
Revisiting LQR Control from the Perspective of
Receding-Horizon Policy Gradient

Xiangyuan Zhang Tamer Başar

Abstract— We revisit in this paper the discrete-time linear
quadratic regulator (LQR) problem from the perspective of
receding-horizon policy gradient (RHPG), a newly developed
model-free learning framework for control applications. We
provide a fine-grained sample complexity analysis for RHPG
to learn a control policy that is both stabilizing and ε-close to
the optimal LQR solution, and our algorithm does not require
knowing a stabilizing control policy for initialization. Combined
with the recent application of RHPG in learning the Kalman
filter, we demonstrate the general applicability of RHPG in
linear control and estimation with streamlined analyses.

I. INTRODUCTION

Model-free policy gradient (PG) methods promise a uni-
versal end-to-end framework for controller designs. By utiliz-
ing input-output data of a black-box simulator, PG methods
directly search the prescribed policy space until convergence,
agnostic to system models, objective function, and design
criteria/constraints. The general applicability of PG methods
leads to countless empirical successes in continuous control,
but the theoretical understanding of these PG methods is still
in its early stage. Stemmed from the convergence theory of
PG methods for general reinforcement learning tasks [1], [2],
a recent thrust of research has specialized the analysis for
the convergence and sample complexity of PG methods into
several linear state-feedback control benchmarks [3]–[10].
However, incorporating imperfect-state measurements leads
to a deficit of most, if not all, favorable landscape properties
crucial for PG methods to converge (globally) in the state-
feedback settings [10], [11]. Even worse, the control designer
now faces several challenges unique to control applications:
a) convergence might be toward a suboptimal stationary point
without system-theoretic interpretations; b) provable stability
and robustness guarantee could be lacking; c) convergence
depends heavily on the initialization (e.g., the initial policy
should be stabilizing), which would be challenging to hand-
craft; and d) algorithm could be computationally inefficient.
These bottlenecks blur the applicability of model-free PG
methods in real-world control scenarios since the price for
each of the above disadvantages could be unaffordable.

Classic theories provide both elegant analytic solutions
and efficient computational means (e.g., Riccati recursions)
to a wide range of control problems [12]–[14]. They further
reveal the intricate structure in various control settings and
offer system-theoretical interpretations and guarantees to
their characterized solutions. They suggest that, compared to

XZ and TB are with the Department of ECE and CSL, the University
of Illinois Urbana-Champaign, Urbana, IL 61801 USA (e-mails: {xz7,
basar1}@illinois.edu). Research of the authors was supported in part by
ARO MURI Grant AG285 and in part by AFOSR Grant FA9550-19-1-0353.

viewing the dynamical system as a black box and studying
the properties of PG methods from a (nonconvex) optimiza-
tion perspective, it is better to incorporate those properties
unique to decision and control into the design of learning
algorithms.

In this work, we revisit the classical linear quadratic
regulator (LQR) problem from the perspective of the newly-
developed receding-horizon PG (RHPG) framework [15],
which fuses Bellman’s principle of optimality into the de-
velopment of a model-free PG framework. First, RHPG
approximates infinite-horizon LQR using a finite-horizon
problem formulation and further decomposes the finite-
horizon problem into a sequence of one-step sub-problems.
Second, RHPG solves each sub-problem recursively using
model-free PG methods. To accommodate the inevitable
computational errors in solving these sub-problems, we es-
tablish the generalized principle of optimality that bounds the
accumulated bias by controlling the inaccuracies in solving
each sub-problem. We characterize the convergence and sam-
ple complexity of RHPG in Section III-D and emphasize that
the RHPG algorithm does not require knowing a stabilizing
initial control policy a priori.

Compared with [3], [5], we provide a new parametrization
and perspective in learning for control with performance
guarantees and streamlined analyses. By unifying existing
control theory into the design of learning algorithms, our
work and [15] aim to explore a promising path toward the
theoretical foundation of PG methods in addressing partially
observable and nonlinear control through the lens of RHPG.
Compared with [9], [16], [17] that have also removed the
assumption on an initial stabilizing point in LQR, we provide
more explicit choices of various parameters in the RHPG
algorithm. Moreover, the RHPG framework can be directly
extended to solve output-feedback control problems [15]. At
the same time, the results for discounted LQR can hardly
be generalized further since its optimization landscapes are
identical to those in un-discounted LQR, with essentially
scaled versions of system parameters. We defer an extensive
literature review to the technical report [18].

