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Abstract— Recent years have witnessed renewed interest in
multi-class traffic models, inspired in no small part by the
impending arrival of Connected and Autonomous Vehicles,
whose behaviour is likely to differ from that of Human-Driven
Vehicles. Although numerous multi-class traffic models have
been proposed, consistent overarching theory is lacking. In
this paper, we propose a generic first-order multi-class traffic
modelling framework, intended to be sufficiently versatile to
represent most of the traffic phenomena relevant to freeway
control applications. Based on this framework, we are able to
instantiate different specific multi-class models by appropriate
choice of a few design functions. We restrict the design space
by introducing a set of assumptions that these functions should
follow, helping guide the modelling process. Finally, we study
a simple control example where a single class of vehicles is
controlled in order to dissipate congestion on a highway, and
test the control law using several multi-class model variants.
The simulation results show that proposed control is able to
dissipate the congestion and harmonize the traffic without
relying on knowing the exact underlying traffic dynamics.

I. INTRODUCTION

The fine details of traffic flow dynamics, emerging from
diverse interactions between individual vehicles on the road,
can be extremely complex and hard to model. The advent
of Connected and Autonomous Vehicles (CAVs) is likely
to make these interactions even more complicated, while
offering an unprecedented opportunity to deploy new traffic
control schemes over a road transportation system, as long as
we have tools capable of capturing the intrinsic heterogeneity
of its components – the individual vehicles.

The well-known Lighthill-Whitham-Richards (LWR) con-
tinuous macroscopic traffic model [1, 2], and its discrete
counterpart, the Cell Transmission Model (CTM) [3], have
long been successfully used to capture the aggregate traffic
dynamics with homogeneous vehicles and stationary traffic
flow, defined through the flow-density relationship, i.e., the
fundamental diagram (FD) [4]. The real-world traffic data,
however, exhibits a significant scattering around the predicted
values, which may in part be explained by the intrinsic
heterogeneity of traffic. While every vehicle and driver is
unique, it is often reasonable to subdivide them into a limited
number of classes, each representing an homogeneous group
with respect to all the relevant features (e.g. vehicle type,
driving style, etc.), leading to the multi-class models.

Looking only at first-order macroscopic models, we fist
have multi-commodity models [5, 6], where different classes
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have the same driving behaviour and FD. Another viable
approach is to represent the heterogeneity of the traffic
stream through explicitly representing some slow vehicles
[7, 8] or platoons [9, 10], surrounded by a continuous stream
of faster vehicles, as a micro-macro model. While the most
general approach would be to define class-specific FDs that
depend on the traffic densities of all classes, it is often
enough to express the influence of other classes through the
aggregate traffic density, especially in congestion [11].

Even if different vehicles have different individual contri-
butions to the congestion levels, due to their size or sluggish
behaviour, it is possible to convert them into passenger car
equivalents (PCE), potentially also depending on the traffic
state [12]. In FASTLANE [13] the PCE conversion depends
on both a class-specific gross stopping distance and the
current speed, mediated by the minimum class-specific time
headway value, leading to larger PCE values associated with
the free-flow regime. Alternatively, it is possible to model
the influence of other vehicle classes by scaling the class-
specific nominal FDs according to the portion of the road
allotted to them [14], assuming user-equilibrium between
the different populations, or by defining perceived equivalent
densities [15], effectively converting the other vehicles to an
appropriate amount of vehicles of the same class. Similarly,
in [16], the overall FD is reshaped to reflect the properties
of class-specific driving behaviours, focusing in particular on
mixed CAV-human-driven traffic.

The main contribution of this work is in proposing a
generic cell-based first-order multi-class traffic modelling
framework, versatile enough to capture complex interactions
between different vehicle classes and represent most of the
traffic phenomena relevant to freeway control. Instead of
focusing on one specific model instance, we outline the
procedure for defining the different design functions that
determine the model dynamics, through stating a set of
assumptions that can act as guidelines for choosing them.
Furthermore, we are able to formulate a control law that
efficiently dissipates traffic congestion, agnostic to the exact
underlying traffic model.

The rest of this paper is structured as follows. First, in
Section II, we propose our generic multi-class modelling
framework, give guiding modelling assumptions for choice
of specific model components, and exemplify three specific
multi-class models that fit within the framework. Then, in
Section III, we describe a simple VSL-like control scheme
for congestion dissipation, which is put to the test in sim-
ulations in Section IV, applied on the presented multi-class
traffic model instances. Finally, in Section V, we conclude
and outline directions for future work.
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II. MULTI-CLASS TRAFFIC MODELLING

In this section, we introduce the proposed generic multi-
class traffic modelling framework. First, we briefly outline
the the well-known (single-class) Cell Transmission Model
(CTM) [3], and then discuss extending it to a generic multi-
class model, capturing the interactions between different
classes of traffic. The functions that specify the model are
given in as generic form as practical, and we propose a set of
assumptions to help guide the process of designing them to
capture a particular type of interactions of interest. Finally,
we illustrate the model design process by instantiating the
generic model to some of the more prominent multi-class
models from literature.
A. Single-class Cell Transmission Model

In this work, we focus on a multi-lane stretch of road with
with homogeneous geometry an no on- and off-ramps. The
traffic state at a discrete time 𝑡 is given by the traffic densities
𝜌𝑖(𝑡) in cells 𝑖. The traffic state evolves according to

