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Abstract— We study the prescribed-time design problem for
strict-feedback nonlinear systems with multiplicative measure-
ment noise. With the assumption that the noise is small and
linearly vanishing, we propose a new postulated feedback to
solve the prescribed-time mean-square stabilization problem.
In contrast to the existing stochastic prescribed-time designs,
the merit of our design is that it can effectively deal with mul-
tiplicative measurement noise. The existence of measurement
noise makes the design rather challenging since the resulting
process noise intensity, in closed loop, depends on the feedback
gains and even goes to infinity. Finally, a simulation example
is given to illustrate the design.

I. INTRODUCTION

The control design with sensor uncertainties has attracted
much attention in the past two decades due to their wide
engineering applications [1]-[2]. [3]-[4] focus on the output-
feedback stabilization design for nonlinear systems with
unknown measurement sensitivity, which are deterministic
constants or bounded time-varying functions. As shown
in [5], it is more reasonable to study the eye and arm
movements based on the assumption that the neural con-
trol signals are corrupted by noise, which motivates the
study of the stochastic sensor sensitivity. For linear systems
whose white noise sources have intensities affinely related
to the variance of the signal they corrupt, [6] provides
necessary and sufficient conditions to guarantee the mean-
square state-feedback stabilization; Recently, [7] proposes
two designs to solve the mean-square stabilization problems
for lower-triangular/upper-triangular nonlinear systems with
multiplicative stochastic sensor uncertainty. It should be em-
phasized that, [6]-[7] only achieve mean-square stabilization
in asymptotic sense. However, many real applications require
that the mean-square stabilization be achieved in prescribed-
time, rather than as time goes to infinity.

Prescribed-time control has been receiving increasing at-
tention due to its wide applications in tactical missile guid-
ance [8] and other applications in which there exists a short,
finite amount of time remaining to achieve control objectives.
The advantage of such control is that it allows the user to
prescribe the convergence times a priori and irrespective of
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initial conditions. There are fruitful results for the prescribed-
time control of deterministic systems [9]-[17]. When it turns
to the stochastic prescribed-time control, [18] proposes a new
nonscaling backstepping state-feedback design, which is the
first result on the prescribed-time mean-square stabilization
and inverse optimality control for stochastic strict-feedback
nonlinear systems; [19] adopts scaled quartic Lyapunov
functions to reduce the control effort in [18]; [20] solves
the prescribed-time output-feedback control problems for
stochastic nonlinear systems without/with sensor uncertain-
ty; [21] proposes a prescribed-time mean-nonovershooting
stabilizing feedback law for stochastic nonlinear systems
with noise that vanishes in finite time. Although [18]-
[21] concentrate on the prescribed-time control of stochastic
nonlinear systems, they don’t consider systems with multi-
plicative measurement noise. Noting that stochastic sensor
uncertainty is ubiquitous in engineering, it is imperative to
study the prescribed-time control for nonlinear systems with
multiplicative measurement noise.

Motivated by the above observations, we study the
prescribed-time stabilization problem for strict-feedback
nonlinear systems with multiplicative measurement noise.
The contributions of this paper are two-fold:

(1) We present a new design framework for nonlinear
systems with multiplicative measurement noise. Unlike the
design for linear systems in [6] where the control gain and
the noise intensity are coupled in a linear matrix inequality,
we develop a step by step gain design for nonlinear systems,
which clearly shows what the control gains are. Different
from the design for nonlinear systems in [7] where time-
invariant controllers are designed to achieve asymptotic
mean-square stability, our design can drive the system to
be prescribed-time mean-square stable.

(2) The existence of multiplicative noise makes stochastic
prescribed-time designs in [18]-[21] inapplicable. In order to
handle the multiplicative noise, we propose a new postulated
controller whose gains are designed step by step. Different
from the designs in [18]-[21] where the controller is designed
recursively, in our design, the feedback is inserted into the
system, which leads to the process noise intensity actually
being nonzero, depending on the feedback gains, and even
going to infinity at the terminal time. How to select the
control gains to prescribed-time stabilize the system in the
presence of the nonlinearities is a hard problem.