II. PRELIMINARIES

A. Infinite-Horizon LQR

Consider the discrete-time linear dynamical system1

xt+1 = Axt +But, (2.1)

1For extensions to stochastic LQR with i.i.d. additive noises, as well as
the setting with an arbitrary (deterministic) initial state, see Sec. H of [18].

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 1967

where xt ∈ Rn is the state; ut ∈ Rm is the control input;
A ∈ Rn×n and B ∈ Rn×m are system matrices unknown to
the control designer; and the initial state x0 ∈ Rn is sampled
from a zero-mean distribution D that satisfies Cov(x0) =
Σ0 > 0. The goal in the LQR problem is to obtain the
optimal controller ut = φt(xt) that minimizes the cost

J∞ := Ex0∼D

[∞∑
t=0

(
x>t Qxt + u>t Rut

)]
, (2.2)

where Q > 0 and R > 0 are symmetric positive-definite
(pd) weightings chosen by the control designer. For the LQR
problem as posed to admit a solution, we require (A,B) to be
stabilizable. Note that here Q > 0 implies the observability
of (A,Q1/2). Then, the unique optimal LQR controller is
linear state-feedback, i.e., u∗t = −K∗xt, and K∗ ∈ Rm×n,
which with a slight abuse of terminology we will call optimal
control policy, can be computed by

K∗ = (R+B>P ∗B)−1B>P ∗A, (2.3)

where P ∗ is the unique positive definite (pd) solution to the
algebraic Riccati equation (ARE)

P = Q+A>PA−A>PB(R+B>PB)−1B>PA. (2.4)

Moreover, the optimal control policy K∗ is guaranteed to
be stabilizing, i.e., ρ(A − BK∗) < 1. Therefore, we can
parametrize LQR as an optimization problem over the policy
space Rm×n, subject to the stability condition [3]:

min
K
J∞(K) = Ex0∼D

[∞∑
t=0

(
x>t (Q+K>RK)xt

)]
(2.5)

s.t. K ∈ K := {K | ρ(A−BK) < 1}. (2.6)

Theoretical properties of model-free (zeroth-order) PG meth-
ods in solving (2.5) have been well understood [3], [5],
[19]. In particular, the objective function (2.5), even though
nonconvex, is coercive and (globally) gradient dominated
[19]. Hence, if an initial control policy K0 ∈ K is known
a priori, then any descent direction of the objective value
(e.g., vanilla PG) suffices to ensure that all the iterates will
remain in the interior of K while quickly converging toward
the unique stationary point. Removing the assumption on K0

(that an initial stabilizing policy can readily be found) has
remained an active research topic [9], [16], [17].

B. Finite-Horizon LQR

The finite-N -horizon version of the LQR problem is
also described by the system dynamics (2.1), but with the
objective function summing up only up to time t = N .
Similar to (2.5), we can parametrize the finite-horizon LQR
problem as min{Kt} J

(
{Kt}

)
, where

J
(
{Kt}

)
:=Ex0∼D

[
N−1∑
t=0

x>t (Q+K>t RKt)xt+x
>
NQNxN

]
, (2.7)

and QN is a symmetric pd terminal-state weighting to be
chosen. The unique optimal control policy in the finite-
horizon LQR is time-varying and can be computed by

K∗t = (R+B>P ∗t+1B)−1B>P ∗t+1A, (2.8)

where P ∗t , for all t ∈ {0, · · · , N − 1}, are generated by the
Riccati difference equation (RDE) starting with P ∗N = QN :

P ∗t = Q+A>P ∗t+1A

−A>P ∗t+1B(R+B>P ∗t+1B)−1B>P ∗t+1A. (2.9)

Theoretical properties of zeroth-order PG methods in ad-
dressing (2.7) have been studied in [7], [8]. Compared to the
infinite-horizon setting (2.5), the finite-horizon LQR problem
(2.7) is also a nonconvex and gradient-dominated problem,
but it does not naturally require the stability condition (2.6).

III. RECEDING-HORIZON POLICY GRADIENT

A. LQR with Dynamic Programming

It is well known that the solution of the RDE (2.9)
converges monotonically to the stabilizing solution of the
ARE (2.4) exponentially [20]. It then readily follows that
the sequence of time-varying LQR policies (2.8), denoted
as {Kt}t∈{N−1,··· ,0}, converges monotonically to the time-
invariant LQR policy K∗ as N → ∞. Furthermore, if QN
satisfies QN > P ∗, then the time-varying LQR policies are
stabilizing when treated as frozen. Now, we formally present
this convergence result in the following theorem.