𝜌𝑖(𝑡+ 1) = 𝜌𝑖(𝑡) +
𝑇

𝐿
(𝑞𝑖−1(𝑡)− 𝑞𝑖(𝑡)) (1)

where 𝑇 is the time step, 𝐿 the cell length, and 𝑞𝑖(𝑡) the
traffic flow leaving cell 𝑖, given by

𝑞𝑖(𝑡) = min{𝑑𝑖(𝑡), 𝑠𝑖(𝑡)}. (2)

Here 𝑑𝑖(𝑡) is the demand of 𝑠𝑖(𝑡) is the supply available to
the vehicles in cell 𝑖, depending on the traffic state in the
downstream cell 𝑖+ 1,

𝑑𝑖(𝑡) = 𝐷(𝜌𝑖(𝑡)), (3)
𝑠𝑖(𝑡) = 𝑆(𝜌𝑖+1(𝑡)), (4)

where 𝐷(𝜌) is some concave nondecreasing demand function
with 𝐷(0) = 0, 𝑆(𝜌) some nonincreasing supply function
with 𝑆(𝑃 ) = 0, and 𝑃 is the jam density. The concavity as-
sumption on the demand function ensures that the wavefronts
propagate at speed no higher than the speed of the traffic.
The resulting FD can be defined as

𝑄(𝜌) = min{𝐷(𝜌), 𝑆(𝜌)},

yielding critical density 𝜌cr = argmax𝜌∈[0,𝑃 ] 𝑄(𝜌), for
which 𝐷(𝜌cr) = 𝑆(𝜌cr) = 𝑄(𝜌cr). Note that in order for the
model to be numerically stable, there needs to exist some
𝑉 ∈ (0, 𝐿

𝑇 ] such that 𝑉 𝜌 ≥ 𝐷(𝜌), corresponding to the
Courant-Freidrichs-Lewy condition.

B. Generic Multi-class Cell Transmission Model
Let 𝒦 be the set of vehicle classes with potentially

different behaviours sharing the road. The traffic density of
vehicles of class 𝜅 ∈ 𝒦 in cell 𝑖 at time 𝑡 is denoted 𝜌𝜅𝑖 (𝑡),
and the aggregate traffic density is given by

𝜌𝑖(𝑡) =
∑︁
𝜅∈𝒦

𝜌𝜅𝑖 (𝑡).

All traffic densities are represented in terms of passenger car
equivalents. The evolution of the traffic density of each class
is of the same form as (1),

𝜌𝜅𝑖 (𝑡+ 1) = 𝜌𝜅𝑖 (𝑡) +
𝑇

𝐿

(︀
𝑞𝜅𝑖−1(𝑡)− 𝑞𝜅𝑖 (𝑡)

)︀
, 𝜅 ∈ 𝒦,

with similar expressions for the traffic flows of each class,

𝑞𝜅𝑖 (𝑡) = min{𝑑𝜅𝑖 (𝑡), 𝑠𝜅𝑖 (𝑡)}, 𝜅 ∈ 𝒦,

resulting in the aggregate traffic flow

𝑞𝑖(𝑡) =
∑︁
𝜅∈𝒦

𝑞𝜅𝑖 (𝑡).

Compared to the single-class case, the differences arise
in how the demand and supply are defined. Whereas in the
single-class case, these were naturally defined as a function
of the aggregate traffic density, here the traffic flow of each
class 𝜅 ∈ 𝒦 depends not only on the traffic density of that
class 𝜌𝜅(𝑡), but also on the traffic densities of all other classes
that share the road 𝜌𝑐(𝑡), 𝑐 ∈ 𝒦 ∖ 𝜅.

The generic form of class 𝜅 demand 𝑑𝜅𝑖 (𝑡) and supply
𝑠𝜅𝑖 (𝑡) that we adopt in this work is

𝑑𝜅𝑖 (𝑡) = 𝛿𝜅𝑖 (𝑡)𝑑𝑖(𝑡)

𝑠𝜅𝑖 (𝑡) = 𝜎𝜅
𝑖 (𝑡)𝑠𝑖(𝑡)

Here, 𝑑𝑖(𝑡) is the aggregate demand, 𝑠𝑖(𝑡) is the aggregate
supply available to cell 𝑖, 𝛿𝜅𝑖 (𝑡) is the demand allocation
function, and 𝜎𝜅

𝑖 (𝑡) the supply allocation function, with∑︁
𝜅∈𝒦

𝛿𝜅𝑖 (𝑡) =
∑︁
𝜅∈𝒦

𝜎𝜅
𝑖 (𝑡) = 1.

We define 𝑑𝑖(𝑡), 𝛿𝜅𝑖 (𝑡), and 𝜎𝜅
𝑖 (𝑡) as functions of the traffic

state in cell 𝑖, 𝜌𝑐𝑖 (𝑡), 𝑐 ∈ 𝒦, and 𝑠𝑖(𝑡) as a function of the
downstream traffic state, in cell 𝑖+ 1, 𝜌𝑐𝑖+1(𝑡), 𝑐 ∈ 𝒦.

