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Abstract— Adjacent lane-changing is one of the most dan-
gerous maneuvers which may lead to rear-end crash, uncom-
fortable braking and sharp steering. If the autonomous driving
system can predict the potential latent lane-changing intentions
of surrounding vehicles in advance, the driver will have more
time to make reasonable response. In this paper, we focus on
how to give accurate and reliable prediction for latent lane-
changings, especially before the vehicles merge into the target
lanes. A prediction model based on dual Gaussian-mixed hidden
Markov models is developed to exploit the advantages of differ-
ent features more effectively. Since there is no comprehensive
criteria to evaluate the accuracy and predictability performance
simultaneously, we propose two new metrics for quantitative
analysis as supplement to the classical indicators. Comparative
validation on Next Generation Simulation (NGSIM) database
shows that our model has a high recognition accuracy of 93.05%
for lane-changing intention with earlier prediction over the
existing homologous methods.

I. INTRODUCTION

Inspired by the unmanned mobile robots, a classical frame-
work for autonomous vehicles has been proposed, which con-
sists of perception layer, planning layer and control layer [1],
[2]. Nevertheless, scholars have realized that for autonomous
driving system, it is difficult for planner to directly use the
information detected by sensors for robust trajectory gen-
eration. This is caused by flexible mobility, non-negligible
disturbance and personalized style of surrounding vehicles,
especially in complex traffic flows. Therefore, macroscopic
intention prediction is necessary for motion decision in
autonomous driving. It operates after the perception function
but before the planning function [3], [4].

In all traffic scenarios, lane changing is one of the most
dangerous maneuvers. It occurs at intersections, on-ramps
or off-ramps, and discretionarily during overtaking on high-
ways. It is known that about 40% of crashes are caused
by inappropriate lane changing, including not using turn
signals, not checking rear-view mirrors or aggressive steering
[5]–[7]. To this end, a lot of research has been conducted
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on intention recognition for lane changing maneuvers [8]–
[11]. The past few years have witnessed several backbone
models, including support vector machine (SVM) [12], [13],
fuzzy inference system (FIS) [14], [15], Bayesian network
(BN) [16], hidden Markov model (HMM) [17]–[19] and long
short-term memory (LSTM) [20]–[22] and so on. Balbal
et al. [14] collected the first moment of lateral velocity
of not less than 0.2m/s as the lane changing saliency and
recognized the maneuvers with a 51-rules-based FIS. Li
et al. [16] combined Bayesian network with Gaussian-mixed
model (GMM) for better accuracy. It is worth noting that the
HMM-based models have been widely used in recognition
and prediction tasks. Xia et al. [18] proposed a human-like
intention understanding model in terms of HMM to achieve
reliable prediction four seconds before the merging moment.
Sharma et al. [19] integrated continuous and discrete HMMs
to develop an early behavior predictor. However, there are
still several key issues that have not been well studied,
for example, feature collection, pipeline design, evaluation
metrics, etc.

In this work, a novel intention prediction scheme is de-
signed to realize early warning of lane changing maneuvers.
It is implemented based on dual GM-HMM pipes, where
different features are handled separately. A linear comparator
is developed to fuse the output probabilities of dual pipes and
determine the most likely maneuver of the target vehicle.
With the help of our proposed scheme, the advantages of
different features can be independently enhanced at different
prediction stages. Furthermore, two comprehensive metric-
s which simultaneously involve predictability and validity
are proposed. Comparative experiments on public dataset
demonstrate that our predictor can achieve more satisfactory
performance than other homologous methods. The main
contributions are two-fold:

• An intention prediction model is developed to realize
early lane changing recognition. Two separate GM-
HMM pipes are designed to take full advantage of
different features. Comparative evaluation shows that
our method has higher sensitivity on lane changing
intentions.

• Two new evaluation metrics are proposed for com-
prehensively evaluating both validity and predictability.
Using the new metrics, the performance of prediction
models can be enhanced by involving both lane chang-
ing and lane keeping intentions.
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Fig. 1. The intention predictor for latent lane changing maneuvers with
dual GM-HMM pipes.

II. METHODOLOGY

A. Architecture

The overall pipeline is illustrated in Fig. 1. The red
vehicle is the target vehicle (TV) which may perform lane
changing and the yellow vehicles are the surrounding ones
that have a significant impact on the driving of TV. They
are the preceding vehicle (PV), the following vehicle (FV),
the preceding vehicle in the adjacent lane (APV) and the
following vehicle in the adjacent lane (AFV). It is noted
that in this work, we address the scenario that a left lane
changing and a right one are symmetric and can be modeled
by a unified intention predictor. Therefore, only the vehicles
traveling on adjacent lanes that are merged by TV are
considered in one prediction.

