
Quasi-Static Mechanical Manipulation as an Optimal Process

Domenico Campolo1 and Franco Cardin2

Abstract— This work focuses on quasi-static manipulation of
elastically-interconnected rigid bodies by an agent, e.g. a robot
assembling mechanical parts. The whole system is seen as an
underactuated control problem, where only certain degrees
of freedom (e.g. robot end-effector) are directly controllable.
Mechanical contact is regularized via nonlinear yet smooth
elastic interaction giving rise to a smooth total potential
energy. The squared-Hessian of such a potential is used as
optimality measure and quasi-static mechanical manipulation
is rephrased as optimal path planning on the manifold of
mechanical equilibria. A simple example of an elastically-driven
inverted pendulum is presented as a toy model. Numerical
implementation as a minimum path on graphs is also described.

I. INTRODUCTION

This work focuses on quasi-static manipulation of
elastically-interconnected rigid bodies and proposes an op-
timality measure based on a squared-Hessian, derived from
the mechanical potential energy of the system.

From an applied robotics perspective, since the early
work of Whitney [23], it has been clear that quasi-static
frameworks are central to the analysis of many tasks re-
lated to robotic assembly and manipulation [18], [19], [14],
[22], [15], [24]. From a more theoretical perspective, a
suitable geometric framework whereby not only kinematic
configurations but also interaction forces can be represented,
was brought to the attention of the robotics community by
Brockett and Stokes [3]. These more geometrical aspects are
emphasized in an extended version of this work [6], while
here the analysis will be confined to the kinematic configu-
ration space. The purpose of this work is to emphasize the
role of stiffness as a metric for the purpose of mechanical
manipulation. In fact, since the 90’s, Loncaric [16], [17]
already indicated stiffness as a possible source of positive-
definite matrices, in addition to inertia and damping. Elastic
interactions can be captured via (scalar) elastic potentials
and in particular their Hessian, or stiffness matrix, at critical
points (the only points where Hessians behave tensorially)
[17].

A discipline that offers insights on the use of stiffness
as a metric for quasi-static processes is thermodynamics.
Classical thermodynamics studies processes at equilibrium,
the reader is also referred to the recent review by van
der Schaft [21]. The Hessian of thermodynamic potentials
(e.g. internal entropy) are positive-definite (by the second
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principle of thermodynamics) and have been used to define
a possible metric, see [8] and reference therein.

Inspired by these works, we propose describing a ‘quasi-
static’ mechanical manipulation as an optimal control prob-
lem. Assuming a quasi-static evolution, as the control
variables are slowly varied, the internal variables undergo
changes along the so-called equilibrium manifold. The main
novelty of this work is that optimality will be based on an ad-
hoc metric derived from the squared-Hessian of the elastic
potential. However, unlike the thermodynamic approach [8],
where the Hessian itself enjoys positive-definiteness, we will
resort to a squared-Hessian (non-negative by definition). For
more details and justifications of this choice, the reader is
referred to [6].

Finally, once the problem is stated as a quasi-static optimal
process, one is faced with the computational complexity in-
herent with the derivation of numerical solutions. To partially
address this problem, we show how to ‘rephrase’ the quasi-
static manipulation problem as an optimal path planning
problem on the equilibrium manifold. This allows to readily
re-adapt various algorithms originally developed for robotic
motion planning [12], many of which are graph based [25].
To illustrate all the steps above, a toy model of an elastically-
driven pendulum is presented. Equilibria are numerically
derived and captured as vertices of a graph. Connections
and weights of the graph are defined via the squared-Hessian
optimality measure and the minimum path.

Unlike classical robot navigation problems, an interesting
aspect arising in mechanical manipulation problems, which is
inherent to elastic stability, is the possible multivaluedness
of equilibria. To this end, an algorithm is sketched which
defines the connectivity of a graph based on the first order
approximation of the equilibrium manifold, i.e. it allows
identifying the ‘true’ neighbor despite a multiplicity of
equilibria.

II. INTERCONNECTED MECHANICAL SYSTEMS

Following [5], the configuration space Q of interconnected
mechanical systems can be thought of as a C∞-immersed
submanifold of the product space

Q ⊂ SE(3)× · · · × SE(3)︸ ︷︷ ︸
Nb rigid bodies

×R3 × · · · × R3︸ ︷︷ ︸
Np particles

(1)

of dimension dimQ ≤ 6Nb + 3Np. We shall assume that
K ≥ 1 degrees of freedom (dof) are directly controllable
by an agent while the remaining N = dimQ −K dof can
only be indirectly influenced via generalized elastic forces or
via external forces such as gravity. In robotics, such systems
are often referred to as ‘underactuated’, meaning that the
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directly controllable dof (K) is strictly less than the total
number of dof (dimQ).