The remainder of this paper is organized as follows.
Section II is on problem formulation. Section III is focused
on the prescribed-time design and stability analysis. Section
Section IV gives a example to illustrate the theoretical
results. Section V includes some concluding remarks.
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II. PROBLEM FORMULATION
Consider a class of nonlinear systems described by

ẋi = xi+1 + fi(t, x), i = 1, . . . , n− 1, (1)
ẋn = u+ fn(t, x), (2)

where x = (x1, . . . , xn)T ∈ Rn and u ∈ R are the system
state and control input. The function fi : R+ × Rn → R
is piecewise continuous in t, locally bounded and locally
Lipschitz continuous in x uniformly in t ∈ R+, fi(t, 0) = 0,
i = 1, . . . , n.

We observe the state xi as yi, which is described by

yi = xi(1 + gi(t)ω̇i), i = 1, . . . , n, (3)

or

yidt = xidt+ gi(t)xidωi, i = 1, . . . , n, (4)

where g1(t), . . . , gn(t) are continuous functions and
ω1, . . . , ωn are scalar independent standard Wiener pro-
cesses defined on the complete filtered probability space
(Ω,F ,Ft, P ) with a filtration Ft satisfying the usual con-
ditions (i.e., it is increasing and right continuous while F0

contains all P -null sets).
We introduce the following scaling function:

µ(t) =

(
T

t0 + T − t

)2

,∀ t ∈ [t0, t0 + T ), (5)

where T > 0 is the freely prescribed time.
Obviously, µ(t) is a monotonically increasing function on

[t0, t0 + T ) with µ(t0) = 1 and lim
t→t0+T

µ(t) = +∞ (In this

paper, lim
t→t0+T

means t approaches t0 +T “from the left” or

“from below”).
We design a new controller as

u = −k1µny1 − k2µn−1y2 − . . .− knµyn, (6)

where k1, . . . , kn are positive control gains to be designed
later.

By (3)-(4) and (6), system (1)-(2) can be written as

dxi = (xi+1 + fi(t, x))dt, i = 1, . . . , n− 1, (7)

dxn =
(
−

n∑
i=1

kiµ
n+1−ixi + fn(t, x)

)
dt+G(x)dω, (8)

where ω = (ω1, . . . , ωn)T and

G(x) = (−k1g1µnx1, . . . ,−kngnµxn). (9)

For system (1)-(2), we need the following assumption.
Assumption 1. For i = 1, . . . , n, there exists a nonnega-

tive constant ci such that

|fi(t, x)| ≤ ci(|x1|+ . . .+ |xi|). (10)

The noise intensity gi(t) satisfies the following linearly
vanishing condition.

Assumption 2. For i = 1, . . . , n, there exists a positive
constant δi such that

|gi(t)| ≤ δi

(
1− t− t0

T

)
, ∀t ∈ [t0, t0 + T ). (11)

In this paper, with Assumptions 1-2, when the noise power
δi is sufficient small, we aim to design the control gains
k1, . . . , kn to make system (7)-(9) achieve prescribed-time
mean-square stable with lim

t→t0+T
E|x|2 = 0.

III. PRESCRIBED-TIME DESIGN AND
STABILITY ANALYSIS

In this section, we first develop a new design scheme for
the control gains k1, . . . , kn, then analyze the stability of the
closed-loop system.

Step 1. Define V1 = 1
2ξ

2
1 , ξ1 = x1, then from (7) we have

LV1 = ξ1(x2 − x∗2) + ξ1x
∗
2 + ξ1f1. (12)

From (10) we get

ξ1f1 ≤ c1ξ21 . (13)

We choose

α1 = n+ c1, (14)
x∗2 = −α1µξ1. (15)

Substituting (13)-(15) into (12) yields

LV1 ≤ −nµξ21 + ξ1(x2 − x∗2). (16)

Step 2. Define ξ2 = x2 − x∗2, from (15) we get

ξ2 = x2 + α1µξ1. (17)

It follows from (7) and (17) that

dξ2 =
(
x3 + f2 +

2

T
µ3/2α1ξ1 + µα1(x2 + f1)

)
dt. (18)

Choose the new scaled Lyapunov function

V2 = V1 +
1

2µ2
ξ22 . (19)

By (16), (18) and (19) we get

LV2 ≤ −nµξ21 + ξ1ξ2 +
1

µ2
ξ2x3 −

2

T
µ−3/2ξ22

+
1

µ2
ξ2

(
f2 +

2

T
µ3/2α1ξ1 + µα1(x2 + f1)