Theorem 3.1: Let A∗K := A−BK∗, use ‖ · ‖∗ to denote
the P ∗-induced norm, and define

N0 =
1

2
·

log
(‖QN−P∗‖∗·κP∗ ·‖A∗

K‖·‖B‖
ε·λmin(R)

)
log
(

1
‖A∗

K‖∗

) + 1. (3.1)

Then, it holds that ‖A∗K‖∗ < 1 and for all N ≥ N0,
the control policy K∗0 computed by (2.8) is stabilizing and
satisfies ‖K∗0 −K∗‖ ≤ ε for any ε > 0.

We provide the proof of Theorem 3.1 in Appendix-B. The-
orem 3.1 demonstrates that if selecting N ∼ O(log(ε−1)),
then solving the finite-horizon LQR will result in a policy
K∗0 that is stabilizing and also ε-close to K∗, for any ε > 0.

B. Algorithm Design

We propose the RHPG algorithm (cf., Algorithm 1),
which first selects N by Theorem 3.1, and then sequentially
decomposes the finite-N -horizon LQR problem backward
in time. In particular, for every iteration indexed by h ∈
{N−1, · · · , 0}, the RHPG algorithm solves an LQR problem
from t = h to t = N , where we only optimize for the
current policy Kh and fix all the policies {Kt} for t ∈
{h+1, · · · , N −1} to be the convergent solutions generated
from earlier iterations. Concretely, for every h, the RHPG
algorithm solves the following quadratic program in Kh:

min
Kh

Jh(Kh) := Exh∼D

[N−1∑
t=h+1

x>t
(
Q+ (K∗t)>RK∗t

)
xt

+ x>h
(
Q+K>h RKh

)
xh + x>NQNxN

]
. (3.2)

1968

Algorithm 1: RHPG
Input: horizon N , max iterations {Th}, smoothing

radius {rh}, stepsizes {ηh}
1 for h = N − 1, · · · , 0 do
2 Initialize Kh,0 arbitrarily (e.g., zero matrix);
3 for i = 0, · · · , Th − 1 do
4 // sample PG update via a zeroth-order oracle
5 Sample K+

h,i = Kh,i + rhU and
K−h,i = Kh,i − rhU , where U is uniformly
drawn from the surface of a unit sphere, i.e.,
‖U‖F = 1;

6 Sample xh ∼ D and simulate two trajectories
with policies K+

h,i and K−h,i, respectively.
Compute values Jh(K+

h,i) and Jh(K−h,i);
7 Compute the estimated PG

∇̃Jh(Kh,i)= mn
2rh

[
Jh(K+

h,i)−Jh(K−h,i)
]
U

8 and update Kh,i+1 = Kh,i − ηh · ∇̃Jh(Kh,i);
9 end

10 end
11 Return K0,T0 ;

Due to the quadratic optimization landscape of (3.2) in Kh

for every h, applying any PG method with an arbitrary finite
initial point (e.g., zero) would lead to convergence to the
globally optimal solution of (3.2).

C. Bias of Model-Free Receding-Horizon Control

The RHPG algorithm builds on Bellman’s principle of
optimality, which requires solving each iteration to the exact
optimal solution. However, PG methods can only return
an ε-accurate solution after a finite number of steps. To
generalize Bellman’s principle of optimality, we analyze
how computational errors accumulate and propagate in the
(backward) dynamic programming process. In the theorem
below, we show that if one solves every iteration of the
RHPG algorithm to the O(ε)-neighborhood of the unique
optimum, then the RHPG algorithm will output a policy that
is ε-close to the infinite-horizon LQR policy K∗.

Theorem 3.2: Choose N according to Theorem 3.1 and
assume that one can compute, for all h ∈ {N − 1, · · · , 0}
and some ε > 0, a policy K̃h that satisfies∥∥K̃h − K̃∗h

∥∥ ∼ O(ε)O(1)

+O(ε
3
4)O(poly(system parameters)),

where K̃∗h is the optimum of the LQR from h to N , after
absorbing errors in all previous iterations of Algorithm 1.
Then, the RHPG algorithm outputs a control policy K̃0 that
satisfies

∥∥K̃0 − K∗
∥∥ ≤ ε. Furthermore, if ε is sufficiently

small such that ε < 1−‖A−BK∗‖∗, then K̃0 is stabilizing.
We illustrate Theorem 3.2 in Figure 1 and defer its

proof to Appendix-C. Theorem 3.2 provides specific error
tolerance levels for every iteration of the RHPG algorithm
to ensure that the output policy is at most ε-away from K∗.
Then, it remains to establish the sample complexity for the

Fig. 1. We show that the output policy K̃0 can be made ε-close to K∗ in
two steps. First, Theorem 3.1 proves that K∗0 is ε-close to K∗ by selecting
N accordingly. Then, Theorem 3.2 analyzes the backward propagation of
the computational errors from solving each subproblem, denoted as δt :=
K̃t − K̃∗t for all t, where K̃∗t represents the current optimal LQR policy
after absorbing errors from all previous iterations.

convergence of (zeroth-order) PG methods in every iteration
of the algorithm, which is done next.