The analysis that follows is mostly local, relying on the
Implicit Function theorem and on Taylor’s expansion as main
analytical tools. In particular, we shall assume the existence
of equilibria in some open neighborhood of Q parameterized
via a set of coordinates (z,u) ∈ Z × U , where Z ⊂ RN

and U ⊂ RK are open sets. These coordinates represent
• internal states z ∈ Z ⊂ RN , non directly controllable

(i.e. under-actuated)
• control inputs u ∈ U ⊂ RK , directly controllable by

the agent, therefore assumed as an input to the system.
We shall further assume that the system will solely be

subjected to conservative forces (either via gravity or internal
springs) and, in particular, the existence of a smooth (C∞)
potential energy

W (z,u) : Z × U → R (2)

Considering the control inputs u as parameters, mechani-
cal equilibria correspond to stationary points of the potential
with respect to internal variables z, which is equivalent to a
zero-condition for internal forces1 ∇zW . More specifically,
for a given control input u∗, there exist possibly multiple
solutions z∗

m (with m ≥ 1 being an integer denoting the
multiplicity of equilibria) to the equilibrium equation:

∇zW (z∗
m,u∗) = 0 (3)

where ∇z denotes the column2 operator [∂z1 . . . ∂zN ]T and,
similarly, ∇u ≡ [∂u1

. . . ∂uK
]T . We shall further introduce

the shorthand notation ∇2
zz ≡ ∇z∇T

z for the Hessian as
well as for the mixed-derivatives operators ∇2

uz ≡ ∇u∇T
z

and ∇2
zu ≡ ∇z∇T

u = (∇2
uz)

T .
Once the input u∗ is fixed, stability of the mechanical

system is determined by the positive-definiteness of the
Hessian ∇2

zzW [2]. If the Hessian is full-ranked at a given
equilibrium, i.e.

rank(∇2
zzW |(z∗

m,u∗)) = N (max-rank) (4)

then such an equilibrium will be referred to as non-critical.
Assuming the existence of one solution and max-rank

condition (4), then by the Implicit Function Theorem, here
restated as in [20, Th. 2-12], there exist an open U ′ ⊂ U
containing u∗, an open set Z ′ ⊂ Z containing z∗ and a
differentiable map zm : U ′ → Z ′ such that zm(u) ∈ Z ′ is
unique and ∇zW (zm(u),u) = 0, for all u ∈ U ′.

The Equilibrium Manifold (EM) can be described as a
K-dimensional submanifold

EM = {(z,u) ∈ RN × RK : ∇zW (z,u) = 0} (5)

1With perhaps an abuse of notation, the wording “internal forces” really
refers to gradients with respect to “internal” variables z, this also includes
gravity which is definitely not internal to the system.

2In this work, both vectors δz = [δz1, . . . , δzN ]T and covectors
∇zW = [∂z1W . . . ∂z2W ]T will be represented as a column arrays.
The natural pairing ⟨∇zW, δz⟩ will then be evaluated in matrix notation
as (∇zW )T δz = ∇T

z Wδz.

which can be parameterized by controls u, at least locally, in
an open neighborhood of a non-critical equilibrium z∗

m,u∗.
In summary, for a given control input u∗, the equilibrium

equation (3) can be solved (e.g. numerically) to derive
possibly multiple solutions (z∗

m,u∗), with multiplicity index
m = 1, 2, . . . . Around each solution (z∗

m,u∗) satisfying3 the
max-rank condition (4), there exists an open neighborhood
Z ′ × U ′ on which the EM is a submanifold and we shall
refer to it as local branch of EM.

III. GILMORE’S METRIC ON THE EM
The derivation below mostly follows [8, §5] but with some

difference which will be highlighted. The final objective is
to approximate (by 2nd order Taylor expansion) the potential
Wm(u) = W (zm(u),u) around the equilibrium (z∗

m,u∗).
1) First order analysis: Consider curves on the EM

s 7→ (zm(u(s)),u(s)) ∈ EM

parameterized by a scalar s ∈ R, at least locally, such that
which u(0) = u∗ and zm(u(0)) = z∗

m. For every such
curve, the equilibrium condition (3) is satisfied for all s, i.e.