)
. (20)

By Young’s inequality in [22] we obtain

ξ1ξ2 ≤
1

2
µξ21 +

1

2µ
ξ22 . (21)

From (10) and (17) we have∣∣∣∣f2 +
2

T
µ3/2α1ξ1 + µα1(x2 + f1)

∣∣∣∣
≤ c2(|x1|+ |x2|) +

2

T
α1µ

3/2|ξ1|+ α1µ(|x2|+ c1|x1|)

≤
(
c1α1µ+ c2 +

2

T
α1µ

3/2
)
|ξ1|+ (c2 + α1µ)|ξ2

− α1µξ1|

=
(
c1α1µ+ c2 +

2

T
α1µ

3/2 + c2α1µ+ α2
1µ

2
)
|ξ1|

+ (c2 + α1µ)|ξ2|

≤
(
c1α1 + c2 +

2

T
α1 + c2α1 + α2

1

)
µ2|ξ1|

+ (c2 + α1)µ|ξ2|. (22)
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By (22) and Young’s inequality we get

1

µ2
ξ2

(
f2 +

2

T
µ3/2α1ξ1 + µα1(x2 + f1)

)
≤ 1

µ
(c2 + α1)ξ22 +

(
c1α1 + c2 +

2

T
α1 + c2α1

+ α2
1

)
|ξ1||ξ2|

≤ 1

2
µξ21 +

1

2µ

(
2c2 + 2α1 +

(
c1α1 + c2 +

2

T
α1

+ c2α1 + α2
1

)2)
ξ22 . (23)

Substituting (21) and (23) into (20) yields

LV2 ≤ −(n− 1)µξ21 +
1

µ2
ξ2(x3 − x∗3) +

1

µ2
ξ2x
∗
3

+
1

2µ

(
1 + 2c2 + 2α1 +

(
c1α1 + c2 +

2

T
α1

+c2α1 + α2
1

)2)
ξ22 . (24)

If we choose

α2 = n− 1 +
1

2

(
1 + 2c2 + 2α1 +

(
c1α1 + c2

+
2

T
α1 + c2α1 + α2

1

)2)
, (25)

x∗3 = −α2µξ2, (26)

then we have

LV2 ≤ −(n− 1)µξ21 − (n− 1)
1

µ
ξ22 +

1

µ2
ξ2(x3 − x∗3). (27)

Deductive Step. Assume that at step k, there are a set of
virtual controllers x∗2, . . . , x

∗
k+1 defined by

x∗2 = −α1µξ1, ξ1 = x1, (28)
x∗3 = −α2µξ2, ξ2 = x2 − x∗2, (29)
...

...
x∗k+1 = −αkµξk, ξk = xk − x∗k, (30)

such that

LVk ≤ −
k∑
i=1

(n− k + 1)
1

µ2i−3 ξ
2
i

+
1

µ2k−2 ξk(xk+1 − x∗k+1), (31)

where α1, . . . , αk are positive constants and

Vk =

k∑
i=1

1

2µ2i−2 ξ
2
i . (32)

To complete the induction, at the k+1th step, we consider
the ξk+1-system.

Let ξk+1 = xk+1 − x∗k+1, from (28)-(30) we have

ξk+1 = xk+1 +

k∑
s=1

αs . . . αkµ
k+1−sxs. (33)

By (7) and (33) we get

dξk+1 =
(
xk+2 + fk+1 +

k∑
s=1

αs . . . αkµ
k+1−s(xs+1 + fs)

+
2

T

k∑
s=1

(k + 1− s)αs . . . αkµk−s+3/2xs

)
dt. (34)

We choose the new Lyapunov function

Vk+1 = Vk +
1

2µ2k
ξ2k+1. (35)

It follows from (31), (34)-(35) and Itô’s formula that

LVk+1 ≤ −
k∑
i=1

(n− k + 1)
1

µ2i−3 ξ
2
i +

1

µ2k−2 ξkξk+1

− 2

T
kµ−2k+1/2ξ2k+1 +

1

µ2k
ξk+1xk+2 +

1

µ2k
ξk+1

·
(
fk+1 +

k∑
s=1

αs . . . αkµ
k+1−s(xs+1 + fs)