Remark. The aggregate traffic flow 𝑞𝑖(𝑡) =
∑︀

𝜅∈𝒦 𝑞𝜅𝑖 (𝑡)
differs from (2) unless 𝑑𝜅𝑖 (𝑡) ≤ 𝑠𝜅𝑖 (𝑡), ∀𝜅 ∈ 𝒦, when we
have 𝑞𝑖(𝑡) = 𝑑𝑖(𝑡), or 𝑑𝜅𝑖 (𝑡) ≥ 𝑠𝜅𝑖 (𝑡), ∀𝜅 ∈ 𝒦, when we
have 𝑞𝑖(𝑡) = 𝑠𝑖(𝑡), i.e., thus defined 𝑑𝑖(𝑡) and 𝑠𝑖(𝑡) do not
correspond to the supply and demand of the whole traffic in
the sense of (3) and (4).

C. Modelling Assumptions
In this work, we aim to provide an as generic as possible

form of a multi-class cell-based discrete-time traffic model.
Therefore, we only impose those assertions about the form of
𝛿𝜅𝑖 (𝑡), 𝑑𝑖(𝑡), 𝜎

𝜅
𝑖 (𝑡), and 𝑠𝑖(𝑡) that are necessary for numerical

stability,

𝛿𝜅𝑖 (𝑡) ≥ 0, 𝑑𝑖(𝑡) ≥ 0, 𝜎𝜅
𝑖 (𝑡) ≥ 0, 𝑠𝑖(𝑡) ≥ 0,(︂

∃𝑉 ∈
(︂
0,

𝐿

𝑇

]︂)︂
𝑉 𝜌𝜅𝑖 (𝑡) ≥ 𝛿𝜅𝑖 (𝑡)𝑑𝑖(𝑡), 𝜅 ∈ 𝒦.

Apart from this condition, we allow these functions to take
a general form, and instead focus on providing a catalog of
assumptions to guide the process of choosing them. These
assumptions are designed to restrict the design space of
𝛿𝜅𝑖 (𝑡), 𝑑𝑖(𝑡), 𝜎𝜅

𝑖 (𝑡), and 𝑠𝑖(𝑡), in order to impart some
desirable properties to the model. The catalog of assumptions
is loosely ordered from the most general ones, that most
versions of multi-class models satisfy, to more specific ones.
(A1) Common jam density. Densities of each class of
vehicles are expressed in passenger cars equivalents, with
scaling factors chosen such that there exists a unique jam
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density 𝑃 for all classes, and intrinsic supply functions of
all classes have the same support,

𝜌 < 𝑃 =⇒ 𝑆𝜅(𝜌) > 0, 𝜌 ≥ 𝑃 =⇒ 𝑆𝜅(𝜌) = 0, 𝜅 ∈ 𝒦.

(A2) Intrinsic class behaviour. For each class 𝜅, we define
its intrinsic behaviour describing the traffic dynamics in case
vehicles of that class were alone on the road. This behaviour
is represented by its intrinsic FD 𝑄𝜅(𝜌), defined through its
intrinsic demand function 𝐷𝜅(𝜌) and supply function 𝑆𝜅(𝜌),

𝑄𝜅(𝜌) = min{𝐷𝜅(𝜌), 𝑆𝜅(𝜌)}.

Furthermore, there exist some maximum free flow speed
𝑉 > 0 such that all class demand functions 𝐷𝜅(𝜌) are
𝑉 𝜅–Lipschitz continuous, 𝑉 𝜅 ≤ 𝑉 , and some maximum
congestion wave speed 𝑊 > 0 such that all class supply
functions 𝑆𝜅(𝜌) are 𝑊𝜅–Lipschitz continuous, 𝑊𝜅 ≤ 𝑊 ,

0 ≤ 𝜕𝐷𝜅(𝜌)

𝜕𝜌
≤ 𝑉, −𝑊 ≤ 𝜕𝑆𝜅(𝜌)

𝜕𝜌
≤ 0.

Finally, if vehicles of a single class 𝜅 ∈ 𝒦 dominate the
traffic at some location, 𝜌𝜅𝑖 (𝑡) ≈ 𝜌𝑖(𝑡), 𝜌𝜅𝑖+1(𝑡) ≈ 𝜌𝑖+1(𝑡),
the dynamics of both the class 𝜅 traffic and the aggregate
traffic are dominantly determined by its intrinsic behaviour,

𝑑𝜅𝑖 (𝑡) ≈ 𝑑𝑖(𝑡) ≈ 𝐷𝜅
𝑖 (𝜌𝑖(𝑡)),

𝑠𝜅𝑖+1(𝑡) ≈ 𝑠𝑖+1(𝑡) ≈ 𝑆𝜅
𝑖+1(𝜌𝑖+1(𝑡)),

yielding 𝛿𝜅𝑖 (𝑡) ≈ 1 and 𝜎𝜅
𝑖 (𝑡) ≈ 1. Note that we allow 𝐷𝜅

𝑖 (𝜌)
and 𝑆𝜅

𝑖 (𝜌) to be defined differently for different cells in order
to capture varying road geometry, traffic control actions, etc.
(A3) Near-vacuum and near-jam conditions. In free flow,
with sufficiently low total traffic density, 𝜌𝑖(𝑡) ≈ 0, the
demand of all classes is dominated by their intrinsic demand,

𝜌𝑖(𝑡) ≈ 0 =⇒ 𝑑𝜅𝑖 (𝑡) ≈ 𝐷𝜅
𝑖 (𝜌

𝜅
𝑖 (𝑡)), 𝜅 ∈ 𝒦.