D. PG Update and Sample Complexity

We analyze here the sample complexity of the zeroth-order
PG update in solving each iteration of the RHPG algorithm.
Specifically, the zeroth-order PG update is defined as

Kh,i+1 = Kh,i − ηh · ∇̃Jh(Kh,i) (3.3)

where ηh > 0 is the stepsize to be determined and
∇̃Jh(Kh,i) is the estimated PG sampled from a (two-
point) zeroth-order oracle. We formally present the sample
complexity result in the following proposition.

Proposition 3.3: For all h ∈ {0, · · · , N − 1}, choose
a constant smoothing radius rh ∼ O(ε) and a constant
stepsize ηh ∼ O(ε2). Then, the zeroth-order PG update (3.3)
converges after Th ∼ O(1

ε2 log(1
δε2)) iterations in the sense

that
∥∥Kh,Th

− K̃∗h
∥∥ ≤ ε with a probability of at least 1− δ.

For completeness, we provide a supplementary proof of
Proposition 3.3 in Sec. D of [18], which mostly follows
existing results in the literature [5]. Combining Theorem
3.2 with Proposition 3.3, we conclude that if we spend
Õ(ε−2 log(δ−1)) iterations in solving every subproblem to
O(ε)-accuracy with a probability of 1 − δ, for all h ∈
{0, · · · , N − 1}, then the RHPG algorithm will output a
K̃0 that satisfies ‖K̃0 − K∗‖ ≤ ε with a probability of at
least 1 − Nδ. By (3.1), this implies that the total iteration
complexity of RHPG is also Õ(ε−2 log(δ−1)) with the
dependence on various system parameters being polynomial.

We further discuss the tradeoffs in selecting N to balance
minimizing the finite-to-infinite error and minimizing errors
in inexact dynamic programming in Sec. G of [18]. To
compare our sample complexity with the sharpest result in
the literature [5], our dependence on ε matches that of [5]2.
Both our sample complexity and that of [5] have polynomial
dependence on system parameters. However, it is not clear
how to compare the polynomial dependencies, and these

2Note that the Õ(ε−1) sample complexity in [5] is for the convergence in
objective value (e.g., f(K)−f(K∗) ≤ ε), and is equivalent to an Õ(ε−2)·
O(poly(system parameters)) sample complexity for the convergence in
policy (i.e., ‖K −K∗‖ ≤ ε).

1969

Fig. 2. Under six different ε: Left: policy error between the output and
K∗. Right: the total number of calls to the zeroth-order oracle.

polynomial factors might affect the overall computational
efficiency of both algorithms in a major way. We leave this
comparison as an important topic for future research.

IV. NUMERICAL EXPERIMENTS

We verify our theories on a scalar linear system studied
in [5], where A = 5, B = 0.33, Q = R = 1, and the
unique optimal LQR policy is K∗ = 14.5482. For the PG
method in [3], [5] to converge in this simple setting, one
has to initialize with a policy K0 that satisfies K0 ∈ K :=
{K | 12.12 < K ± r < 18.18}, which is necessary to
prevent the zeroth-order oracle with a smoothing radius of
r from perturbing K0 outside of the stabilizing region K
during the first iteration of the PG update. In contrast, we
initialize the PG updates in Algorithm 1 with a zero policy
Kh = 0, set QN = 3, and choose N = ceil(log(ε−1))
according to (3.1). Furthermore, we choose rh =

√
ε, select

a constant stepsize in each iteration of the RHPG algorithm,
and run the algorithm to solve the LQR problem under six
different ε, namely ε ∈ {10−3, 3.16 × 10−3, 10−2, 3.16 ×
10−2, 10−1, 3.16 × 10−1}. We apply the zeroth-order PG
update in solving every subproblem to

∥∥K̃h − K̃∗h
∥∥ ≤ ε. As

shown in Figure 2, the empirical observation of the iteration
complexity of RHPG (right) for the convergence in policy
(left) is around O(ε−2) under varying ε, which corroborates
our theoretical findings.

V. CONCLUSION

We have revisited discrete-time LQR from the perspective
of RHPG and provided a fine-grained sample complexity for
RHPG to learn a control policy that is both stabilizing and
ε-close to the optimal LQR policy. Our result demonstrates
the potential of RHPG in addressing various tasks in linear
control and estimation with streamlined analyses.

