
Differential Privacy for Stochastic Matrices
Using the Matrix Dirichlet Mechanism

Brandon Fallin∗, Calvin Hawkins∗, Bo Chen∗, Parham Gohari†,
Alexander Benvenuti∗, Ufuk Topcu†, and Matthew Hale∗

Abstract— Stochastic matrices are commonly used to analyze
Markov chains, but revealing them can leak sensitive infor-
mation. Therefore, in this paper we introduce a technique to
privatize stochastic matrices in a way that (i) conceals the
probabilities they contain, and (ii) still allows for accurate
analyses of Markov chains. Specifically, we use differential
privacy, which is a statistical framework for protecting sensitive
data. To implement it, we introduce the Matrix Dirichlet
Mechanism, which is a probabilistic mapping that perturbs
a stochastic matrix to provide privacy. We prove that this
mechanism provides differential privacy, and we quantify the
error induced in private stochastic matrices as a function of
the strength of privacy being provided. We then bound the
distance between the stationary distribution of the underlying,
sensitive stochastic matrix and the stationary distribution of
its privatized form. Numerical results show that, under typical
conditions, privacy introduces error as low as 5.05% in the
stationary distribution of a stochastic matrix.

I. INTRODUCTION

Control applications have become increasingly reliant on
user data, e.g., in smart power grids, smart transit appli-
cations, and networks of robots [1]–[3]. There are often
privacy concerns associated with sharing user data because
of what it can reveal. For example, smart appliance usage
data, driving routines, and other sensitive data streams can
be revealing about a user’s past daily habits or locations,
and allow inferences to be drawn about these behaviors in
the future [4]–[7]. Data is still needed in many applications,
so it is desirable to provide privacy to users while preserving
the usefulness of their data.

In this paper, we provide privacy to Markov chain models
of systems. Markov chains have been used to model smart
power grids, users’ online behavior, and devices on the Inter-
net of Things (IoT) [8]–[10]. Markov chains model a system
with random transitions between a finite number of states,
and the probabilities of these transitions are represented by a
stochastic matrix [11], i.e., a matrix with non-negative entries
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whose rows sum to 1. The entries of a stochastic matrix are
sensitive because they can reveal how often a user engages
in a certain behavior or how likely they are to engage in
it, e.g., by revealing the probability of home occupancy at
a given time of day, browsing and shopping patterns, or
trends in smart device usage [12], [13]. These privacy threats
pose a significant risk to individuals, and they motivate us
to privatize stochastic matrices.

We do so using differential privacy, which originates in
the computer science literature where it was originally used
to protect sensitive data when databases are queried [14].
Differential privacy is appealing because (i) it is immune to
post-processing, in the sense that arbitrary post-hoc compu-
tations on private data do not weaken its privacy protections,
and (ii) it is robust to side information [15], in that gaining
knowledge of some sensitive information does not weaken
differential privacy by much [16]. Strong differential privacy
protections can be attained while still providing accurate
information [15]. In this paper, we consider identity queries
of stochastic matrices, i.e., publishing a stochastic matrix.

There is a growing body of work on differential privacy
in decision systems, including in multi-agent control, convex
optimization, filtering and estimation, and symbolic sys-
tems [17]–[22]. These works generally implement differen-
tial privacy for numerical data using the Laplace or Gaussian
mechanisms, which add noise to sensitive data before it is
shared. However, these mechanism are a poor fit for the
privatization of stochastic matrices. Stochastic matrices have
non-negative entries and row sums equal to 1, but the outputs
of the Laplace and Gaussian mechanisms will not preserve
these properties. Therefore, projection onto the allowable set
of data would be required, but this has been shown to destroy
the accuracy of private data in similar contexts [23]. Thus,
new developments are needed.

In this paper, we (i) develop the Matrix Dirichlet Mecha-
nism, the first differential privacy mechanism for stochastic
matrices, (ii) bound the error induced by differential privacy
between a privatized stochastic matrix and its non-private
form in terms of the strength of privacy, (iii) quantify
the utility of privatized stochastic matrices, (iv) bound the
distance between the stationary distribution of a stochastic
matrix and the stationary distribution of its privatized form,
and (v) show in simulation that, under typical conditions, the
errors induced by privacy are as low as 5.05%.

The rest of this paper is organized as follows. Section II
provides background and problem statements. Section III
implements differential privacy and quantifies the error it

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 5067



induces. Section IV analyzes the trade-off between privacy
and accuracy of the stationary distribution of a Markov chain.
Section V provides simulations and Section VI concludes.