Consequently, we have

𝜌𝑖(𝑡) ≈ 0 =⇒ 𝛿𝜅𝑖 (𝑡) ≈
𝐷𝜅

𝑖 (𝜌
𝜅
𝑖 (𝑡))

𝑑𝑖(𝑡)
, 𝜅 ∈ 𝒦,

and the aggregate demand is given by

𝜌𝑖(𝑡) ≈ 0 =⇒ 𝑑𝑖(𝑡) ≈
∑︁
𝜅∈𝒦

𝐷𝜅
𝑖 (𝜌

𝜅
𝑖 (𝑡)).

Therefore, one good default option for 𝛿𝜅𝑖 (𝑡) is

𝛿𝜅𝑖 (𝑡) =
𝐷𝜅

𝑖 (𝜌
𝜅
𝑖 (𝑡))∑︀

𝑐∈𝒦
𝐷𝑐

𝑖 (𝜌
𝑐
𝑖 (𝑡))

. (5)

Conversely, in congestion, with sufficiently high total traffic
density, 𝜌𝑖+1(𝑡) ≈ 𝑃 , vehicles of all classes follow the same
behaviour and move at the same speed,

𝑠𝜅𝑖 (𝑡)

𝜌𝜅𝑖 (𝑡)
≈ 𝑠𝑖(𝑡)

𝜌𝑖(𝑡)
,

since in this case the traffic flows depend only on the supply.
Consequently, we have

𝜌𝑖+1(𝑡) ≈ 𝑃 =⇒ 𝜎𝜅
𝑖 (𝑡) ≈

𝜌𝜅𝑖 (𝑡)

𝜌𝑖(𝑡)
, 𝜅 ∈ 𝒦,

and a good default option for 𝜎𝜅
𝑖 (𝑡) is similarly

𝜎𝜅
𝑖 (𝑡) =

𝜌𝜅𝑖 (𝑡)

𝜌𝑖(𝑡)
. (6)

(A4) Road space allocation. We may define the aggregate
demand 𝑑𝑖(𝑡) and supply 𝑠𝑖(𝑡) as

𝑑𝑖(𝑡) =
∑︁
𝜅∈𝒦

𝑝𝜅𝑖 (𝑡)𝐷
𝜅
𝑖

(︂
𝜌𝜅𝑖 (𝑡)

𝑝𝜅𝑖 (𝑡)

)︂
, (7)

𝑠𝑖(𝑡) =
∑︁
𝜅∈𝒦

𝑟𝜅𝑖+1(𝑡)𝑆
𝜅
𝑖+1

(︂
𝜌𝜅𝑖+1(𝑡)

𝑟𝜅𝑖+1(𝑡)

)︂
, (8)

with 𝑝𝜅𝑖 (𝑡) representing road space allocation to class 𝜅 in
free-flow-like conditions, and 𝑟𝜅𝑖 (𝑡) representing road space
allocation to class 𝜅 in congestion-like conditions. Similar
approaches are commonly used to model multi-class traffic
[14, 15]. Note that these road space allocation functions may,
but need not correspond to the demand and supply allocation
functions 𝛿𝜅𝑖 (𝑡) and 𝜎𝜅

𝑖 (𝑡).
x‘Furthermore, the total allocated road space follows∑︁

𝜅∈𝒦
𝑝𝜅𝑖 (𝑡) ≤ 1,

∑︁
𝜅∈𝒦

𝑟𝜅𝑖 (𝑡) = 1,

where we assume that the entire road is always used in con-
gestion. For both road space allocation functions, denoting
by 𝑓 either 𝑝 or 𝑟, we have

𝜌𝜅𝑖 (𝑡)

𝑃
≤ 𝑓𝜅

𝑖 (𝑡) ≤ 1− 𝜌𝑖(𝑡)− 𝜌𝜅𝑖 (𝑡)

𝑃
.

In this case, one natural choice for function 𝛿𝜅𝑖 (𝑡) is

𝛿𝜅𝑖 (𝑡) =
𝑝𝜅𝑖 (𝑡)𝐷

𝜅
𝑖

(︁
𝜌𝜅
𝑖 (𝑡)

𝑝𝜅
𝑖 (𝑡)

)︁
∑︀

𝑐∈𝒦 𝑝𝑐𝑖 (𝑡)𝐷
𝑐
𝑖

(︁
𝜌𝑐
𝑖 (𝑡)

𝑝𝑐
𝑖 (𝑡)

)︁ , (9)

yielding a simple expression for class demands,

𝑑𝜅𝑖 (𝑡) = 𝑝𝜅𝑖 (𝑡)𝐷
𝜅
𝑖

(︂
𝜌𝜅𝑖 (𝑡)

𝑝𝜅𝑖 (𝑡)

)︂
. (10)

(A5) Bounds on demand and supply. The aggregate
demand 𝑑𝑖(𝑡) is lower-bounded by imposing the behaviour
of the slowest class on all traffic,