At the current time t, a moving window with length τ
is utilized to capture the historical states within 0.1 second
interval. If t− τ < 0, all the previous states from the initial
time t = 0 to time t are reserved. Otherwise, only the latest
τ frames of states are collected. The historical states are then
input into the dual GM-HMM pipes to separately generate
the maneuver probabilities. Finally, a linear comparator is
introduced to determine whether the current driving intention
of TV is lane changing or lane keeping. Compared with
the existing models, the remarkable difference lies in the
introduction of dual pipes to realize the recognition task with
different features. The detailed process will be described in
the following subsections.

B. Single GM-HMM Pipe

As mentioned above, there are two GM-HMM pipes in
our intention predictor. For convenience, we first explain
the principle of a single GM-HMM pipe in Fig. 2. Given a
hidden state set {H1, H2, ...,HNh

} where Nh is the number
of hidden states, the GM-HMM pipe can be characterized
by M(π0,A,Φ). Here π0 indicates the initial probability
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Fig. 2. A single GM-HMM pipe for intention prediction.

vector and A is the transition matrix. Φ = {ϕ1, ϕ2, ..., ϕNh
}

represents a list of probability density functions and each
ϕi, i = 1, 2, ..., Nh reflects a Gaussian-mixed distribution
with Nm centers. More specific,

M(π0,A,Φ), Φ = {ϕ1, ϕ2, ..., ϕNh
} (1a)

π0 = [π0i] ∈ RNh , π0i = P (H0 = Hi) (1b)

A = [aij ] ∈ RNh×Nh , aij = P (Ht+1 = Hj |Ht = Hi)
(1c)

bi(Ot) = P (Ot|Ht = Hi) =

∫ Ot

−∞
ϕi(ζ)dζ (1d)

ϕi(ζ) = ϕi(ζ|ci,µi,1, ...,µi,Nm ,Σi,1, ...,Σi,Nm)

=

Nm∑
j=1

ci,j
exp

(
− 1

2 (ζ − µi,j)T Σ−1i,j (ζ − µi,j)
)

√
(2π)M

√
|Σi,j |

(1e)
The element aij indicates the conditional probability of the
next hidden state Ht+1 = Hj with respect to the current
one Hi. Similarly, bi(Ot) stands for the output probability
of generating the observation Ot based on the hidden state
Hi, which is determined by the distribution with ϕi. ci =
[ci,1, ..., ci,Nm

] is the weight coefficient vector, µi,j stands
for the mean vector and Σi,j represents the corresponding
covariance. M is the dimensional size of the observation Ot.

At time t, the historical observations are collected as
O0:t = {O0, O1, ..., Ot}, and the probability of obtaining
O0:t under model M(π0,A,Φ) can be determined by

P (O0:t|M) =

Nh∑
i=1

P (Ht = Hi|M) (2a)

P (Ht = Hi|M) = bi(Ot)
[ Nh∑
i=1

ajiP (Ht−1 = Hj |M)
]
(2b)

P (H0 = Hi|M) = π0ibi(O0) (2c)

It is noted that in a single GM-HMM pipe, there are
always two independent models, i.e,MLC designed for lane
changing maneuver and MLK for lane keeping maneuver.
This is consistent with the previous studies [10], [11], [18].
And the output driving intention can be finally characterized
by a ratio form with respect to a certain threshold εLC, that
is,

ε :=
P (Ot|MLC)

P (Ot|MLK)
> εLC (3)
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where variable ε is defined as the ratio between the prob-
ability of lane changing and that of lane keeping for two
models.

C. Feature with Dual Pipes

As shown in Fig. 1, there are dual pipes to separately
process the input historical states, where different features
are extracted from different pipes. More specific,

O
(1)
t = [∆x∗,∆v

x
∗ ] ,

O
(2)
t =

[
vyTV, ψTV, TTC

inv
∗
]

∗ ∈ {PV,FV,APV,AFV}
(4)

where vyTV and ψTV are respectively the lateral velocity of
the target vehicle TV and its heading. TTCinv∗ represents
the inverse of time-to-collision with respect to vehicle ∗.
∆x∗ and ∆vx∗ indicate the relative longitudinal distance and
relative longitudinal velocity between vehicle ∗ and TV.