Notation: We use R and N to denote the real and natural
numbers, respectively. The set R+ denotes the positive reals.
We use |S| to denote the cardinality of a finite set S. For
n ∈ N, let [n] = {1, . . . , n}. We use 1n to denote the vector
of all ones in Rn.

II. BACKGROUND AND PROBLEM STATEMENTS

This section provides background on Markov chains and
differential privacy, and then it states the problems we solve.

A. Unit Simplex and Stochastic Matrices

Each row of a stochastic matrix is an element of the unit
simplex. The unit simplex in Rn is formally defined as the
set ∆n = {x ∈ Rn |

∑n
i=1 xi = 1, xi ≥ 0 ∀ i ∈ [n]}.

Next, we define the bordered unit simplex, which is the set
of vectors within the unit simplex whose components are a
sufficient distance from 0 and 1.

Definition 1 (Bordered Unit Simplex). Let ∆◦
n denote the

interior of ∆n. Fix η, η̄ > 0 and let W ⊆ [n − 1] satisfy
|W | ≥ 2. Then the bordered unit simplex is defined as
∆

(η,η̄)
n,W = {x ∈ ∆◦

n |
∑

i∈W xi ≤ 1− η̄, xi ≥ η ∀ i ∈W}. ♢

We also establish mathematical notation for special func-
tions used throughout this work. P[·] denotes the probability
of an event. For a random variable, E[·] denotes its ex-
pectation and Var[·] denotes its variance. The notation ∥·∥1
denotes the 1-norm of a vector or matrix. The space on which
we use ∥·∥1 will be clear from context. For x, a, b ∈ R+,
we use the gamma function Γ(x) =

∫∞
0
zx−1 exp(−z)dz,

the psi function ψ(x) = Γ′(x)
Γ(x) , the bi-variate beta function

beta(a, b) =
∫ 1

0
ta−1(1−t)b−1dt = Γ(a)Γ(b)

Γ(a+b) , and the regular-

ized incomplete beta function Iz(a, b) =
∫ z
0

xa−1(1−x)b−1dx

beta(a,b) .
Additionally, the gamma function satisfies Γ(k+1) = kΓ(k).

In this work, we implement privacy by generating random
matrices whose rows are in the unit simplex. A building
block of this technique is the Dirichlet distribution on the
unit simplex. For a parameter k ∈ R+ and a vector p ∈ ∆◦

n,
the Dirichlet distribution with mean p and parameterized by k
is denoted M(k)

D and defined as

P[M(k)
D (p) = x] =

1

B(kp)

∏n

i=1
xkpi−1
i , (1)

where B(kp) =
∏n

i=1 Γ(kpi)/Γ(k
n∑

i=1
pi).

A matrix whose rows all belong to the unit simplex is
known as a stochastic matrix. Fix n ∈ N. We define Sn as
the set of all n × n stochastic matrices. Formally, we have
Sn = {P ∈ Rn×n | Pij ≥ 0 for all i, j ∈ [n], P1n = 1n}.

B. Markov Chains

We now review the necessary background on Markov
chains. See [11] for a more detailed exposition. A Markov
chain is a sequence of random variables X1, X2, X3, . . . , Xk

that possess the Markov property [11], namely the property

that P(Xk+1 = xk+1|X1 = x1, X2 = x2, · · · , Xk = xk) =
P(Xk+1 = xk+1|Xk = xk). In this work, we consider
finite, irreducible, homogeneous Markov chains. That is,
Markov chains where (i) its random variables take values
in a finite set, (ii) transition is possible from one state to
any other state using only transitions of positive probability,
and (iii) the transition probabilities are independent of time
[11]. We construct a transition probability matrix P where
Pij = P(Xk+1 = xj |Xk = xi). Let Pi denote the ith row of
the transition probability matrix P .

At each time step, we compute the probability distribution
of the states of a Markov chain. Let µk ∈ ∆n denote the
probability distribution of states at time k. That is, µk,i

is the probability that the Markov chain is in state i at
time k. Let µ0 ∈ ∆n denote the initial state distribution.
Multiplying by the transition matrix P on the right updates
the distribution by another time step, i.e., µT

k = µT
k−1P.