𝑑𝑖(𝑡) ≥ min
𝜅∈𝒦,𝜌𝜅

𝑖 (𝑡)>0
{𝐷𝜅

𝑖 (𝜌𝑖(𝑡))} ,

corresponding to the case when it is impossible to overtake
the slow vehicles. The upper bound of 𝑑𝑖(𝑡) is achieved when
the entire road space is allocated,

∑︀
𝜅∈𝒦 𝑝𝜅𝑖 (𝑡) = 1, and road

space allocation is such that it maximizes (7), depending on
𝜌𝜅𝑖 (𝑡) and 𝐷𝜅

𝑖 (𝜌), 𝜅 ∈ 𝒦.
Conversely, the aggregate supply is upper-bounded by im-
posing the behaviour of the most reactive class on all traffic,

𝑠𝑖(𝑡) ≤ max
𝜅∈𝒦,𝜌𝜅

𝑖+1(𝑡)>0

{︀
𝑆𝜅
𝑖+1(𝜌𝑖+1(𝑡))

}︀
,

corresponding to the case when the traffic is permeated with
vehicles of the highly reactive class.
Finally, the demand and supply of class 𝜅 do not exceed their
intrinsic values, calculated for the case if vehicles of other
classes would be ignored,

𝑑𝜅𝑖 (𝑡) ≤ 𝐷𝜅
𝑖 (𝜌

𝜅
𝑖 (𝑡)),

𝑠𝜅𝑖 (𝑡) ≤ 𝑆𝜅
𝑖+1(𝜌

𝜅
𝑖+1(𝑡)).
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D. Multi-class Cell Transmission Model Instances

In order to demonstrate how the proposed generic multi-
class traffic modelling framework can be used to represent
various models, both known in the literature and novel, we
present three examples.

1) Extended multi-class CTM: First, we give an extended
version of the multi-class CTM from [10], reformulated
to allow for general demand and supply functions. Given
intrinsic demand 𝐷𝜅

𝑖 (𝜌) and supply functions 𝑆𝜅
𝑖 (𝜌), 𝜅 ∈ 𝒦,

the model is defined by

𝑑𝑖(𝑡) = min

{︃∑︁
𝜅∈𝒦

𝐷𝜅
𝑖 (𝜌

𝜅
𝑖 (𝑡)), 𝑞𝑖(𝑡)

}︃
, (11)

𝑠𝑖(𝑡) = min
{︀
𝑆𝜅(𝜌𝜅𝑖+1(𝑡)), 𝑞𝑖+1(𝑡)

}︀
, (12)

𝑞𝑖(𝑡) =

∑︀
𝜅∈𝒦

𝐷𝜅
𝑖 (𝜌

𝜅
𝑖 (𝑡))𝑞

𝜅
𝑖∑︀

𝜅∈𝒦
𝐷𝜅

𝑖 (𝜌
𝜅
𝑖 (𝑡))

,

𝑞𝜅𝑖 = max
𝜌∈[0,𝑃 ]

min{𝐷𝜅
𝑖 (𝜌), 𝑆

𝜅
𝑖 (𝜌)},

with default forms of 𝛿𝜅𝑖 (𝑡) and 𝜎𝜅
𝑖 (𝑡), (5) and (6).

2) Road-space-allocation-based model: Next we show
how the commonly used multi-class traffic modelling frame-
work relying on road space allocation and perceived density,
proposed in [14] and discussed in [15], maps onto the
proposed framework. Focusing on the model from [15],
which is a specific form of the one from [14], we need to
define functions 𝑑𝑖(𝑡), 𝑠𝑖(𝑡), 𝛿𝜅𝑖 (𝑡), and 𝜎𝜅

𝑖 (𝑡) that lead to the
same outcomes. A corresponding model may be constructed
based on assumption (A4), with 𝑑𝑖(𝑡) given by (7) and 𝑠𝑖(𝑡)
by (8). Functions 𝛿𝜅𝑖 (𝑡) and 𝑝𝜅𝑖 (𝑡) are defined such that they
ensure that in free flow, with sufficiently low traffic density,
the class traffic flow simplifies to

𝑞𝜅𝑖 (𝑡) ≈ 𝐷𝜅
𝑖 (𝜌

𝜅
𝑖 (𝑡)),

which may be achieved by using 𝛿𝜅𝑖 (𝑡) given by (9), resulting
in the class demands of the appropriate form (10). Functions
𝜎𝜅
𝑖 (𝑡) and 𝑟𝜅𝑖 (𝑡) are defined so that the model would exhibit

the same behaviour in congested regime, with all traffic
moving at the same speed. It can be shown that this is
achieved using 𝜎𝜅

𝑖 (𝑡) given by (6). Note that an equivalent
for 𝑟𝜅𝑖 (𝑡) is not defined in [15], so in this case we may simply
use 𝑟𝜅𝑖 (𝑡) = 𝜎𝜅

𝑖 (𝑡).
3) Simple multi-lane-emulating model: Finally, we illus-

trate the versatility of the proposed modelling framework
by specifying another model instance inspired by multi-lane
models. In this specific case, we want to explicitly capture
the phenomenon of a slow class of vehicles forcing the other
vehicles to slow down by blocking the traffic in one or
multiple lanes. Consider two vehicle classes 𝒦 = {a, b},
with the demand function of the slow vehicles a being
𝐷a