∇zW (zm(u(s)),u∗(s)) = 0

which, differentiated with respect to s, leads to
∇2

zzW∇uzmu̇+∇2
uzW u̇ = 0 or

∇uzmu̇ = −(∇2
zzW )−1∇2

uzW u̇

where u̇ = du/ds. Rewriting in terms of differentials δu :=
u̇ds and δz := ∇uzmδu, to maintain similarity with the
nomenclature in [8, §5], leads to the condition

δz = −(∇2
zzW )−1∇2

uzWδu (6)

2) Second order analysis: Expanding up to the second
order the potential W (zm(u),u) around an equilibrium
(z∗

m,u∗), denoted as |∗ for short, leads 4 to

W (z∗ + δz,u∗ + δu) = W (z∗
m,u∗) + δuTfeq

m+
+ 1

2δu
TGm(u) δu+O(3)

where feq
m is the (static) control force required to maintain

equilibrium, defined as

feq
m(u) := −∇uW (7)

while the K ×K control Hessian Gm(u) is defined as

Gm(u) := ∇2
uuW −∇2

zuW (∇2
zzW )−1∇2

uzW (8)

where all derivatives are evaluated at a given equilibrium
(zm(u∗),u∗).

Remark: In general5, we cannot assume positive-
definiteness of the control Hessian (8), as also evident by

3Satisfying max-rank condition (4) is equivalent to verifying
det(∇2

zzW |∗) ̸= 0.
4The derivation is omitted for brevity but can be found in [8, eq.(5.1)-

(5.3)], albeit with different notation.
5In [8, §10.12], Gilmore applies the same definition to a thermodynamic

problem where, due to the special interrelations of thermodynamic variables,
(8) can be assumed positive definite.
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the simple example described in the next section. For this
reason, we propose the use of the squared-Hessian G2

m(u)
as possible metric to define optimal paths on the equilibrium
manifold.

IV. TOY EXAMPLE: MANIPULATION OF AN
ELASTICALLY-DRIVEN INVERTED PENDULUM

In this section, the theory developed earlier will be applied
to a simple 2D pendulum elastically driven by an agent. With
reference to Fig. 1, we consider the task of stabilizing an
inverted pendulum in its upward position, in the space frame
{0}. The pendulum consists of a rigid body B ⊂ E2 (i.e. R2

with the usual Euclidean distance). For simplicity, we shall
assume a uniform, rectangular bar of length L0 with center
of mass (com) located at its geometric center.

𝒖 ≡ 𝑢𝑥 ,𝑢𝑦

𝑔

{0}

hinge

𝛼

agent

system

𝑘𝑐

𝒄
{1}

ℬ

𝒏𝛼𝒏𝛼
⊥

𝑐𝑜𝑚

𝐿𝑢

𝒖𝑐𝑟𝑖𝑡
𝑚𝑔

2𝑘𝑐

Fig. 1. Inverted Pendulum

We shall consider a moving-frame {1} attached to the com
of the pendulum and rotating with it by angle α (see Fig.1)
with respect to the space-frame frame {0}. For convenience,
we shall define the (unit-length) axis nα directed along the
major axis, the (unit-length) axis n⊥

α perpendicular to it as
well as the rotation matrix Rα as follows:

nα =

[
cosα
sinα

]
n⊥

α =

[
− sinα
cosα

]
Rα =

[
cosα − sinα
sinα cosα

]
As shown in Fig.1, the pendulum is subject to a grav-

itational potential Wgrav (due to a constant force mg,
pointing downwards and acting at com) as well as to the
elastic (control) potential Wctrl due to a nonlinear spring
of stiffness kc attached between an agent-controlled position
u = (ux, uy) and the tip of the pendulum c = L0nα. The
total potential W can then be expressed as

W (α,u) = Wgrav +Wctrl

= 1
2mgL0 sinα+ 1

2kc∥u− L0nα∥2
= 1

2mgL0 sinα+ 1
2kc((ux − L0 cosα)

2

+(uy − L0 sinα)
2)

(9)

In the case of a linear spring kc, the control Hessian (8) can
be derived by differentiating (9) resulting in the following
expression (detailed calculations are reported in [6]):

Gm(u) = Rα∗

[
kc 0

0 kc

(
1− L0

Lu

)]
RT

α∗ (10)

where α∗ is the stable equilibrium

α∗ := z∗
0(u) = atan2(uy −mg/2kc, ux) (11)

and Lu is the control length, defined as

Lu := ∥u− ucrit∥ =
√
u2
x + (uy −mg/2kc)2 (12)

and ucrit := uy − mg/2kc is the control input for which
Lu = 0, rendering the control Hessian ill-defined.