In general, µT
k = µT

0 P
k for all k ≥ 1. A common way to

analyze Markov chains is through their steady-state behavior.
Specifically, when P is finite, irreducible, and homogeneous,
there exists a limit π as k → ∞ that must satisfy πT = πTP ,
where π is the stationary distribution of the Markov chain.

C. Differential Privacy

We briefly review differential privacy here. See [15]
for a more complete exposition. Differential privacy is en-
forced by a randomized mapping, or mechanism, that outputs
statistically “similar” private values for “close” pieces of
sensitive data. An adjacency relation quantifies how “close”
two pieces of data are. In the standard setup, two databases
D and D

′
are adjacent if they differ in one entry [24].

Adjacency is a design choice we make that specifies what
must be kept private. We state our adjacency relation for
stochastic matrices in Section III-A. The condition that
private outputs be statistically “similar” is formalized by
the definition of differential privacy itself. In this work, we
utilize probabilistic differential privacy, defined as follows.

Definition 2 (Probabilistic Differential Privacy [25]). Let P
and Q be two adjacent data sets, let M be a randomized
privacy mechanism, and let S be the set of possible out-
puts of the mechanism. The mechanism M satisfies (ϵ, δ)-
probabilistic differential privacy if we can partition the output
space S into two disjoint sets, Ω1 and Ω2, such that for all
P , we have P[M(P ) ∈ Ω2] ≤ δ, and, for all Q adjacent to
P and all S ∈ Ω1 we have log(P[M(P )=S]

P[M(Q)=S] ) ≤ ϵ. ♢

The strength of differential privacy is quantified through
two parameters: ϵ and δ. The value of ϵ controls the amount
of information shared. In the literature, ϵ typically ranges
from 0.01 to 10 [26]. The value of δ is the probability that
more information is shared than should be allowed by ϵ, and
this value typically ranges between 0 and 0.05 [27]. Smaller
values of both ϵ and δ imply stronger privacy.

If a mechanism provides probabilistic (ϵ, δ)-differential
privacy, then it provides conventional (ϵ, δ)-differential pri-
vacy [25]. For a privacy mechanism M, conventional differ-
ential privacy states that for any measurable subset A of the
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range of M and all adjacent P and Q, we have the inequality
P[M(P ) ∈ A] ≤ eϵP[M(Q) ∈ A]+δ. It is shown that (ϵ, δ)-
probabilistic differential privacy implies (ϵ, δ

′
)-conventional

differential privacy, where δ
′
< δ [28].

The level of privacy of multiple queries of data can be
calculated using methods of composition. While general
sequences of private queries cause privacy to weaken [15],
this weakening does not occur if the queries are of disjoint
subsets of the sensitive data [29]. If the domain of the input
to the mechanism is partitioned into disjoint sets and these
disjoint sets are queried separately, then the ultimate privacy
level is equal to the worst of the privacy guarantees of each
query. This is formalized in the following lemma.

Lemma 1 (Parallel Composition [29]). Consider a
database denoted by D that is partitioned into the dis-
joint subsets D1, D2, . . . , DN , and suppose that there
are privacy mechanisms M1,M2, . . . ,MN , where Mi

is (ϵi, δi)-differentially private. Then, the release of the
queries M1(D1),M2(D2), . . . ,MN (DN ) provides the
database D with (maxi∈[N ] ϵi,maxi∈[N ] δi)-differential pri-
vacy. □

We will use Lemma 1 to develop a differential privacy
mechanism for stochastic matrices in Section III.

D. Problem Statements

We now state the problems that we solve.

Problem 1. Develop a mechanism that provides (ϵ, δ)-
differential privacy to a stochastic matrix P .

Problem 2. Bound the expected difference of the entries of
the sensitive input P and a private output produced by the
mechanism developed in solving Problem 1.

Problem 3. Apply the developed mechanism to transition
matrices of Markov chains and develop a bound on the
distance between the private and non-private stationary
distributions to quantify the trade-off between the level of
privacy and accuracy.

We next solve Problem 1 and develop and analyze a
privacy mechanism to generate private stochastic matrices.

III. MATRIX DIRICHLET MECHANISM FOR
DIFFERENTIAL PRIVACY OF IDENTITY QUERIES

We begin this section by establishing a formal adjacency
definition for stochastic matrices and outlining the Ma-
trix Dirichlet Mechanism in Section III-A. We then show
the differential privacy guarantees provided by the Matrix
Dirichlet Mechanism by computing δ in Section III-B and ϵ
in Section III-C. This solves Problem 1. Lastly, the accuracy
of private data is analyzed in Section III-D by bounding
the expected difference between the entries of a sensitive
stochastic matrix P and a private output produced by the
Matrix Dirichlet Mechanism. This solves Problem 2.