Remark 1: As pointed out in [18], there are various fea-
tures that describe the driving maneuvers at different stages
of lane changing. The lateral features such as position offset
and lateral velocity are significant ones characterizing the
instant of changing lanes. While in contrast, at the early
stage of lane changing, the longitudinal velocity of TV will
fluctuate to ensure a safe distance from vehicles in front and
behind. Therefore, the relative longitudinal information in
O

(1)
t is regarded as a useful indication of lane changing in

[11], [18]. Since two kinds of features in (4) are collected
to characterize the maneuvers of TV at different stages,
we tackle them with two separate pipes to avoid possible
conflicts between different features.

A τ -length observation sequence with the i-th feature
can be written as O(i)

t−τ+1:t = {O(i)
t−τ+1, ..., O

(i)
t }. Then

O(i)
t−τ+1:t will be used to obtain the probability ratio ε(i)

through the i-th GM-HMM pipe. The detailed pipeline has
been explained in the previous subsection.

D. Linear Comparator

Unlike the widely used comparator in previous studies in
(3), our method uses a linear comparator since there are two
output probability ratios ε(1) and ε(2) generated by the dual
pipes. It is formulated as

ILC =

{
1, if α1ε

(1) + α2ε
(2) > εLC

0, otherwise
(5)

where α1 and α2 are weight coefficients and εLC is the
threshold. ILC = 1 indicates that the driving intention is
lane changing.

E. Implementation

Table I lists the parameters for our intention prediction
model. The model is constructed with third-party tools
including sklearn and hmmlearn. The dual GM-HMM pipes
in our predictor are independently trained through Baum-
Welch (BW) algorithm. At the training stage, the model
for lane changing and that for lane keeping in a single
GM-HMM are separately fitted with labeled data while in

the evaluation, the labels of all trajectories are unknown.
Furthermore, the moving window with length τ will be
utilized to capture observation sequences at each instant.
To enhance the training process, cross-validation method is
applied to obtain the best trained model.

TABLE I
MODEL PARAMETERS.

Parameter Variable Value

Number of hidden states Nh 3
Number of Gaussian-mixed center Nm 3

Weights in linear comparison (α1, α2) (0.81, 1.64)
Threshold of lane changing εLC 0.31

Observation length τ {1s, 3s}

III. DATA AND METRICS

A. Data Collection

In this work, all the trajectories used for training and
evaluation are collected from the US-101 and I-80 datasets in
NGSIM. And some necessary rules are implemented during
pre-process as follows.
• The trajectories in lanes 1 to 6 are collected where the

mandatory and discretionary lane changing maneuvers
are involved.

• A lane changing trajectory longer than 1 second is
collected and its historical observations for 7 seconds
before crossing the lane mark will be reserved.

• There are some situations where lane changing fails.
More specific, TV crossed the lane mark but immedi-
ately returned to its original lane as shown in Fig. 3.
These trajectories are removed since it is unreasonable
to classify them as lane changing or lane keeping.

Fig. 3. A failed lane changing.

With the above criteria, 2341 lane changing trajectories
and 3570 lane keeping ones are ultimately selected from the
dataset. A statistical data for lane changing trajectories is
given in Fig. 4. From the histogram it can be found that more
than 33% (787 in total) drivers complete the lane changing
process in less than 4 seconds. And more than 6% (147
in total) trajectories are even shorter than 2 seconds. They
belong to aggressive maneuvers which pose a significant
collision risk to the following vehicles. This indicates that
an early intention prediction is crucial for warning vehicles
behind to slow down and keep a safe distance.
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Fig. 4. Statistics of lane changing trajectories.

Finally, 60% of the samples are randomly split into the
training set, and the others are used for evaluation. For a
lane changing trajectory, if it can be identified immediately
before crossing the lane mark, it is categorized as a true
positive sample, otherwise a false negative one. In contrast,
for a lane keeping trajectory, it will only be marked as a true
negative sample if there is no false alarm throughout the time
span.

B. Evaluation Metrics

The well known metrics for evaluating intention prediction
include sensitivity, specificity, recall, precision and F1-score.
Their detailed definitions are given below.

Sensitivity = Recall =
TP

TP + FN
(6a)

Specificity =
TN

TN + FP
(6b)

Precision =
TP

TP + FP
(6c)

F1-Score =
2× Recall× Precision

Recall + Precision
(6d)

In addition, the receiver operating characteristic (ROC) curve
and the area under curve (AUC) are adopted to analyze the
relationship between TP rate and FP rate. They are important
indicators that reflect the comprehensive performance of
models. A ROC curve with higher AUC value indicates that
the model has better classification ability.