Remark: By simple inspection of (10), it is evident that
the one of the eigenvalues of Gm(u) is negative if Lu < L0

and positive if Lu > L0.
For this reason, we propose to consider the squared-

Hessian G2
m as a possible metric6 and formulate the quasi-

static manipulation problems as an optimal problem via
minimization of the action

J =

∫ α2

α1

u′TG2
mu′ dα (13)

A. Regularized mechanical contact via nonlinear compliance

One of major hurdles in robotic manipulation is the non-
smooth nature of mechanical contact [4] for which there exist
various possible approaches. Here we would like to be able
to make use of the optimal control framework derived so
far, for which smoothness is essential. We therefore propose
to regularize contact between two bodies (e.g. B1 and B2)
via a non-linear stiffness kc which depends on the inter-
penetration d, as sketched in Fig. 2.

𝑘𝑐
𝑘𝑚𝑎𝑥

𝑘𝑚𝑖𝑛

𝑑𝑑0
𝑑 < 0

𝑑 > 0

ℬ1 ℬ2

ℬ1 ℬ2

−𝑑0

Fig. 2. Regularization of mechanical contact: based on the penetration
variable d, a spring of with nonlinear stiffness kc is designed assuming
high-stiffness levels (kmax) when the bodies are in contact (d < 0) and
low-stiffness levels (kmin) when not in contact d > 0. A steep yet smooth
transition occurs in an interval [−d0 d0].

Inter-penetration is a signed distance: if two objects are
in mechanical contact, we allow for some degree of inter-
penetration (d < 0) and high contact forces arise from the
assumption of a high level of stiffness (kmax). On the other
hand, when the two objects are not in contact (d > 0), one
would expect no forces and this is modeled via a very low7

level of stiffness (kmin ≪ kmax). We then assume a steep
yet smooth transition (around d ≈ 0) as sketched in the

6It can be shown that both Gm and G2
m behave tensorially with respect

to change of coordinates.
7A very low but non-zero stiffness is essential as it provides useful non-

zero gradients for the (virtual) agent to find a path even when not in contact.
It turns out to be a very useful expedient to make robotic agents aware of
their surroundings. For example, in [10], virtual ‘proxies’ are introduced to
guide the robot towards the goal before any contact is even made.
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graph in Fig. 2. Analytically, this can be modeled via smooth
functions such as

kc(d) = kmin +
1− tanh(d/d0)

2
kmax (14)

where d0 is a parameter capturing the penetration depth.
Computing the inter-penetration of rigid bodies for generic

shapes can be computationally expensive and is typically
done via numerical methods [11]. The task is much simpler
when one of the bodies can be assumed to be a point, as
in the case of the agent8 in Fig.1, represented by a point of
coordinates u = (ux, uy).

With reference to the specific 2D problem in Fig 1, to
compute the penetration d by the agent, localized at given
point u, within the rigid body of the pendulum, a geometrical
definition of the shape of the pendulum is required. Both in
2D as well as in 3D, a simple way to proceed analytically is
to model the rigid body B as a super-ellipse [9], for which
the pseudo-distance d between agent and body B is simply
given as

d := ∆(ux, uy)

where ∆ : E2 → R is the super-ellipse inside-outside
function

∆ : (x, y) 7→
(x
a

)2/ϵ

+
(y
b

)2/ϵ

− 1 (15)

where 0 < ϵ < 2 define the shape of the super-ellipse (ϵ = 1
for an ellipse, ϵ < 1 for a super-ellipse as in this work), while
a and b represent half-length and half-width of the body B,
respectively.

B. Equilibrium Manifold

The configuration space Q of the agent+pendulum can be
parameterized by the (scalar) rotation z ≡ α ∈ R of the
pendulum and the 2D position u ≡ (ux, uy) ∈ R2 of the
agent, resulting in the three-dimensional manifold:

Q := S1 × R2 (16)

As our analysis is local, we shall assume working in an
open of R× R2.

The total potential W will comprise a gravitational po-
tential Wgrav and the (control) elastic potential Wctrl and
will be formally similar to (9). The only difference is due
to the nonlinearity of the stiffness kc, now function of the
inter-penetration d which can readily be evaluated via the
super-ellipse function ∆(·) defined in (15). This valuation is
more conveniently done in the moving frame:

Wctrl =
1

2
kc(∆(ũ)) ∥ũ− c̃∥2 (17)

where ∥ · ∥2 is the Euclidean distance; the tilde ·̃ denotes
coordinates expressed in the moving frame {1}, in which, c̃
is a constant vector and ũ := T−1

1 ◦ u .