+
2

T

k∑
s=1

(k + 1− s)αs . . . αkµk−s+3/2xs

)
. (36)

From Young’s inequality we get
1

µ2k−2 ξkξk+1 ≤ 1

2µ2k−3 ξ
2
k +

1

2µ2k−1 ξ
2
k+1. (37)

By (10) we obtain
k∑
s=1

αs . . . αkµ
k+1−s(xs+1 + fs)

≤
k∑
s=1

αs . . . αkµ
k+1−s(cs(|x1|+ . . .+ |xs|) + |xs+1|)

=

k∑
s=1

s∑
j=1

csαs . . . αkµ
k+1−s|xj |

+

k∑
s=1

αs . . . αkµ
k+1−s|xs+1|

=
( k∑
s=1

csαs . . . αkµ
k+1−s

)
|x1|+ αkµ|xk+1|

+

k∑
j=2

(
αj−1 . . . αkµ

k+2−j +

k∑
s=j

csαs . . . αk

·µk+1−s
)
|xj |. (38)

Denoting

4k+1,1 = ck+1 +

k∑
s=1

csαs . . . αk +
2

T
kα1 . . . αk, (39)

4k+1,j = ck+1 + αj−1 . . . αk +

k∑
s=j

csαs . . . αk

+
2

T
(k + 1− j)αj . . . αk, 2 ≤ j ≤ k, (40)

4k+1,k+1 = ck+1 + αk, (41)
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we have

fk+1 +

k∑
s=1

αs . . . αkµ
k+1−s(xs+1 + fs)

+
2

T

k∑
s=1

(k + 1− s)αs . . . αkµk−s+3/2xs

≤ 4k+1,1µ
k+1|x1|+

k∑
j=2

4k+1,jµ
k+2−j |xj |

+4k+1,k+1µ|xk+1|

≤ 4k+1,1µ
k+1|ξ1|+

k∑
j=2

4k+1,jµ
k+2−j |ξj |

+

k∑
j=2

4k+1,jµ
k+3−jαj−1|ξj−1|

+4k+1,k+1µ|ξk+1|+4k+1,k+1µ
2αk|ξk|

=
k∑
j=1

(4k+1,j +4k+1,j+1αj)µ
k+2−j |ξj |

+4k+1,k+1µ|ξk+1|. (42)

By Young’s inequality we get

1

µ2k
|ξk+1|

k−1∑
j=1

(4k+1,j +4k+1,j+1αj)µ
k+2−j |ξj |

=

k−1∑
j=1

(4k+1,j +4k+1,j+1αj)µ
2−j−k|ξj ||ξk+1|

≤ 1

4µ2k−1

k−1∑
j=1

(4k+1,j +4k+1,j+1αj)
2ξ2k+1

+

k−1∑
j=1

1

µ2j−3 ξ
2
j (43)

and
1

µ2k
|ξk+1|(4k+1,k +4k+1,k+1αk)µ2|ξk|

=
1

µ2k−2 (4k+1,k +4k+1,k+1αk)|ξk||ξk+1|

≤ 1

2µ2k−1 (4k+1,k +4k+1,k+1αk)2ξ2k+1

+
1

2µ2k−3 ξ
2
k. (44)

It can be inferred from (42)-(44) that

1

µ2k
|ξk+1|

∣∣∣fk+1 +

k∑
s=1

αs . . . αkµ
k+1−s(xs+1 + fs)|

+
2

T

k∑
s=1

(k + 1− s)αs . . . αkµk−s+3/2xs

∣∣∣
≤
k−1∑
j=1

1

µ2j−3 ξ
2
j +

1

2µ2k−3 ξ
2
k +

1

4µ2k−1

(
44k+1,k+1

+ 2(4k+1,k +4k+1,k+1αk)2

+

k−1∑
j=1

(4k+1,j +4k+1,j+1αj)
2
)
ξ2k+1. (45)

Substituting (37) and (45) into (36) yields

LVk+1 ≤−
k∑
i=1

(n− k)
1

µ2i−3 ξ
2
i +

1

µ2k
ξk+1(xk+2 − x∗k+2)

+
1

4µ2k−1

(
2 + 2(4k+1,k +4k+1,k+1αk)2

+

k−1∑
j=1

(4k+1,j +4k+1,j+1αj)
2

+44k+1,k+1

)
ξ2k+1 +

1

µ2k
ξk+1x

∗
k+2. (46)