REFERENCES

[1] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan.
Optimality and approximation with policy gradient methods in Markov
decision processes. In Conference on Learning Theory, pages 64–66,
2020.

[2] Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Başar. Global
convergence of policy gradient methods to (almost) locally optimal
policies. SIAM Journal on Control and Optimization, 58(6):3586–
3612, 2020.

[3] Maryam Fazel, Rong Ge, Sham M Kakade, and Mehran Mesbahi.
Global convergence of policy gradient methods for the linear quadratic
regulator. In International Conference on Machine Learning, pages
1467–1476, 2018.

[4] Kaiqing Zhang, Bin Hu, and Tamer Başar. Policy optimization for H2

linear control with H∞ robustness guarantee: Implicit regularization
and global convergence. SIAM Journal on Control and Optimization,
59(6):4081–4109, 2021.

[5] Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru,
Peter L Bartlett, and Martin J Wainwright. Derivative-free methods for
policy optimization: Guarantees for linear quadratic systems. Journal
of Machine Learning Research, 21(21):1–51, 2020.

[6] Yingying Li, Yujie Tang, Runyu Zhang, and Na Li. Distributed
reinforcement learning for decentralized linear quadratic control: A
derivative-free policy optimization approach. IEEE Transactions on
Automatic Control, 67(12):6429–6444, 2021.

[7] Ben Hambly, Renyuan Xu, and Huining Yang. Policy gradient methods
for the noisy linear quadratic regulator over a finite horizon. SIAM
Journal on Control and Optimization, 59(5):3359–3391, 2021.

[8] Kaiqing Zhang, Xiangyuan Zhang, Bin Hu, and Tamer Başar.
Derivative-free policy optimization for linear risk-sensitive and robust
control design: Implicit regularization and sample complexity. Ad-
vances in Neural Information Processing Systems, pages 2949–2964,
2021.

[9] Juan C Perdomo, Jack Umenberger, and Max Simchowitz. Stabilizing
dynamical systems via policy gradient methods. Advances in Neural
Information Processing Systems, 34, 2021.

[10] Bin Hu, Kaiqing Zhang, Na Li, Mehran Mesbahi, Maryam Fazel, and
Tamer Başar. Toward a theoretical foundation of policy optimization
for learning control policies. Annual Review of Control, Robotics, and
Autonomous Systems, 6(1):123–158, 2023.

[11] Yang Zheng, Yujie Tang, and Na Li. Analysis of the optimization
landscape of linear quadratic Gaussian (LQG) control. Mathematical
Programming, 2023.

[12] Brian DO Anderson and John B Moore. Optimal Filtering. Prentice-
Hall, 1979.

[13] Brian DO Anderson and John B Moore. Optimal Control: Linear
Quadratic Methods. Prentice-Hall, Inc., 1990.

[14] Tamer Başar and Pierre Bernhard. H-infinity Optimal Control and
Related Minimax Design Problems: A Dynamic Game Approach.
Birkhäuser, Boston, 1995.

[15] Xiangyuan Zhang, Bin Hu, and Tamer Başar. Learning the Kalman
filter with fine-grained sample complexity. In American Control
Conference, pages 4549–4554, 2023.

[16] Andrew Lamperski. Computing stabilizing linear controllers via policy
iteration. In IEEE Conference on Decision and Control, pages 1902–
1907, 2020.

[17] Feiran Zhao, Xingyun Fu, and Keyou You. Learning stabilizing
controllers of linear systems via discount policy gradient. In Learning
for Dynamics and Control, 2022.

[18] Xiangyuan Zhang and Tamer Başar. Revisiting LQR control from
the perspective of receding-horizon policy gradient. arXiv preprint
arXiv:2302.13144, 2023.

[19] Jingjing Bu, Afshin Mesbahi, Maryam Fazel, and Mehran Mesbahi.
LQR through the lens of first order methods: Discrete-time case. arXiv
preprint arXiv:1907.08921, 2019.

[20] Babak Hassibi, Ali H Sayed, and Thomas Kailath. Indefinite-
Quadratic Estimation and Control: A Unified Approach to H2 and
H∞ Theories. SIAM, 1999.

[21] Robert R Bitmead, Michel R Gevers, Ian R Petersen, and R John Kaye.
Monotonicity and stabilizability-properties of solutions of the Riccati
difference equation: Propositions, lemmas, theorems, fallacious con-
jectures and counterexamples. Systems & Control Letters, 5(5):309–
315, 1985.