A. Matrix Dirichlet Mechanism

For the use of the Matrix Dirichlet Mechanism, we require
that row i of a sensitive stochastic matrix be in ∆

(η,η̄)
n,Wi

for
all i ∈ [n]. We let W in Definition 1 vary for each row, and
we use Wi to denote the set of indices associated with row
i. For convenience, we define a map

V : [n] → {W1, . . . ,Wn}, where V (i) =Wi. (2)

We now define the set of sensitive matrices we consider.

Definition 3 (Stochastic Matrices). Fix n ∈ N and, for
each i ∈ [n], fix a collection of indices Wi ⊆ [n − 1]. Fix
η, η̄ > 0. Let S(η,η̄)

n,V be the set of all stochastic matrices
whose ith row is in ∆

(η,η̄)
n,Wi

from Definition 1 for all i ∈ [n].
Then S(η,η̄)

n,V = {P ∈ Sn | Pi ∈ ∆
(η,η̄)
n,V (i) ∀ i ∈ [n]}, where V

is from (2) and Pi is the ith row of P . ♢

We impose the following assumption on η and η̄ to
ensure that ratios of probability distributions over stochastic
matrices are bounded when showing that Matrix Dirichlet
Mechanism provides differential privacy.

Assumption 1. For S(η,η̄)
n,V in Definition 3, it holds that

η > 0, η̄ > 0, and η+ η̄ < 1
2 . It also holds that Wi ⊆ [n−1]

and |V (i)| = |Wi| ≥ 2 for all i ∈ [n]. ♢

Next, we state our adjacency relation.

Definition 4 (Adjacency). Fix n ∈ N, η > 0, and η̄ > 0. Let
Assumption 1 hold. Let P,Q ∈ S(η,η̄s)

n,V be n× n stochastic
matrices, let Pi be the ith row of P , and let Pij be the
ithjth entry of P ; Qi and Qij are defined analogously. For
an adjacency parameter b ∈ (0, 1], P and Q are b-adjacent
if, for all i ∈ [n], there exist j, k ∈ Wi such that Pij ̸= 0,
Pik ̸= 0, Piℓ = Qiℓ for all ℓ ̸= j, k, and ∥Pi −Qi∥1 ≤ b. ♢

Section II-C showed that the conventional definition of
adjacency allows for databases to differ in one entry. Here,
we must consider each row differing in two entries because
rows must sum to 1, and it is not possible to change only
a single entry. We now formalize the notion of differential
privacy for stochastic matrices.

Definition 5 (Differential Privacy for Stochastic Matrices).
Fix n ∈ N, η > 0, η̄ > 0, and b ∈ (0, 1]. Let Assumption 1
hold. Let P , Q ∈ S(η,η̄)

n,V be two b-adjacent n× n stochastic
matrices. Let V be defined as in (2). A mechanism M :
S(η,η̄)
n,V → Sn is (ϵ, δ)-differentially private, if, for for any

measurable subset A of the range of M and all b-adjacent
P , Q, we have P[M(P ) ∈ A] ≤ eϵP[M(Q) ∈ A] + δ. ♢

The query we privatize is the identity query of a stochastic
matrix. We now introduce our Matrix Dirichlet Mechanism
that randomly maps elements of S(η,η̄)

n,V to Sn.

Definition 6 (Matrix Dirichlet Mechanism). The Matrix
Dirichlet Mechanism DirM with parameter k ∈ R+ takes
as input a stochastic matrix P ∈ S(η,η̄)

n,V , and outputs P̃ ∈ Sn
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via P̃ ∼ DirM (kP ), where DirM (kP ) equals

(
1

B(kP1)

∏n

j=1
X

kP1j−1
1j , · · · , 1

B(kPn)

∏n

j=1
X

kPnj−1
nj )T

Definition 6 shows that the Matrix Dirichlet Mechanism
outputs P̃ by applying (1) to each row of the matrix P . The
parameter k in Definition 6 can be tuned to adjust the level
of privacy provided. Given η and η̄, we apply the following
assumption to the privacy parameter k.