Choosing the virtual controller

αk+1 = n− k +
1

4

(
2 + 2(4k+1,k +4k+1,k+1αk)2

+

k−1∑
j=1

(4k+1,j +4k+1,j+1αj)
2 + 44k+1,k+1

)
, (47)

x∗k+2 =−αk+1µξk+1, (48)

then we have

LVk+1 ≤ −
k+1∑
i=1

(n− k)
1

µ2i−3 ξ
2
i

+
1

µ2k
ξk+1(xk+2 − x∗k+2). (49)

Step n. Defining

ξn = xn + αn−1µξn−1, (50)

by (7), (8), (33) and (50) we have

dξn =
(
−

n∑
i=1

kiµ
n+1−ixi + fn(t, x)

+

n−1∑
s=1

αs . . . αn−1µ
n−s(xs+1 + fs)

+
2

T

n−1∑
s=1

(n− s)αs . . . αn−1µn−s+1/2xs

)
dt

+G(x)dω. (51)

Choosing

Vn =

n∑
i=1

1

2µ2i−2 ξ
2
i , (52)

by (9), (51) and (52), similar to (46) we have

LVn ≤ −
n−1∑
i=1

1

µ2i−3 ξ
2
i +

1

µ2(n−1) ξnx
∗
n+1

+
1

µ2(n−1) ξn

(
−

n∑
i=1

kiµ
n+1−ixi − x∗n+1

)
+

1

2µ2n−2

n∑
i=1

k2i g
2
i µ

2n+2−2ix2i

+
1

4µ2n−34nξ
2
n, (53)
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where 4n > 0 is a constant.
Choosing

αn = −1 +
1

4
4n, (54)

x∗n+1 = −αnµξn, (55)

then we get

LVn ≤−
n∑
i=1

1

µ2i−3 ξ
2
i +

1

2

n∑
i=1

k2i g
2
i µ

4−2ix2i

+
1

µ2(n−1) ξn

(
−

n∑
i=1

kiµ
n+1−ixi − x∗n+1

)
. (56)

It follows from (28)-(30), (48) (50) and (55) that

x∗n+1 = −
n∑
i=1

αi . . . αnµ
n+1−ixi. (57)

If we choose

ki =

n∏
s=i

αs, (58)

from (56)-(58) we get

LVn ≤ −
n∑
i=1

1

µ2i−3 ξ
2
i +

1

2

n∑
i=1

k2i g
2
i µ

4−2ix2i . (59)

We are now ready to state the main stability results on
system (1)-(2).

Theorem 1. Consider the plant consisting of (1)-(2), (3)
and (6). If Assumptions 1-2 hold and the noise power δi
satisfies

0 < δn <
1

αn−1αn
, (60)

0 < δi < min

{√
1− (

∏n
s=i+1 αs)

2δ2i+1α
2
i∏n

s=i αs
,

1∏n
s=i−1 αs

}
, 1 ≤ i ≤ n− 1, (61)

where α0 = 1, then the following conclusions hold:
1) The plant has an almost surely unique solution on

[t0, t0 + T );
2) The plant is prescribed-time mean-square stabilized

with lim
t→t0+T

E|x|2 = 0. Specifically, ∀ t ∈ [t0, t0 + T ),

we have

E|x|2 ≤ 2µ2n(1 + α)e−c0T
2( 1

t0+T−t−
1
T )

·
(
x21(t0) +

n∑
k=2

(
xk(t0) +

k−1∑
s=1

k−1∏
j=s

αjxs(t0)
)2)

. (62)

Proof. Due to the page limit, the proof of this theorem is
omitted here.

Remark 1. From (60) and (61), the noise powers are de-
termined in the following sequence: δn, δn−1, . . . , δ1. These
powers not only ensures the stability, but also guarantees that
the inequality (61) is well defined. Specifically, they make
the radicand in the square root of (61) nonnegative.

Fig. 1. Mass-spring mechanical system.