APPENDIX

A. Notations

We use ‖X‖, κX , and ρ(X) to denote, respectively, the
spectral norm, condition number, and spectral radius of a
square matrix X . We define the W -induced norm of X as

‖X‖2W := max
z 6=0

z>X>WXz

z>Wz
.

1970

If X is symmetric, we use X > 0, X ≥ 0, X ≤ 0, and X <
0 to denote that X is positive definite, positive semi-definite,
negative semi-definite, and negative definite, respectively.

B. Proof of Theorem 3.1

This proof is dual to the proof of Theorem 3.1 in [15].
We first identify one-to-one correspondences between system
parameters in LQR and those in Kalman filtering [15]:

LQR: A B Q R QN
l l l l l

KF [15]: A> C> W V X0

We also identify direct correspondences between our Pt,
P ∗, Kt, and K∗ and [15]’s ΣN−t, Σ∗, LN−1−t, and L∗,
respectively. Then, letting

P̃t := P ∗t − P ∗, R̃ := R+B>P ∗B,

A := A−BR̃−1B>P ∗A,

and following equations (A.2)-(A.3) of [15], we have

P̃t = A
>
P̃t+1A−A

>
P̃t+1B(R̃+B>P̃t+1B)−1B>P̃t+1A

= A
>
P̃

1/2
t+1

[
I + P̃

1/2
t+1BR̃

−1B>P̃
1/2
t+1

]−1
P̃

1/2
t+1A

≤
[
1+λmin(P̃

1/2
t+1BR̃

−1B>P̃
1/2
t+1)

]−1
A
>
P̃t+1A

=:µtA
>
P̃t+1A, (B.1)

where P̃ 1/2
t+1 denotes the unique positive semi-definite (psd)

square root of the psd matrix P̃t+1, 0 < µt ≤ 1 for all t,
and A satisfies ρ(A) < 1. We now use ‖ · ‖∗ to represent
the P ∗-induced matrix norm and invoke Theorem 14.4.1 of
[20], where our P̃t, A

>
and P ∗ correspond to Pi − P ∗, Fp

and W in [20], respectively. By Theorem 14.4.1 of [20] and
(B.1), we obtain ‖A‖∗ < 1 and given that µt ≤ 1,

‖P̃t‖∗ ≤ ‖A‖2∗ · ‖P̃t+1‖∗.

Therefore, the convergence is exponential such that ‖P̃t‖∗ ≤
‖A‖2(N−t)∗ · ‖P̃N‖∗. As a result, the convergence of P̃t to 0
in spectral norm can be characterized as

‖P̃t‖ ≤ κP∗ · ‖P̃t‖∗ ≤ κP∗ · ‖A‖2(N−t)∗ · ‖P̃N‖∗,

where we have used κX to denote the condition number of
X . That is, to ensure ‖P̃1‖ ≤ ε, it suffices to require

N ≥ 1

2
·

log
(‖P̃N‖∗·κP∗

ε

)
log
(

1
‖A‖∗

) + 1. (B.2)

Furthermore, since (A,B) is stabilizable, (A,Q1/2) is de-
tectable, and QN > P ∗, the closed-loop system at any time
t∈ {0, · · ·, N−1} is exponentially asymptotically stable such
that the time-invariant (frozen) LQR policy satisfies [21]

ρ(A−B(R+B>P ∗t+1B)−1B>P ∗t+1A) < 1.

Lastly, we show that the (monotonic) convergence of the
LQR gain to the time-invariant LQR gain follows from the

convergence of P ∗t to P ∗. Similar to (A.5) of [15], this can
be verified through:

K∗t −K∗ = (R+B>P ∗t+1B)−1B>P ∗t+1A

− (R+B>P ∗B)−1B>P ∗A

=
[
(R+B>P ∗t+1B)−1 − (R+B>P ∗B)−1

]
B>P ∗A

+ (R+B>P ∗t+1B)−1B>(P ∗t+1 − P ∗)A
= (R+B>P ∗t+1B)−1B>(P ∗ − P ∗t+1)BK∗

− (R+B>P ∗t+1B)−1B>(P ∗ − P ∗t+1)A

= (R+B>P ∗t+1B)−1B>(P ∗ − P ∗t+1)(BK∗ −A) (B.3)

Hence, we have ‖K∗t −K∗‖ ≤
‖A‖·‖B‖
λmin(R) · ‖P

∗
t+1 − P ∗‖ and

‖K∗0 −K∗‖ ≤
‖A‖ · ‖B‖
λmin(R)

· ‖P̃1‖.

Substituting ε in (B.2) with ε·λmin(R)

‖A‖·‖B‖ completes the proof.