𝑖 (𝜌; 𝑡) = min{𝑈a
𝑖 (𝑡)𝜌, 𝑞}, where 𝑈a

𝑖 (𝑡) is the (potentially
time-varying) free flow speed of class a vehicles, and 𝑞 is
the road capacity. Additionally, let the demand function of
class b vehicles satisfy 𝐷b

𝑖 (𝜌) = 𝑞 for 𝜌 ≥ 𝜌cr, 𝑣cr𝜌cr = 𝑞,

and the supply of both classes be

𝑆𝜅
𝑖 (𝜌) = 𝒮(𝜌) = min{𝑊 (𝑃 − 𝜌), 𝑞}, 𝑠𝑖(𝑡) = 𝒮(𝜌𝑖+1(𝑡)).

Then, assuming the road has two lanes, the aggregate demand
can be written

𝑑𝑖(𝑡) =

⎧⎪⎨⎪⎩
𝑑𝐼,𝑖(𝑡), 𝑈a

𝑖 (𝑡)≥𝑣cr

𝑑𝐼𝐼,𝑖(𝑡), 𝑈
a
𝑖 (𝑡)<𝑣cr,

𝑊+𝑈a
𝑖 (𝑡)

𝑊𝑃 𝜌a𝑖 (𝑡)<
1
2 ,

𝑑𝐼𝐼𝐼,𝑖(𝑡), 𝑈
a
𝑖 (𝑡)<𝑣cr,

𝑊+𝑈a
𝑖 (𝑡)

𝑊𝑃 𝜌a𝑖 (𝑡)≥ 1
2 ,

(13)

𝑑𝐼,𝑖(𝑡) = 𝑝a𝑖 (𝑡)𝐷
a
𝑖

(︂
𝜌a𝑖 (𝑡)

𝑝a𝑖 (𝑡)

)︂
+ 𝑝b𝑖 (𝑡)𝐷

b
𝑖

(︂
𝜌b𝑖 (𝑡)

𝑝b𝑖 (𝑡)

)︂
,

𝑑𝐼𝐼,𝑖(𝑡) =
1

2
𝐷b

𝑖 (min{2𝜌b𝑖 (𝑡), 𝜌cr}) + . . .

. . .+ 𝑈a
𝑖 (𝑡)(𝜌

a
𝑖 (𝑡) + max{0, 𝜌b𝑖 (𝑡)−

𝜌cr
2
},

𝑑𝐼𝐼𝐼,𝑖(𝑡) = 𝑈a
𝑖 (𝑡)𝜌𝑖(𝑡).

We may adopt the default forms of 𝛿𝜅𝑖 (𝑡) and 𝜎𝜅
𝑖 (𝑡), (5) and

(6), respectively, and also let road space allocation functions
𝑝𝜅𝑖 (𝑡) for the case when class a vehicles are not slower than
class b vehicles be 𝑝𝜅𝑖 (𝑡) = 𝛿𝜅𝑖 (𝑡).

III. CONTROL

Using the proposed generic model, we formulate a simple
VSL-like congestion dissipation control law. We focus on
a simple two-class traffic case, 𝒦 = {a, b}, where class a
consists of connected vehicles that can be controlled from
the infrastructure, and class b of human-driven background
traffic, which cannot be directly controlled. In particular,
we assume class a vehicles in each cell within some range
𝑖 = 𝐼𝑈 , 𝐼𝑈 + 1, . . . , 𝐼𝑈 can be issued a reference speed
𝑈a
𝑖 (𝑡) ∈ [𝑈, 𝑉 ] that they follow, unless they are forced to

slow down due to congestion. Here 𝑈 > 0 is the minimum
assignable reference speed, 𝑉 is the overall maximum al-
lowed speed on the road, and 𝑈a

𝑖 (𝑡) = 𝑉 for 𝑖 /∈ [𝐼𝑈 , 𝐼𝑈 ].
The effect of this control is modelled through the intrinsic
demand function of class a, defined as

𝐷a
𝑖(𝜌; 𝑡) = min {𝑈a

𝑖 (𝑡)𝜌,𝒟a(𝜌)} , (14)

whereas the intrinsic demand function of class b and the
intrinsic supply functions of both classes take the same form
in all cells,

𝐷b
𝑖(𝜌) = 𝒟b(𝜌), 𝑆𝜅

𝑖 (𝜌) = 𝒮𝜅(𝜌), 𝜅 ∈ {a, b}. (15)

Here we define by 𝒟a(𝜌) and 𝒟b(𝜌) the default (uncon-
trolled) intrinsic demand functions of the two classes, by
𝒮𝜅(𝜌) the default intrinsic supply function, and we have
𝒟a(𝜌)≤𝑉 𝜌 and 𝒟b(𝜌)≤𝑉 𝜌. Note that the intrinsic demand
function of class a now varies in time, together with 𝑈a