However, there is a flaw in the above metrics, that is,
they only reflect the prediction validity at a specific instant.
In most existing studies, only the predicted intentions at a
single instant are employed for evaluation. While in terms
of practical applications, not only the validity at lane chang-
ing instants but also the predictability (how early the lane
changing intention can be recognized) should be involved to
comprehensively assess the performance.

Remark 2: To analyze the effectiveness of intention pre-
diction models at various instants, some attempts have been
made in previous literature and several indicators have been
proposed, for example, recall-time curve [18], [19], [22],
recognition rate [17] and prediction time [23], [24]. It is
known that these indicators cannot comprehensively char-
acterize the prediction performance of both lane changing

and lane keeping maneuvers. Furthermore, variable length
trajectories should be included in the evaluation.

Motivated by the above discussions, we design two new
metrics, namely, average recall of forewarning (ARoF) and
Fβ-ARoF. ARoF is defined as the area under the recall of
prediction (RoF) curve

ARoF =
1

|Tmax|

∫ 0

Tmax

RoF(t)dt (7a)

RoF(t) =
TP(tr < t)

num|t|
(7b)

where Tmax indicates the earliest instant determined by the
maximum length of all trajectories. tr stands for the moment
when the lane changing intention is successfully identified,
and TP(tr < t) represents the number of true-positive
samples before time t. It is noted that the denominator
num|t| is the number of trajectories with a length greater
than |t|. Since there is no fixed length of lane changing
trajectories in our study, num|t| will be specified variably
at different instants. In terms of practical calculation, the
integration in (7) can be approximated by

ARoF ≈ 1

L+ 1

L∑
k=0

RoF
(
k

L
Tmax

)
with L being the number of sampling instants. Fig. 5 plots
the RoF curve and the ratio of gray area to time-span (length
of the horizontal axis) is ARoF.

Fig. 5. Illustration of the RoF curve and ARoF.

It should be emphasized that ARoF actually characterizes
the average prediction correction of lane changing maneuvers
over the entire time-span, while the false alarm is not
addressed for real lane keeping trajectories. An extreme
situation is that an unbelievable predictor asserting all trajec-
tories as lane changing ones can still achieve 100% ARoF.
Therefore, we need a comprehensive indicator to quantify
the prediction effectiveness involving both lane changing and
lane keeping intentions. Inspired by the concept of Fβ-score,
we can define Fβ-ARoF as

Fβ-ARoF = (1 + β2)
Precision× ARoF

β2 × Precision + ARoF
(8)

where parameter β describes to what extent ARoF is more
important than precision. If β > 1 it means that ARoF
plays a crucial role in evaluation, with more emphasis on the
prediction correction of lane changing intentions. Otherwise,
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TABLE II
RECOGNITION RESULTS ON THE TEST SET.

Observation
Length Methods Sensitivity ↑ Specificity ↑ AUC ↑ F1-score ↑ ARoF ↑ Fβ -ARoF ↑

β = 1 β = 0.5 β = 2

τ = 1s

CHMM-DHMM 53.37% 69.47% 0.6194 53.37% 27.80% 36.56% 45.08% 30.75%
GM-HMM 73.05% 79.90% 0.8719 71.17% 46.41% 55.94% 63.81% 49.80%

Ours 93.05% 95.80% 0.9817 93.30% 46.36% 62.00% 77.73% 51.56%

τ = 3s

CHMM-DHMM 53.26% 72.69% 0.6855 54.63% 32.70% 41.31% 49.06% 35.68%
GM-HMM 72.51% 80.46% 0.8736 71.67% 48.22% 57.38% 64.77% 51.51%

Ours 91.87% 94.47% 0.9842 91.72% 50.96% 65.48% 78.99% 55.92%

precision takes a greater weight and false alarm should be
eliminated as much as possible.

IV. EVALUATIONS

A. Performance Comparison

In this subsection, we validate the performance on predic-
tion and classification of lane changing and lane keeping
maneuvers for our proposed dual-pipe model on the test
database. Moreover, we make some comparison with two
existing HMM-based methods, that is, GM-HMM in [11] and
CHMM-DHMM in [19]. Table II lists the detailed results.
To describe the effectiveness of different methods more
objectively, we repeat the tests with variable observation
lengths where τ = 1s or 3s. From the comparison results,
several observations can be summarized in the sequel:
• For the classification metrics, i.e., Sensitivity, Specifici-

ty, AUC and F1-score, it is found that our dual-pipe
model outperforms the other two models. The best lane
changing recognition sensitivity is higher than 93% and
the AUC is up to 0.9842 in our proposed scheme.