C. Proof of Theorem 3.2

This proof is dual to the proof of Theorem 3.3 in [15].
First, according to Theorem 3.1, we select

N =
1

2
·

log
(2‖QN−P∗‖∗·κP∗ ·‖A∗

K‖·‖B‖
ε·λmin(R)

)
log
(

1
‖A∗

K‖∗

) + 1, (C.4)

where A∗K := A−BK∗. This ensures that K∗0 is stabilizing
and ‖K∗0 − K∗‖ ≤ ε/2. Then, it remains to show that the
output K̃0 satisfies ‖K̃0 −K∗0‖ ≤ ε/2.

Recall that the RDE (2.9) is a backward iteration starting
with P ∗N = QN > 0, and can also be represented as:

P ∗t = A>P ∗t+1

(
A−BK∗t

)
+Q (C.5)

= (A−BK∗t)>P ∗t+1(A−BK∗t)+(K∗t)>RK∗t +Q. (C.6)

Moreover, for any Kt, we define the Lyapunov equation:

Pt = (A−BKt)
>Pt+1(A−BKt) +K>t RKt +Q. (C.7)

Furthermore, for clarity of the proof, we define/recall:

K∗t : Exact LQR policy at time t defined in (2.8)
K̃∗t : Optimal policy of the current cost-to-go function,

absorbing errors in all prior steps

K̃t: An approximation of K̃∗t obtained by the PG update (3.3)
δt := K̃t − K̃∗t : Policy optimization error at time t

P̃ ∗t : Generated by (C.6) with K∗t = K̃∗t and P ∗t+1 = P̃t+1.

We argue that ‖K̃0 − K∗0‖ ≤ ε/2 can be achieved by
carefully controlling δt for all t. At t = 0, it holds that

‖K̃0 −K∗0‖ ≤ ‖K̃∗0 −K∗0‖+ ‖δ0‖,

where substituting K∗t and K∗ in (B.3), respectively, with
K̃∗0 and K∗0 leads to

K̃∗0 −K∗0 = (R+B>P̃1B)−1B>(P ∗1 − P̃1)(BK∗0 −A).

1971

By Theorem 3.1, K∗0 is stabilizing and it holds that P ∗1 ≥ P ∗
due to QN > P ∗. Next, we require ‖P ∗1 − P̃1‖ ≤ ‖P ∗‖ to
ensure the positive definiteness of P̃1 and derive

‖K̃∗0 −K∗0‖ ≤
‖A−BK∗0‖ · ‖B‖

λmin(R)
· ‖P ∗1 − P̃1‖. (C.8)

Define the helper constant

C1 :=
ϕ · ‖B‖
λmin(R)

> 0, ϕ := max
t∈{0,··· ,N−1}

‖A−BK∗t ‖.

Next, require ‖δ0‖ ≤ ε/4 and ‖K̃∗0 − K∗0‖ ≤ ε/4 to fulfill
‖K̃0 −K∗0‖ ≤ ε/2. By (C.8), it suffices to require

‖P ∗1 − P̃1‖ ≤ min

{
‖P ∗‖, ε

4C1

}
. (C.9)

Subsequently, by (C.7), we have

P ∗1 − P̃1 = (P ∗1 − P̃ ∗1) + (P̃ ∗1 − P̃1). (C.10)

The first difference term on the RHS of (C.10) is

P ∗1 − P̃ ∗1 = A>P ∗2
(
A−BK∗1

)
−A>P̃2

(
A−BK̃∗1

)
= A>(P ∗2 − P̃2)(A−BK∗1) +A>P̃2B(K̃∗1 −K∗1). (C.11)

Moreover, the second term on the RHS of (C.10) is

P̃ ∗1 − P̃1 = (A−BK̃∗1)>P̃2(A−BK̃∗1) + (K̃∗1)>RK̃∗1

− (A−BK̃1)>P̃2(A−BK̃1)− (K̃1)>RK̃1

= −(K̃∗1)>B>P̃2A−A>P̃2BK̃
∗
1 +(K̃∗1)>(R+B>P̃2B)K̃∗1

+ K̃>1 B
>P̃2A+A>P̃2BK̃1 − K̃>1 (R+B>P̃2B)K̃1

=
[
(R+B>P̃2B)−1B>P̃2A− K̃∗1

]>
(R+B>P̃2B)·[

(R+B>P̃2B)−1B>P̃2A− K̃∗1
]

−
[
(R+B>P̃2B)−1B>P̃2A− K̃1

]>
(R+B>P̃2B)·[

(R+B>P̃2B)−1B>P̃2A− K̃1

]
(C.12)