Remark 2. In this section, we propose a new postulated
feedback (6) to stabilize system (1)-(2) in prescribed-time.
The existence of multiplicative noise makes all the existing
stochastic prescribed-time designs in [18]-[21] inapplicable.
In order to handle the multiplicative noise, the feedback is
already inserted into (8). As shown in [9]-[17], even G = 0,
how to design the feedback gains k1, . . . , kn is nontrivial.
More importantly, note that, the perturbation G is actually
nonzero, contains the feedback gains k1, . . . , kn and even
goes to infinity as t→ t0 + T . How to design k1, . . . , kn to
prescribed-time stabilize the system in the presence of the
nonlinearities fi is a hard problem.

Remark 3. Different from the existing stochastic
prescribed-time designs where scaling-free quartic Lyapunov
functions [18], scaled quartic Lyapunov functions [19] and
[21], or scaled quadratic Lyapunov function [20] are used,
the design in this section is based on a new scaled quadratic
Lyapunov function

∑n
i=1

1
2µ2i−2 ξ

2
i where the power of µ

is lower than that in [20]. The advantage of this Lyapunov
function is that it simplifies the design process, which yields
a relative simpler controller.

IV. A SIMULATION EXAMPLE

In this section, we give a simulation example to show the
effectiveness of control scheme developed in the last section.

Example 1. Consider the mass-spring mechanical system
shown in Fig. 1, where a mass m is attached to a wall
through a spring and sliding on a horizontal surface. The
mass is driven by an external force which serves as a control
variable. Let y be the displacement from a reference position.
By Newton’s law of motion, the system is described as [23]

mÿ + Ff + Fsp = u, (63)

where Ff is a resistive force due to friction and Fsp is
the restoring force of the spring. We assume that the dis-
placement is relative small and thus Fsp can be written as
Fsp = ky, where k is a spring parameter. Meantime, we
assume the resistive force is linear viscous friction and write
Ff as Ff = cẏ, where c is a friction parameter.

To obtain a state model for the mass-spring mechanical
system, take the state variables as x1 = y and x2 = ẏ .
Then, from (63) we get the state-space form as

ẋ1 = x2, (64)

ẋ2 =
u

m
− k

m
x1 −

c

m
x2. (65)
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Fig. 2. The response of the closed-loop system (64)-(68).

Choosing m = 1, k = 0.2, c = 0.1, Assumption 1 is satisfied
with c1 = 0 and c2 = 0.2.

Let t0 = 0 and T = 1. (5) can be rewritten as

µ(t) =

(
1

1− t

)2

,∀ t ∈ [0, 1). (66)

We observe the state xi as yi, which is described by

y1 = x1(1 + 0.007(1− t)ω̇1), (67)
y2 = x2(1 + 0.01(1− t)ω̇2). (68)

From the design in Section III, we get α1 = 2 and α2 =
40.68. From (60) and (61), we have

0 < δ1 < 0.0072, (69)
0 < δ2 < 0.012. (70)

From (67)-(70), Assumption 2 holds.
By following the design procedure developed in Section

III, we obtain the controller as

u = −81.36µ2y1 − 40.68µy2. (71)

For simulation, we randomly set the initial conditions as
x1(0) = −1, x2(0) = 2. Fig. 2 gives the responses of
the controller and states, which shows that lim

t→1
E|x|2 = 0.

Therefore, the effectiveness of the control scheme developed
in Section Section III is demonstrated.

V. CONCLUDING REMARKS

In this paper we have addressed the prescribed-time de-
signs for strict-feedback nonlinear systems with multiplica-
tive measurement noise. When the noise is small and linearly
vanishing, we propose a new postulated feedback to solve the
prescribed-time mean-square stabilization problem. In order
to handle the multiplicative noise, in our new designs, the
feedback is inserted into the system, which leads to that the
noise intensity is actually nonzero, contains the feedback
gains and even goes to infinity in the terminal time, how
to design the control gains to prescribed-time stabilize the
system in the presence of the nonlinearities is a hard problem.

For the prescribed-time designs with multiplicative mea-
surement noise, many important issues are still open
and worth investigating, such as output-feedback control,
prescribed-time control for more general systems, etc.

REFERENCES

[1] J.J. Carr, Sensors and Circuits, Prentice-Hall: Englewood Cliffs, 1993.
[2] E. Lantto, Robust control of magnetic bearings in subcritical machines,

Ph.D. dissertation, Department of Electrical Engineering, Helsinki
University of Technology, Espoo, Finland, 1999.