Assumption 2. The privacy parameter k for the Matrix
Dirichlet Mechanism satisfies k ≥ max{ 1

η ,
1

1−η−η̄}. ♢

Sections III-B and III-C will show that the Matrix Dirich-
let Mechanism from Definition 6 satisfies (ϵ, δ)-differential
privacy in Definition 5. We interpret the rows of the sen-
sitive matrix P as a disjoint partition of the entire sen-
sitive matrix. The Matrix Dirichlet Mechanism privatizes
the elements of this disjoint partition independently. This
is parallel composition as in Lemma 1. We show that the
Matrix Dirichlet Mechanism provides conventional (ϵ, δ)-
differential privacy for stochastic matrices by (i) computing
the (ϵi, δi)-probabilistic differential privacy guarantees from
Definition 2 for Pi, for all i ∈ [n], (ii) using the fact that
(ϵi, δi)-probabilistic differential privacy for row Pi implies
conventional differential privacy for Pi, for all i ∈ [n], and
(iii) using parallel composition from Lemma 1.

B. Computing δ

In this section, we compute δi for each row Pi. We begin
by analyzing the rows Pi for i ∈ [n], which form a disjoint
partition of the input P . We choose Wi in Definition 1 such
that it satisfies Assumption 1. We partition the output space
of the Matrix Dirichlet Mechanism applied to a row Pi into
two disjoint sets, Ωi

1 and Ωi
2. For all i ∈ [n], fix γi ∈ (0, 1)

and define the sets Ωi
1 and Ωi

2 as Ωi
1 = {x ∈ ∆n | xj ≥

γi for all j ∈Wi}, and Ωi
2 = ∆n\Ωi

1. We use the following
assumption for γi.

Assumption 3. Fix Wi ⊆ [n− 1]. Then γi ≤ 1
|Wi| . ♢

Since Ωi
1 and Ωi

2 are disjoint sets, we have

P[M(k)
D (Pi) ∈ Ωi

2] = 1− P[M(k)
D (Pi) ∈ Ωi

1]. (3)

Using Definition 2, we compute the row-wise probabilities
P[M(k)

D (Pi) ∈ Ωi
2], which give δi for each row Pi using

probabilistic differential privacy. From (3), we first compute
P[M(k)

D (Pi) ∈ Ωi
1] for all i ∈ [n].

Lemma 2. Fix n ∈ N, η > 0 and η̄ > 0. For all i ∈ [n], fix
Wi ⊆ [n−1], let S(η,η̄)

n,V be defined as in Definition 3, and let
Assumptions 1, 2, and 3 hold. For all i ∈ [n], define Ari =
{Xi ∈ Rri−1 |

∑
j∈[ri−1]Xij ≤ 1, Xij ≥ γi ∀ j ∈ Wi} for

all ri ≥ |Wi|+1. Then, for the Matrix Dirichlet Mechanism
DirM with parameter k ∈ R+, we have that

P[M(k)
D (Pi) ∈ Ωi

1] =
1

B(kP̃Wi
)

∫
A|Wi|+1

∏
j∈Wi

X
kPij−1
ij

· (1−
∑

j∈Wi

Xij)
k(1−

∑
j∈Wi

Pij)−1
∏

j∈Wi

dXij .

We note that P̃Wi
∈ ∆|Wi|+1 is equal to Pi after removing

entries with indices outside Wi and an entry equal to 1 −∑
j∈Wi

Pij is appended as its final entry.

Proof. Apply [23, Lemma 1] to each row of P .

Lemma 2 shows that instead of an (n − 1)-fold in-
tegral of the Dirichlet PDF in (1), the computation of
P[M(k)

D (Pi) ∈ Ωi
1] can be reduced to a |Wi|-fold inte-

gral. From (3), an upper bound for P[M(k)
D (Pi) ∈ Ωi

2]

can be found by minimizing P[M(k)
D (Pi) ∈ Ωi

1], where
P[M(k)

D (Pi) ∈ Ωi
2] ≤ 1− min

Pi∈∆
(η,η̄)
n,Wi

P[M(k)
D (Pi) ∈ Ωi

1] =: δi.

This value of δi is for probabilistic differential privacy
from Definition 2. This implies that the same δi can be used
in conventional differential privacy from Definition 5. We
know that each row Pi is a disjoint partition of P . Using
Lemma 1 we see that, for privacy of the entire stochastic
matrix as given in Definition 5, we have δ = maxi∈[n] δi.
Next, we will compute ϵ.