= −δ>1 (R+B>P̃2B)δ1, (C.13)

where (C.12) follows from completion of squares. Thus,
combining (C.8), (C.10), (C.11), and (C.13) yields

‖P ∗1 − P̃1‖
≤ ‖P ∗2 − P̃2‖ · ϕ‖A‖+ ‖K̃∗1 −K∗1‖ · ‖B‖ · ‖P̃2‖ · ‖A‖

+ ‖δ1‖2‖R+B>P̃2B‖
≤ ‖A‖ ·

[
ϕ+ C1 · ‖B‖ · ‖P̃2‖

]
· ‖P ∗2 − P̃2‖

+ ‖δ1‖2‖R+B>P̃2B‖. (C.14)

Now, we require

‖P ∗2 − P̃2‖ ≤ min

{
‖P ∗‖, ‖P

∗‖
C2

,
ε

4C1C2
·
}

(C.15)

‖δ1‖ ≤ min

{√
‖P ∗‖
C3

,
1

2

√
ε

C1C3

}
, (C.16)

where C2 and C3 are positive constants defined as

C2 := 2‖A‖ ·
[
ϕ+ C1 · ‖B‖ ·

(
‖QN‖+ ‖P ∗‖

)]
> 0

C3 := 2
[
‖R‖+ ‖B‖2

(
‖QN‖+ ‖P ∗‖

)]
> 0.

Then, conditions (C.15) and (C.16) are sufficient for (C.9)
(and thus for ‖K̃0 − K∗0‖ ≤ ε/2) to hold. Subsequently,
we can propagate the required accuracies in (C.15) and
(C.16) forward in time. Specifically, we iteratively apply
the arguments in (C.14) (i.e., by plugging quantities with
subscript t into the LHS of (C.14) and plugging quantities
with subscript t + 1 into the RHS of (C.14)) to obtain the
result that if at all t ∈ {2, · · · , N − 1}, we require

‖P ∗t − P̃t‖ ≤ min

{
‖P ∗‖, ‖P

∗‖
Ct−12

,
ε

4C1C
t−1
2

}
(C.17)

‖δt‖ ≤ min

{√
‖P ∗‖
C3

,

√
‖P ∗‖
Ct−22 C3

,
1

2

√
ε

C1C
t−2
2 C3

}
,

then (C.15) holds true and therefore (C.9) is satisfied.
We now compute the required accuracy for δN−1. Note

that P ∗N−1 = P̃ ∗N−1 since no prior computational errors
happened at t = N . By (C.14), the distance between P ∗N−1
and P̃N−1 can be bounded as

‖P ∗N−1 − P̃N−1‖ = ‖P̃ ∗N−1 − P̃N−1‖ ≤ ‖δN−1‖2 · C3.

To fulfill the requirement (C.17) for t = N − 1, which is

‖P ∗N−1 − P̃N−1‖ ≤ min

{
‖P ∗‖, ‖P

∗‖
CN−22

,
ε

4C1C
N−2
2

}
,

it suffices to let

‖δN−1‖≤min

{√
‖P ∗‖
C3

,

√
‖P ∗‖
CN−2

2 C3

,
1

2

√
ε

C1C
N−2
2 C3

}
. (C.18)

Finally, we analyze the worst-case complexity of RHPG
by computing, at the most stringent case, the required size
of ‖δt‖. When C2 ≤ 1, the most stringent dependence of
‖δt‖ on ε happens at t = 0, which is of the order O(ε), and
the dependences on system parameters are O(1). We then
analyze the case where C2 > 1, where the requirement on
‖δ0‖ is still O(ε) · O(1). Note that in this case, ‖δN−1‖ ≤
‖δt‖ for all t ∈ {1, · · · , N − 1} and by (C.18):

‖δN−1‖ ∼ O
(√ ε

C1C
N−2
2 C3

)
. (C.19)

Since we require N to satisfy (C.4), the dependence of
‖δN−1‖ on ε in (C.19) becomes ‖δN−1‖ ∼ O(ε

3
4) with

additional polynomial dependences on system parameters,
but one can observe that the dependence on ε is still milder
than the requirement for ‖δ0‖. Therefore, it suffices to require
error bound for all t to be

‖δt‖ ∼ O(ε) ·O(1) +O(ε
3
4) ·O(poly(system parameters))

to reach the ε-neighborhood of the infinite-horizon LQR
policy. Lastly, for K̃0 to be stabilizing, it suffices to select a
sufficiently small ε to satisfy the crude bound of

ε < 1− ‖A−BK∗‖∗ =⇒ ‖A−BK̃0‖∗ < 1.

This completes the proof.

1972