• With a shorter observation length of τ = 1s, our
model has similar performance on ARoF as GM-HMM
in [11], but it is superior to [19]. As the observation
length increases, our model can achieve better predic-
tion performance on ARoF. This means that using more
historical observations, our scheme can performs well
on predictability.

• In terms of the proposed comprehensive metric Fβ-
ARoF, our scheme has been validated with the highest
score wherever τ =1s or 3s. When β = 1 it means that
the predictability (ARoF) and the sensitivity are equally
weighted in the evaluation.

For each recognition model, it will output a final score
that reflecting the extent that the maneuver is likely to
perform lane changing or lane keeping. The ROC curves
describe the relationship between TPR and FPR at different
thresholds. Fig. 6 plots the ROC curves of three recognizers
with different observation lengths. The results are consistent
with those in Table II. Note that a ROC curve closer to the
lower right indicates worse performance.

B. Ablation Studies

To further analyze the impact of different parts including
feature, comparator and observation length, we conduct
ablation experiments on the training set.

(a) τ = 1s (b) τ = 3s

Fig. 6. ROC curves of three methods, CHMM-DHMM, GM-HMM and
our dual model.

1) Feature: To address the effects of different features in
our dual-pipe model, the ablation study has been conducted
and the results are given in Table III. We can see that our
dual-pipe model has more than 12% improvement on F1-
score compared with those that only involve longitudinal
feature regardless of the value of τ . And the improvement is
up to 3% on ARoF in contrast to those using mixed feature
O

(2)
t . As for the comprehensive metric F1-ARoF, our model

still has at least 3% performance enhancement.

TABLE III
ABLATION TESTS FOR DIFFERENT OBSERVATION FEATURES.

O
(1)
t O

(2)
t F1-score ↑ ARoF ↑ F1-ARoF ↑

X × 75.65% 51.14% 61.02%
× X 91.15% 47.58% 62.51%
X X 91.85% 51.20% 65.76%

2) Comparator: As mentioned in Section II-D, a linear
comparator has been adopted to determine the final output.
Here we would like to investigate the effect of comparison
forms. Two other forms are the maximum comparator and
the Gaussian comparator with formulas as follows.
• Maximum comparator with a specific threshold εLC is

defined as

ILC =

{
1, if max

{
ε(1), ε(2)

}
> εLC

0, otherwise

• Gaussian comparator with probability vector ε =[
ε(1), ε(2)

]T
, mean vector µ and variance σ2 can be
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expressed as

ILC =

 1, if exp

{
−‖ε− µ‖

2
2

2σ2

}
> 0.5

0, otherwise

Table IV lists the ablation results with different types of
comparators. As for F1-score, the three comparators have
similar effects. However, the linear comparator is a better
choice for prediction and comprehensive performance. In
summary, the linear comparator has an improvement of
about 2% and 1% on the comprehensive metric F1-ARoF
compared to the maximum comparator and the Gaussian one,
respectively.

TABLE IV
ABLATION TESTS FOR COMPARATORS.

Comparator F1-score ↑ ARoF ↑ F1-ARoF ↑

Maximum 91.89% 47.71% 62.81%
Gaussian 92.60% 50.60% 65.44%

Linear 91.85% 51.20% 65.76%

V. CONCLUSION

The problem of intention prediction has been investigated
in this paper, with the aim of predicting the potential lane
changing maneuvers of surrounding vehicles in a mixed
traffic flow. First a dual-pipe model based on GM-HMMs has
been developed, in which two observation features related to
longitudinal and lateral states of surrounding vehicles are
collected. These features are respectively utilized in two
separate prediction pipes. Compared to other homologous
HMM-based methods, our model has been verified with over
13% improvement in prediction sensitivity and specificity.
Furthermore, new metrics, ARoF and Fβ-ARoF, have been
designed to evaluate prediction effectiveness comprehensive-
ly. In terms of the new comprehensive metrics, there is at
least 5% enhancement by our scheme. Ablation studies have
shown that the feature extraction part yields more than 3%
improvement and the linear comparator contributes over 1%
performance promotion on intention prediction.
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