C. Computing ϵ

As above, we begin by analyzing a row Pi for some
i ∈ [n]. Fix η, η̄ ∈ (0, 1] satisfying Assumption 1, b ∈
(0, 1], and Wi ⊆ [n − 1] for all i ∈ [n]. For a given
k ∈ R+, we must bound the following term to compute ϵi:
log(P[M

(k)
D (Pi)=Xi]/P[M(k)

D (Qi)=Xi]), where Xi ∈ Ωi
1 and Pi

and Qi are b-adjacent in the sense of Definition 4. We now
establish the differential privacy guarantees of the Matrix
Dirichlet distribution and solve Problem 1.

Theorem 1. Fix n ∈ N, η > 0, η̄ > 0, b ∈ (0, 1], and
Wi ⊆ [n − 1] for all i ∈ [n]. Let Assumptions 1, 2, and 3
hold. Let the adjacency relation in Definition 4 hold. Then,
the Matrix Dirichlet Mechanism with parameter k ∈ R+,
defined in Definition 6 and denoted as DirM (kP ), is (ϵ, δ)-
differentially private, where

ϵ = log(
beta(kη, k(1− η̄ − η))

beta(k(η + b
2 ), k(1− η̄ − η − b

2 ))
)

+max
i∈[n]

kb

2
log(

1− (|Wi| − 1)γi
γi

),

and δ = 1−max
i∈[n]

min
Pi∈∆

(η,η̄)
n,Wi

P[M(k)
D (Pi) ∈ Ωi

1].

Proof. See [30, Theorem 1].

We next quantify the trade-off between privacy and accu-
racy for our mechanism.

D. Accuracy

Through providing (ϵ, δ)-differential privacy, the Matrix
Dirichlet Mechanism randomizes the entries of the matrix
P . Here, we solve Problem 2 and provide an upper bound
on how much privacy perturbs the individual entries of P .

Theorem 2. Fix n ∈ N, η > 0, η̄ > 0, b ∈ (0, 1], and
Wi ⊆ [n − 1] for all i ∈ [n]. Let Assumptions 1, 2, and
3 hold. Let the adjacency relation in Definition 4 hold. Fix
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a sensitive stochastic matrix P ∈ S(η,η̄)
n,V and a parameter

k ∈ R+. Let P̃ ∼ DirM (kP ), where the Matrix Dirichlet
Mechanism DirM is given in Definition 6. Then,

E[|Pij − P̃ij |] ≤
Γ(k)21−k

Γ(k/2)2k
,

and

E[|Pij − P̃ij |2] ≤
k

4(k2 + k)
.

Proof. See [30, Theorem 2].

IV. STATIONARY DISTRIBUTION PERTURBATION BOUND

In this section, we solve Problem 3 by quantifying how the
implementation of privacy alters the stationary distribution of
a finite, irreducible, homogeneous Markov chain. The change
between the private and non-private stationary distribution
of a transition probability matrix can be bounded using
perturbation theory. We first define the matrix A as A =
I −P , where I is the identity matrix and P is the transition
probability matrix.

Using A, we solve for the fundamental matrix of the
Markov chain, Z, which is defined as Z = (A − 1nπT )−1,
where π is the stationary distribution of the Markov chain.
The fundamental matrix Z always exists for a finite, irre-
ducible, homogeneous Markov chain. We denote the sta-
tionary distribution corresponding to a privatized transition
matrix as π̃. We use the following bound.

Lemma 3 (Stationary Distribution Perturbation Bound [31]).
The norm-wise perturbation bound of the stationary distri-
bution of a finite, homogeneous, irreducible Markov chain is
of the form: ∥π − π̃∥1 ≤ ∥Z∥1 ∥P − P̃∥1. □

The privatized transition probability matrix P̃ is generated
by randomizing the original transition probability matrix
using the Matrix Dirichlet Mechanism from Definition 6. We
therefore bound E [∥π − π̃∥1].