𝑖 (𝑡).
The influence of 𝑈a

𝑖 (𝑡) on the aggregate traffic flow 𝑞𝑖(𝑡)
can be approximated as

𝑞𝑖(𝑡) ≈ 𝑞𝑖(𝑡) +𝐴𝑖(𝑡)(𝑈
a
𝑖 (𝑡)− 𝑉 ),

where 𝐴𝑖(𝑡) is the sensitivity of 𝑞𝑖(𝑡) to 𝑈a
𝑖 (𝑡). We denote the

uncontrolled aggregate traffic flow by 𝑞𝑖(𝑡), corresponding to
the case when 𝑈a

𝑖 (𝑡)=𝑉 and 𝐷a
𝑖(𝜌)=𝒟a(𝜌), and define

𝑢a
𝑖 (𝑡) = 𝑈a

𝑖 (𝑡)− 𝑉.
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The evolution of aggregate traffic density can now be written

𝜌𝑖(𝑡+1) ≈ 𝜌𝑖(𝑡+1)+
𝑇

𝐿

(︁
𝐴𝑖−1(𝑡)𝑢

a
𝑖−1(𝑡)−𝐴𝑖(𝑡)𝑢

a
𝑖 (𝑡)

)︁
,

where 𝜌𝑖(𝑡+1) is the uncontrolled updated aggregate traffic
density, with 𝑢a

𝑖−1(𝑡) = 𝑢a
𝑖 (𝑡) = 0,

𝜌𝑖(𝑡+ 1) = 𝜌𝑖(𝑡) +
𝑇

𝐿
(𝑞𝑖−1(𝑡)− 𝑞𝑖(𝑡)) .

A straightforward way to achieve congestion dissipation
is to restrict the inflow to congested cells, thus keeping 𝜌𝑖(𝑡)
close to some traffic density 𝜌*𝑖 (𝑡) that maximises the traffic
flow. This admits a recursively formulated control law

#»𝑢 a
𝑖(𝑡)=min

{︃
0,

𝐿
𝑇(𝜌

*
𝑖+1(𝑡)−𝜌𝑖+1(𝑡))+𝐴𝑖+1(𝑡)

#»𝑢 a
𝑖+1(𝑡)

𝐴𝑖(𝑡)

}︃
,

starting from #»𝑢 a
𝐼𝑈
(𝑡), with #»𝑢 a

𝐼𝑈+1
(𝑡) = 0, corresponding to

𝑈a
𝐼𝑈+1

(𝑡) = 𝑉 , and then propagating the control computation
upstream until #»𝑢 a

𝐼𝑈
(𝑡). Note that #»𝑢 a

𝑖(𝑡) is deliberately not de-
fined lower-bounded in the process of recursively computing
the control action, allowing the information about congestion
multiple cells downstream of cell 𝑖 to affect #»𝑢 a

𝑖(𝑡).
While control defined by 𝑈a

𝑖 (𝑡) = max{𝑈, 𝑉 + #»𝑢 a
𝑖(𝑡)}

is effective in dissipating congestion, it may also cause
congestion at the upstream end of the control zone, in cell
𝑖 = 𝐼𝑈 , which has the potential to aggravate the traffic
situation instead of improving it. Therefore, it is necessary
to lower-bound the control action to avoid this, which can
also be defined recursively by

#»𝑢 a
𝑖(𝑡)=max

{︃
𝑈−𝑉,min

{︃
0,

𝐿
𝑇(𝜌𝑖(𝑡)−𝜌

*
𝑖(𝑡))+𝐴𝑖−1(𝑡)

#»𝑢 a
𝑖−1(𝑡)

𝐴𝑖(𝑡)

}︃}︃
,

starting with from #»𝑢 a
𝐼𝑈
(𝑡), with #»𝑢 a

𝐼𝑈−1(𝑡) = 0 and
𝑈a
𝐼𝑈−1(𝑡) = 𝑉 , and then propagating the control computation

downstream until #»𝑢 a
𝐼𝑈
(𝑡). Finally, the control action to be

applied is defined by

𝑈a
𝑖 (𝑡) = 𝑉 +max { #»𝑢 a

𝑖 (𝑡),
#»𝑢 a

𝑖 (𝑡)} . (16)

IV. SIMULATION RESULTS
We demonstrate the effectiveness of the proposed control

law in simulations, on a two-class congestion dissipation ex-
ample, with class a being vehicles we can control, and class
b vehicles we cannot control. We studied a 𝑁𝑥𝐿 = 105 km
long road with no on- or off-ramps, with 𝑁𝑡𝑇 = 5 h long
simulation runs. The traffic flow around position 𝑥 = 100 km
is blocked for one hour, during 𝑡𝑇 = [0.5, 1.5] h, causing the
congestion that the control law is tasked with dissipating.

We compare the control performance using the three
model instances described in Section II-D:

1) Extended multi-class CTM from [10], (11), (12),
2) Road-space-allocation-based model similar to the ones

in, e,g., [14] and [15],
3) Simple multi-lane-emulating model (13).