[3] C.C. Chen, C.J. Qian, Z.Y. Sun, Y.W. Liang, Global output feedback
stabilization of a class of nonlinear systems with unknown mea-
surement sensitivity, IEEE Transactions on Automatic Control, 63(7):
2212–2217, 2018.

[4] W.Q. Li, X.X. Yao, M. Krstic, Adaptive-gain observer-based stabi-
lization of stochastic strict-feedback systems with sensor uncertainty,
Automatica, 120, 109112,

[5] C.M. Harris, D.W. Wolpert, Signal-dependent noise determines motor
planning, Nature, 394(6695): 780–784, 1998.

[6] M.C. De Oliveira, R.E. Skelton, State feedback control of linear
systems in the presence of devices with finite signal-to-noise ratio,
International Journal of Control, 74(15): 1501–1509, 2001.

[7] W.Q. Li, M. Krstic, Stabilization of triangular nonlinear systems with
multiplicative stochastic state sensing noise, IEEE Transactions on
Automatic Control, DOI: 10.1109/TAC.2022.3201032, 2022.

[8] P. Zarchan, Tactical and strategic missile guidance, Sixth Edition,
Progress in Astronautics and Aeronautics, 2012.

[9] Y.D. Song, Y.J. Wang, J.C. Holloway, M. Krstic, Time-varying
feedback for robust regulation of normal-form nonlinear systems in
prescribed finite time, Automatica, 83: 243–251, 2017.

[10] Y.D. Song, Y.J. Wang, M. Krstic, Time-varying feedback for stabi-
lization in prescribed finite time, International Journal of Robust and
Nonlinear Control, 29(3): 618–633, 2019.

[11] J. Holloway, M. Krstic, Prescribed-time observers for linear systems
in observer canonical form, IEEE Transactions on Automatic Control,
64(9): 3905–3912, 2019.

[12] J. Holloway, M. Krstic, Prescribed-time output feedback for linear
systems in controllable canonical form, Automatica, 107: 77–85, 2019.

[13] P. Krishnamurthy, F. Khorrami, M. Krstic, A dynamic high-gain design
for prescribed-time regulation of nonlinear systems, Automatica, 115:
108860, 2020.

[14] P. Krishnamurthy, F. Khorrami, M. Krstic, Robust adaptive prescribed-
time stabilization via output feedback for uncertain nonlinear strict-
feedback-like systems, European Journal of Control, 55: 14–23, 2020.

[15] P. Krishnamurthy, F. Khorrami, M. Krstic, Adaptive output-feedback
stabilization in prescribed time for nonlinear systems with unknown
parameters coupled with unmeasured states, International Journal of
Adaptive Control and Signal Processing, 35(2): 184–202, 2021.

[16] D. Steeves, M. Krstic, R. Vazquez, Prescribed-time estimation and out-
put regulation of the linearized Schrödinger equation by backstepping,
European Journal of Control, 55: 3–13, 2020.

[17] D. Steeves, M. Krstic, R. Vazquez, Prescribed-time H1-stabilization of
reaction-diffusion equations by means of output feedback, Proceedings
of 2019 European Control Conference, 1932–1937, 2019.

[18] W.Q. Li, M. Krstic, Stochastic nonlinear prescribed-time stabilization
and inverse optimality, IEEE Transactions on Automatic Control,
67(3): 1179–1193, 2022.

[19] W.Q. Li, M. Krstic, Prescribed-time control of stochastic nonlinear
systems with reduced control effort, Journal of Systems Science &
Complexity, 34(5): 1782–1800, 2021.

[20] W.Q. Li, M. Krstic, Prescribed-time output-feedback control of s-
tochastic nonlinear systems, IEEE Transactions on Automatic Control,
68(3): 1431–1446, 2023.

[21] W.Q. Li, M. Krstic, Prescribed-time mean-nonovershooting control
under finite-time vanishing noise, SIAM Journal of Control and
Optimization, 61(3): 1187–1212, 2023.

[22] H. Deng, M. Krstic, Stochastic nonlinear stabilization, part I: a
backstepping design, Systems and Control Letters, 32: 143–150, 1997.

[23] H.K. Khalil, Nonlinear Systems, 3rd edition, Prentice Hall, 2002.

4817


