this end, we first define the augmented variables
µ(t) = x(t)nx(t) and ν(t) = y(t)ny(t) with their dynamics,
respectively, being governed by

µ(t +1) = x(t +1)n x(t +1)
= Fx(t)F�x(t)a(t)

= F(I2n ⊗F�)x(t)x(t)a(t)

= F(I2n ⊗F�)µ(t)a(t) := Lµ(t)a(t)

(5)

and
ν(t) = y(t)ny(t)

= Hx(t)nHx(t)

= H(I2p ⊗H)x(t)x(t) := Kµ(t)
(6)

where L := F(I2n ⊗F�) and K := H(I2p ⊗H).

With this algebraic expression, the following two sets are
defined as

S :=

{
δ

j
22n |B

2p

∑
i=1

K(i−1)2p+i, j = 1

}
and

T :=
{

δ
(i−1)2n+i
22n |i ∈ [1,2n]N

}
where the above set S denotes the multiply of states x(t) of
BN (1) and x(t) of BN (2) attacked by the node set A with
the same output measures, and set T stands for the multiply
of system state x(t) and its duplicate. Both sets play different
roles in this part of the study. To be specific, the set S is
used for the undetectable outputs, and the set T is imported
for the meaningful attack signals.

According to condition y(x0, t)|t∈N+ = y(x0,a, t)|t∈N+ in
Lemma 2.1, the invariance of state trajectory in set S is
necessary. Subsequently, the attack-invariant subset of set S
is defined and adapted from the control-invariant subset in
the work of [33].

Definition 3.2: Given S ⊆ ∆22n , the subset S∗ ⊆ S is said
to be attack-invariant with respect to (5) if for any δ k

22n ∈ S∗,
there exists an attack signal δ

ak
2|A|

such that Lnδ
ak
2|A|

nδ k
22n ∈

S∗.
In the work of [33], the largest invariant subset of a given

set S is calculated with a concise matrix deduction. We adopt
this lemma to deal with the largest attack-invariant subset of
BN (5).

Denote the indicator matrix DI subject to a given subset
I⊆ ∆22n as follows:

coli(DI) =

{
δ

i
22n , δ

i
22n ∈ I,

δ
0
22n , δ

i
22n 6∈ I.

Lemma 3.3: Given a set S ⊆ ∆22n , the largest attack-
invariant subset of set S can be calculated by

S∗ = {β ∈ ∆22n | β +B α = α} ,

where

α := 1>22n nB

[(
DSnLn12|A|

)|S|DS

]
.

In the sequel, we are in a position to build a necessary
and sufficient condition from an algebraic view of points for
the undetectable attack node set A in BN (2).

Theorem 3.4: The attack set A in BN (2) is undetectable
if and only if matrix

DB nB L
(

I22n+|A| +B W[2|A|,2n]

(
I2|A| ⊗MrMl

d

))
nB DS∗

(7)
is not a zero matrix, where B = Ic∪S∗ and

S∗ = {β ∈ ∆22n | β +B α = α} .
C. Complexity of Attack Detection

As mentioned in the above subsections, although all the
above results from the graph-theoretic approach or algebraic
approach seem theoretically perfect as necessary and suf-
ficient criteria, their time complexity would exponentially
increase with respect to the number of nodes in BN (2).
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Therefore, they are merely suitable for the detection of
attacked nodes set on a relatively small-size BN. We seek
to analyze the NP-hardness of detecting the attack set for
BN (1), in order to conclude if there exists an algorithm
with polynomial-time complexity to detect the attack set A
for general BNs. In this version, we directly conclude the
following theorem.

Theorem 3.5: The problem of detecting if BN (2) is
attacked is NP-hard.

IV. CONCLUSION

In this paper, we have investigated the undetectable attacks
in BNs. By the ASSR approach, a series of necessary
and sufficient criteria for the undetectable attack set has
been developed for BNs from the graphic and algebraic
views of points, respectively. However, noting that the de-
veloped criteria are endowed with exponentially increasing
time complexity subject to node number, these results only
suit relatively small-size BNs. Moreover, we also dissect
the feasibility of building a polynomial-time algorithm for
general large-scale BNs. However, the detectability of the
attack node set in has been shown to be NP-hard. The
theoretical results have been also validated in the simulating
part to conduct the effectivity, while the detailed proofs will
appear in our future journal version.
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[4] J. Miloševič, T. Tanaka, H. Sandberg, and K. H. Johansson, “Analysis
and mitigation of bias injection attacks against a kalman filter,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 8393–8398, 2017.

[5] F. Boem, A. J. Gallo, G. Ferrari-Trecate, and T. Parisini, “A dis-
tributed attack detection method for multi-agent systems governed by
consensus-based control,” in 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), pp. 5961–5966, IEEE, 2017.

[6] L. An and G.-H. Yang, “Distributed sparse undetectable attacks against
state estimation,” IEEE Transactions on Control of Network Systems,
vol. 9, no. 1, pp. 463–473, 2021.

[7] S. A. Kauffman, “Metabolic stability and epigenesis in randomly
constructed genetic nets,” Journal of Theoretical Biology, vol. 22,
no. 3, pp. 437–467, 1969.