For all three models, we adopt the same default intrinsic
demand and supply functions for both classes 𝜅 ∈ {a, b},

𝒟a(𝜌) = 𝒟b(𝜌) = 𝑉
(︀
min{𝜌, 𝜌cr} − 𝛼(min{𝜌, 𝜌cr})2

)︀
,

𝒮a(𝜌) = 𝒮b(𝜌) = 𝑊 (𝑃 −max{𝜌, 𝜌cr}),
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Fig. 1: Aggregate traffic density 𝜌𝑖(𝑡). Horizontal dashed red line
indicate the time when congestion is dissipated, and horizontal
dashed black line outline the time when the traffic flow is blocked.
The uncontrolled case for models 2 and 3 are omitted due to being
practically indistinguishable from that of model 1.
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Fig. 2: Control action 𝑈a
𝑖 (𝑡) for the three controlled cases.

with 𝑉 = 100 km/h, critical density 𝜌cr = 38 veh/km, pa-
rameter 𝛼 such that 𝑞 = 𝑉 (𝜌cr − 𝛼𝜌cr

2) = 3000 veh/h, jam
density 𝑃 = 120 veh/km, and congestion wave speed 𝑊
such that 𝑊 (𝑃 − 𝜌cr) = 𝑞. Specific intrinsic demands
and supplies are given by (14) and (15), with 𝐷a

𝑖 (𝜌; 𝑡)
depending on class a reference speed 𝑈a

𝑖 (𝑡), acting as the
control input. The initial traffic density, as well as the
density of the flow arriving from upstream, take values in
𝜌a𝑖 (0) ∈ [0, 12] veh/km, 𝜌b𝑖 (0) ∈ [3, 27] veh/km. Finally,
a random normally distributed multiplicative noise, with a
mean of 1 and standard deviation of 0.05, is applied to all
traffic speeds, limited to ensure that CFL conditions hold.

The applied control law is described in Section III and
given by (16). The controlled case for all three models is
compared by a corresponding uncontrolled case, for which
we set 𝑈a

𝑖 (𝑡) = 𝑉 . We approximate the uncontrolled
aggregate traffic flow as

𝑞𝑖(𝑡) = min{𝑣cr𝜌𝑖(𝑡), 𝑞},

and the sensitivity to control as

𝐴𝑖(𝑡) = min{𝜌a𝑖 (𝑡), 𝜌cr}.

4927



1) 2) 3)

1

1.005

1.01
T
T
T

co
n
tr

ol
le
d
=T

T
T

u
n
co

n
tr

ol
le
d

(1) TTT
1) 2) 3)

0.94

0.96

0.98

1

1.02

A
T
V

co
n
tr

ol
le
d
=A

T
V

u
n
co

n
tr

ol
le
d

(2) ATV
1) 2) 3)

-0.8

-0.6

-0.4

-0.2

C
D

T
co

n
tr

ol
le
d
!

C
D

T
u
n
co

n
tr

ol
le
d

(3) CDT

Fig. 3: Box plots of relative TTT and ATV, and CDT difference.

The reference traffic density is set to 𝜌*𝑖 (𝑡) = 𝜌cr, and the
minimum allowed reference speed is taken to be 𝑈 = 𝑉/3.

We executed 100 simulation runs for all three modes,
both uncontrolled and controlled. The results of one rep-
resentative simulation run are shown in Figure 1, depicting
the space-time profile of aggregate traffic density 𝜌𝑖(𝑡), and
Figure 2, depicting the control action 𝑈a

𝑖 (𝑡). We can see
that the applied control manages to accelerate the congestion
dissipation in all three cases, with very similar behaviour
of the traffic. Class a vehicles are controlled to slow down
upstream of the congestion, thus reducing the inflow of traffic
to it and helping dissipate it faster, essentially spreading
the congestion more evenly along the road. After the initial
congestion is dissipated, the control discharges the remaining
vehicles at road capacity, keeping them at critical density.

We consider three indices of control performance: Total
Travel Time (TTT), Average Total Variation (ATV),

TTT=

𝑁𝑡∑︁
𝑡=1

𝑁𝑥∑︁
𝑖=1

𝐿𝑇𝜌𝑖(𝑡), ATV=

𝑁𝑡∑︁
𝑡=1

𝑁𝑥−1∑︁
𝑖=1

|𝜌𝑖+1(𝑡)− 𝜌𝑖(𝑡)|
𝑁𝑡(𝑁𝑥 − 1)

,

and Congestion Dissipation Time (CDT), defined here as the
length of the period from when the traffic flow blockage
is removed to when all 𝜌𝑖(𝑡) is lower than some limit (in
this case 𝜌cr + 10). As can be seen from the statistics of
these indices are shown as box plots in Figure 3, the control
manages to reduce the CDT and slightly improve the ATV
of 𝜌𝑖(𝑡), with a negligible increase in TTT.

V. CONCLUSION

In this work we propose a generic multi-class traffic
modelling framework, capable of capturing complex inter-
actions between vehicles with different behaviours. This
framework covers the majority of hitherto proposed multi-
class models, including those based on the popular road-
space-allocation approach. Instead of defining the exact
mechanism of interaction between different vehicle classes,
we present a set of assumptions which can be used to design
functions that capture the phenomena of interest. The simple
control law, based on this modelling framework, is shown in
simulations to be able to accelerate congestion dissipation
without knowing the exact underlying traffic model. This
suggests that it might be possible to apply similar control
schemes to more realistic microscopic, or even real-world
traffic, without the need for an overly complex description
of the interactions between the individual vehicles.

Among the plethora of potential directions for continuing
this work we particularly emphasize the potential for this
modelling framework to work with design functions that
include uncertainty. In this case, robust control could explic-
itly be designed, and different model components could be
learned from data. Finally, a detailed analysis of the proper-
ties of various models within this framework is forthcoming.
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