8In robotics, this is not uncommon. In the so-called ‘force control mode’,
robots are programmed to impart actual forces based on virtual springs,
such as kc, virtual points such as u and physical points, such as c, whose
coordinates can be measured, for example, via vision systems.

Thanks to the smoothness of the functions (14) and (15),
gradients ∇zW , ∇uW as well as the second derivatives
∇2

uzW , ∇2
zuW , and the Hessian ∇2

zW can be computed
analytically in symbolic form, via the MATLAB Symbolic
Toolbox or any other Computer Algebra System.

Using the numerical values given in Table I, a numerical
solver (fsolve in MATLAB) was used to solve the equi-
librium equation (3) for an array of inputs ux and uy , each
spanning across 150% of workspace (±L0).

parameter value units description
L0 1 m pendulum length
W0 0.1 m pendulum width
mg 10 N weight force
kmin 1 N/m stiffness
kmax 104 N/m stiffness

ϵ 0.1 - super-ellipse factor

TABLE I
VALUES USED IN THE NUMERICAL SIMULATIONS.

2

u
x
 [m]

0-4

-3

-2

-1

0

z
* 

[r
a
d
]

1

2

2

3

1.5

4

u
y
 [m]

1 0.5 0 -0.5 -2-1 -1.5

Fig. 3. Equilibrium configurations z∗ (equivalent to the rotation α of the
pendulum) for an array of inputs (ux, uy) spanning 150% of the workspace
(±L0)

At each point (ux, uy) of the grid, multiple solutions z∗m (a
scalar, representing an equilibrium angle α of the pendulum
angle), each with its own multiplicity index m, are estimated
by the numerical solver and are shown in Fig. 3, where the
unstable solutions (the ‘ceiling’ at height α ≈ +π/2) are
highlighted in red color. The remaining solutions consist of
a ‘floor’ α ≈ −π/2 and a ‘staircase’ which is approximately
the graph of eq.(11). The ‘floor’ and the ‘ceiling’ in Fig. 3
are only approximately horizontal due to the presence of a
small but non-zero value of kmin through which the agent
still influences the pendulum at a distance (d > 0).

C. Optimal Path on Graphs
In previous section, the the problem of optimally manipu-

lating the pendulum in Fig. 1 was framed as an optimal path
on the equilibrium manifold and solved specifically on the
‘staircase’, one of the possible branches of the equilibrium
manifold, analytically defined by (11).
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In real or numerical scenarios, we rarely have the luxury
of an equation such as (11), locally defining a branch of
the equilibrium manifold. We might just have samples of
solutions, either from experiments or numerical approxima-
tions, and there might be no indication of which branch they
belong to (or prior knowledge of the number of branches). In
fact, the plots in Fig. 3 resemble this situation: all we have
are disconnected solutions, each representing an equilibrium
point in and open Z×U ∈ RN×K . We shall here only focus
on the stable equilibria: numerically, we can always test the
Hessian det(∇zzW ) while, experimentally, we will not be
able to even witness unstable equilibria (just like we never
witness a tossed coin landing and standing on its edge).

To capture the topology of the problem, we propose
working on graphs. Referring to textbooks such as [7] for
details, here we simply recall the following basic definition:
an undirected graph is a pair G = (V, E) where V is a set of
vertices and E is a set of edges, where each element eij ∈ E
consists of an (unordered) pair of vertices vi, vj ∈ V . Two
vertices are connected (i.e. ‘neighbors’ in some sense, to be
specified) if there is an edge connecting them.

𝒖𝑖

𝒖𝑗

ℝ𝐾

ℝ𝑁

bo�om graph

top graph

pr(⋅)(𝒖𝑗 ,𝒛𝑛1
∗ )

Π

(𝒖𝑖 ,𝒛𝑚
∗ )

(𝒖𝑗 ,𝒛𝑛2
∗ )

Fig. 4. Construction of connectivity in the top-graph’ (in full configuration
space RN × RK ) given the connectivity in the ‘bottom-graph’ (in control
space RK ). The sketch depicts (parts of) two branches of the EM lying
‘above’ the control point uj ∈ RK and relative to different multiplicities
(zn1 ̸= zn2 ). Not shown in this figure is the fact that these two branches
might actually reconnect above some set of critical points uc ∈ RK but, for
this to happen, the Hessian ∇2

zzW must be rank-deficient when evaluated
at (zc,uc) and condition (4) no longer holds.