[8] S.-i. Azuma, T. Yoshida, and T. Sugie, “Structural monostability
of activation-inhibition Boolean networks,” IEEE Transactions on
Control of Network Systems, vol. 4, no. 2, pp. 179–190, 2017.

[9] S. Zhu, J. Cao, L. Lin, J. Lam, and S.-i. Azuma, “Toward stabiliz-
able large-scale boolean networks by controlling the minimal set of
nodes,” IEEE Transactions on Automatic Control, to be published, doi:
10.1109/TAC.2023.3269321.

[10] S. Zhu, J. Lu, S.-i. Azuma, and W. X. Zheng, “Strong structural
controllability of Boolean networks: Polynomial-time criteria, minimal
node control, and distributed pinning strategies,” IEEE Transactions
on Automatic Control, vol. 68, no. 9, pp. 5461–5476, 2023.

[11] Y. Wang, C. Zhang, and Z. Liu, “A matrix approach to graph maximum
stable set and coloring problems with application to multi-agent
systems,” Automatica, vol. 48, no. 7, pp. 1227–1236, 2012.

[12] M. H. Kabir, M. R. Hoque, B.-J. Koo, and S.-H. Yang, “Mathematical
modelling of a context-aware system based on Boolean control net-
works for smart home,” in The 18th IEEE International Symposium
on Consumer Electronics (ISCE 2014), pp. 1–2, IEEE, 2014.

[13] K. E. Haynes, R. G. Kulkarni, L. A. Schintler, and R. R. Stough,
“Intelligent transportation system (its) management using Boolean
networks,” Spatial Dynamics, Networks and Modelling, pp. 121–138,
2006.

[14] M. Braccini, A. Roli, E. Barbieri, and S. A. Kauffman, “On the
criticality of adaptive Boolean network robots,” Entropy, vol. 24,
no. 10, p. 1368, 2022.

[15] D. Laschov and M. Margaliot, “Controllability of Boolean control
networks via the Perron-Frobenius theory,” Automatica, vol. 48, no. 6,
pp. 1218–1223, 2012.

[16] E. Weiss, M. Margaliot, and G. Even, “Minimal controllability of
conjunctive Boolean networks is NP-complete,” Automatica, vol. 92,
pp. 56–62, 2018.

[17] Y. Guo, “Observability of Boolean control networks using parallel
extension and set reachability,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 12, pp. 6402–6408, 2018.

[18] K. Zhang and K. H. Johansson, “Efficient verification of observability
and reconstructibility for large Boolean control networks with special
structures,” IEEE Transactions on Automatic Control, vol. 65, no. 12,
pp. 5144–5158, 2020.

[19] E. Fornasini and M. E. Valcher, “Observability, reconstructibility and
state observers of boolean control networks,” IEEE Transactions on
Automatic Control, vol. 58, no. 6, pp. 1390–1401, 2012.

[20] S. Zhu, J. Cao, L. Lin, L. Rutkowski, J. Lu, and G. Lu, “Observability
and detectability of stochastic labeled graphs,” IEEE Transactions on
Automatic Control, to be published, doi: 10.1109/TAC.2023.3278797.

[21] R. Li, M. Yang, and T. Chu, “State feedback stabilization for Boolean
control networks,” IEEE Transactions on Automatic Control, vol. 58,
no. 7, pp. 1853–1857, 2013.

[22] N. Bof, E. Fornasini, and M. E. Valcher, “Output feedback stabilization
of Boolean control networks,” Automatica, vol. 57, pp. 21–28, 2015.

[23] M. Meng, J. Lam, J.-E. Feng, and K. C. Cheung, “Stability and
stabilization of Boolean networks with stochastic delays,” IEEE Trans-
actions on Automatic Control, vol. 64, no. 2, pp. 790–796, 2018.

[24] M. Meng, J. Lam, J.-E. Feng, and K. C. Cheung, “Stability and
guaranteed cost analysis of time-triggered Boolean networks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 29, no. 8,
pp. 3893–3899, 2018.

[25] D. Cheng and H. Qi, “Controllability and observability of Boolean
control networks,” Automatica, vol. 45, no. 7, pp. 1659–1667, 2009.

[26] Y. Wu and T. Shen, “A finite convergence criterion for the discounted
optimal control of stochastic logical networks,” IEEE Transactions on
Automatic Control, vol. 63, no. 1, pp. 262–268, 2017.

[27] D. Laschov and M. Margaliot, “Minimum-time control of Boolean
networks,” SIAM Journal on Control and Optimization, vol. 51, no. 4,
pp. 2869–2892, 2013.

[28] D. Cheng, H. Qi, and Z. Li, Analysis and Control of Boolean
Networks: A Semi-Tensor Product Approach. London, U.K.: Springer-
Verlag, 2011.

[29] Y. Chen, S. Kar, and J. M. Moura, “Dynamic attack detection in
cyber-physical systems with side initial state information,” IEEE
Transactions on Automatic Control, vol. 62, no. 9, pp. 4618–4624,
2016.
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