Theorem 3. Fix n ∈ N, η > 0, η̄ > 0, b ∈ (0, 1], and
Wi ⊆ [n−1] for all i ∈ [n]. Let Assumptions 1, 2, and 3 hold.
Fix n ∈ N and consider a stochastic matrix P ∈ S(η,η̄)

n,V that
corresponds to a finite, homogeneous, irreducible Markov
chain. Let π denote its stationary distribution. Let P̃ ∼
DirM (kP ) be its privatized form with stationary distribution
π̃. Then the expected distance between the private and non-
private stationary distribution can be upper bounded as

E[∥π−π̃∥1] ≤ ∥Z∥1

{
nΓ(k)21−k

Γ(k/2)2k
+

(
n− 1

n

) 1
2

·
{

n2k

4(k2 + k)

−max
i

[
4
η2k[1−ϑi] · ϑ2k(1−η)

i

k2 · beta(kη, kϑi)2

]} 1
2

 ,

where ϑi = η̄ + (|Wi| − 1)η, Z = (A− 1nπT )−1, and |Wi|
is the number of indices in Wi for a given row Pi.

Proof. See [30, Theorem 3].

Next, we demonstrate the accuracy of the perturbed sta-
tionary distribution using simulated results.
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Fig. 1. A random walk over 10 states of the Markov chain model of
Gainesville, Florida conducted for varying levels of privacy. As ϵ increases,
the sampled path becomes more similar to the random walk without privacy.

2 4 6 8
ǫ

0.0

0.1

0.2

0.3

0.4

0.5

E
[‖π

−
π̃

‖ 1
]

Fig. 2. Using an adjacency parameter of b = 0.025 and γi = 0.001 for
all i ∈ [n], the expected value of the error between the private and non-
private stationary distribution was found over 10, 000 applications of the
Matrix Dirichlet Mechanism at each value of ϵ ∈ [0.5, 9], with 0 < δ ≤
0.011. This result shows that weaker privacy provides greater accuracy for
the stationary distribution, and vice versa.

V. SIMULATION RESULTS

This section presents simulation results. We consider a
Markov chain model of a traffic system generated from the
Annual Average Daily Traffic (AADT) of some of the major
streets in Gainesville, Florida from 2021 [32]. The transition
probabilities between feasible states of the Markov chain
model were found using frequency analysis. In this example,
the support of the Markov chain model is assumed to be
public knowledge. To this end, the entries in P equal to 0
are not perturbed using the Matrix Dirichlet Mechanism.

As ϵ shrinks and privacy strengthens, the entries of P
are perturbed more by privacy, which will affect predictions
of routes taken by users. The first transition matrix P was
derived directly from the AADT traffic statistics and is
treated as the sensitive data. The second transition probability
matrix P̃1 was generated by privatizing P using DirM with
a parameter k = 9.87 corresponding to ϵ = 1.16 and
δ = 0.011. The final transition matrix P̃2 was generated
by privatizing P using DirM with a parameter k = 98.7
corresponding to ϵ = 11.12 and δ = 0.019. For both
applications of DirM , an adjacency parameter b = 0.025
was selected. We fix η = 0.10 and η̄ = 0.051. The set Wi

was selected as the indices of the n − 1 largest non-zero
entries in each row of P , and we set γi = 0.001 for all
i ∈ [n]. A random walk was then performed for 10 steps
for each of the 3 transition probability matrices. The results
illustrated in Figure 1 show that as ϵ increases, the random
walk tends toward state transitions similar to those in the
sensitive matrix P .
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Figure 2 shows the relationship between the strength of
privacy and the 1-norm of the difference between the private
and non-private stationary distributions, and it was generated
by considering k ∈ [10, 200]. For a given k, the values
of ϵ and δ were calculated, 10, 000 private matrices were
generated, and the stationary distribution π̃ was computed
for each. The average stationary distribution over the 10, 000
private responses was calculated and subtracted from the
original stationary distribution, π.

Figure 2 shows that the simulated error monotonically
decreases as privacy increases. Figure 2 shows a maximum
expected error of 0.485 corresponding to ϵ = 0.5 and a
minimum error of 0.101 for ϵ = 8. With respect to the
maximum possible error, 2, the private stationary distribution
error ranges from 5.05% to 24.25% under typical privacy
conditions. This error is spread over the 32 entries of the
stationary distribution, thus the error associated with a single
state is quite small, even for strong privacy guarantees.

VI. CONCLUSION

This paper introduced the Matrix Dirichlet Mechanism to
provide differential privacy to stochastic matrices. We proved
that this mechanism satisfies differential privacy guarantees,
and quantified the error induced in private stochastic matrices
as a function of the strength of privacy. The mechanism was
then applied to Markov chains and we quantified how the
stationary distribution of the sensitive stochastic matrix is
changed by privacy. Future work includes an extension of the
Matrix Dirichlet Mechanism to doubly stochastic matrices.
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