With reference to Fig. 4, given the control nature of the
problem, we assume that an initial graph, referred to as
‘bottom graph’ Gbot, is available. In practice, this corresponds
to having an array (often a regular grid) of S control inputs
{us ∈ U}Ss=1. These sampling locations constitute the set
of vertices for the given bottom graph Gbot. With reference
to the pendulum problem in Fig. 1, the inputs us are taken
to be a regular grid of a region of the workspace and two
vertices are considered connected if they are neighbors in this
regular grid. Figure 4 depicts two vertices ui,uj ∈ U of the
bottom graph and an edge (diagonal, dashed line) connecting
them. The other edges (forming parallelogram) represent
connections to other neighbors and this connectivity pattern
is used to tile up the whole grid.

The objective is to construct a ‘top graph’ Gtop given the
bottom one Gbot. More specifically, given isolated solutions
which constitute the vertices of Gtop and which naturally
project to vertices on Gbot, the objective is to re-construct
the connectivity on Gtop based on the connectivity on Gbot.

To each vertex ui on Gbot there correspond possibly
multiple vertices, denoted as (z∗

m,ui), in Gtop, where m =
1, 2, . . . , is the multiplicity of solutions of (3). Since each
solution z∗

m is found only after the control input ui is
specified, there exists a natural projection

pr : (z∗
m,ui) 7→ ui (18)

Problem Statement: Given a solution (vertex) (z∗
m,ui)

on the top graph and control uj connected to ui on the
bottom graph, we would like to establish which of the
solutions (z∗

n,uj) projecting to uj should be connected to
(z∗

m,ui). In other words, which of the solutions (z∗
n,uj)

lies on the same branch as (z∗
m,ui).

Assuming a relatively dense grid, the idea is to numerically
approximate a branch with a tangent space at (z∗

m,ui).
Therefore, of all possible solutions z∗

n projecting down on
the same uj , we should consider the one for which z∗

n is
‘closest’ to z∗

m + δzj,i,m) where, from eq.(6),

δzj,i,m = −(∇2
zzW |∗mi)

−1∇2
uzW |∗mi(uj − ui) (19)

where the notation |∗mi denotes that the gradients are eval-
uated at (z∗

m,ui).
This is sketched in Fig. 4), where the plane Π is tangent

at (z∗
n,uj) to the m-th branch, according to eq.(6).

Remark [fiber-wise distance]: The reasoning above made
use of the concept of ‘closeness’ between z∗

n and z∗
m + δz.

This distance is evaluated on the ‘fiber’ above uj and this
distance is inherent to the mechanical configuration of the
space Z ∈ RN . We assume a fiber-wise distance, perhaps
multiple ones, can always for a given problem at hand.
In the specific case of the pendulum, it simply refers to
difference in orientation α between two configurations and
such a difference is evaluated modulo 2π

Once a connectivity is built on Gtop, each edge can be
assigned a non-negative weight: if two vertices (z∗

n,uj)
and (z∗

m,ui) of the top graph Gtop are connected, a non-
negative weight wj,i,m is defined as the squared-Hessian:

wj,i,m := (uj − ui)
TG|2∗mi(uj − ui) (20)

where G|∗mi is the Hessian defined in (8) and evaluated at
(z∗

m,ui).
Standard search algorithms are available for finding opti-

mal paths on graphs given non-negative weight connectivity.
Fig. 5 shows a graph Gtop obtained from numerical solutions
following the procedure described above. An optimal path is
highlighted connecting two points, chosen to be on different
branches. One noteworthy aspect is that the the only way to
go up on the ‘staircase’ (i.e. reversing the pendulum) is to
pass through the intersections between ‘floor’ and ‘staircase’.
In this sense, the algorithm is able to navigate a multivalued
map, finding passageways in-between branches.
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1

u
x
 [m]

0-4

-3

-2

-1

0

z
*  [

d
e
g
]

1

2

-1

3

1.5

4

u
y
 [m]

1 0.5 0 -0.5 -1 -1.5

Fig. 5. Minimum paths over the top-graph Gtop connecting several
(arbitrary) initial points to the same final point, which lies on a different
branch. All paths go through the intersection between the two branches,
corresponding to the the fact that the agent has to make physical contact
with the pendulum, in order to invert it.

We believe that this might lead to a topological description
of the manipulation tasks.
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