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Abstract— This paper considers data-driven control of un-
known linear discrete-time systems under a self-triggered
transmission scheme. While self-triggered control has received
much attention in the literature, its design and implementation
typically require explicit model knowledge. Due to the difficul-
ties in obtaining accurate models and the abundance of data
in applications, this paper proposes a novel data-driven self-
triggered control scheme for unknown systems. To this end,
we begin by presenting a model-based self-triggered scheme
(STS) in form of quadratic matrix inequalities, on the basis of
an equivalent switched system representation. Combining the
model-based triggering law and a data-based system represen-
tation, a data-driven STS is developed leveraging pre-collected
input-state data for predicting the next transmission instant
while ensuring system stability. A data-based method for co-
designing the controller gain and the triggering matrix is then
provided. Finally, a numerical simulation showcases the efficacy
of STS in reducing transmissions as well as practicality of the
proposed co-design methods.

I. INTRODUCTION

In recent year, much attention has been paid to the
study of sampled-data control systems, in which the digital
communication network has limited bandwidth. Traditional
time-triggered scheme, where the information is transmitted
in a periodic way, may incur a number of “redundant” trans-
missions [1], [2]. Recently, self-triggered scheme (STS) has
gained an increasing interest for effectively saving communi-
cation resources while maintaining acceptable performance.

The core idea of STS is to predict the next triggering
instant based on a function constructed using the current
sampled information as well as the system knowledge. Most
existing STSs [3], [4] are model-based, in the sense that they
require explicit knowledge of the system model. Nonetheless,
obtaining accurate system models can be computationally
demanding and oftentimes impossible in real-world appli-
cations. It is also hard to provide an accurate model with
guaranteed uncertainty bounds from limited and noisy data
[5]. Naturally, an interesting question is how to design an STS
without explicit knowledge of the system model. A promising
solution, known as data-driven control, is aimed at learning
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control laws directly from data without resorting to any prior
system identification steps [6], [7]. Model-free self-triggered
schemes based on reinforcement learning (RL) have been
well-studied in [8], [9] without explicit system models, while
RL performs a good behavior in learning the dynamics of
the plant but requires a larger amount of data. Recently, an
excellent work [10] provides a data-driven design method
of state feedback controller for linear systems on the basis
of Willems’ Fundamental Lemma [11]. Data-driven analysis
and design of discrete-time linear systems with periodic
sampling has been studied in [12]. In [13], a data-driven
event-triggered scheme by filtering out redundant sampled
data after periodic detection of current system states has
been recently investigated based on S-lemma [14]. Extension
works on data-driven event-triggered control of discrete-time
centralized and distributed systems have been given in [15],
[16], [17], [18]. It remains an untapped topic to design a data-
driven STS which pre-computes the next execution time for
the sensor and controller using only data, avoiding equipping
extra hardware for system detection.

These developments have motivated our work to investi-
gate data-driven control of discrete-time sampled-data sys-
tems under STS. Firstly, a model-based discrete-time STS
is designed. Then, we rewrite the discrete-time sampled-
data system as a switched system. Using the data-driven
parametrization of switched systems in [12], a data-driven
algorithm for pre-computing the next transmission instant is
derived, which does not require explicit model knowledge.
Subsequently, the co-designed controller and triggering ma-
trix under the STS is employed to guarantee the stability
of the system. In a nutshell, the main contributions of the
present paper are summarized as follows:

c1) A model-based STS to predict the next transmission
instant, and a data-driven STS using only pre-collected
data from the system.

c2) Model- and data-based stability conditions for self-
triggered discrete-time systems along with co-design
methods of the controller and the triggering matrix.

Notation. Throughout this paper, N, Rn, and Rn×m denote
the sets of all non-negative integers, n-dimensional real
vectors, and n×m real matrices, respectively. Then, we
define N[a,b] := N∩ [a,b], a,b ∈ N. Sym{P} represents the
sum of P⊤ and P. We write [·] if elements in the matrix
can be inferred from symmetry. Notation ‘∗’ represents the
symmetric term in (block) symmetric matrices.

II. PRELIMINARIES
This section formulates the data-driven self-triggered con-

trol problems. We consider the networked control system
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depicted in Fig. 1. The unknown plant is assumed to be a
discrete-time linear time-invariant system as follows

x(t +1) = Ax(t)+Bu(t), ∀t ∈ N, x(0) ∈ Rn (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is control
input, and A ∈ Rn×n, B ∈ Rn×m are the system matrices.
In this paper the system matrices A and B are unknown,
but some pre-collected state-input measurements {x(T )} and
{u(T )} (T ∈ N) satisfying the following dynamics

x(T +1) = Ax(T )+Bu(T )+Bww(T ) (2)

are available in open-loop experiment at discrete time in-
stants T ∈N. Here, Bw ∈Rn×nw is a known matrix, which has
full column rank and models the influence of the disturbance
on the collected data. The measured data are corrupted by
an unknown noise (perturbation) sequence {w(T )}, where
w(T ) ∈ Rnw captures, e.g., process noise or unmodeled
system dynamics. This noise only affects the data generated
for the controller design and will be neglected in the closed-
loop operation, but we note that an extension in this direction
is straightforward.

During online closed-loop operation, the system state is
sampled by the sensor and transmitted to the controller at
time tk ∈ N, where t0 = 0, tk+1 − tk ≥ 1, k ∈ N. In the
controller, the sampled state x(tk) is available, and the control
input is computed via the linear state-feedback law u(tk) =
Kx(tk), where K is the controller gain matrix to be designed.
Then, the control input is held constant until tk+1−1 by zero
order holder (ZOH), and broadcasted to the actuator. The true
plant (1) under the closed-loop sampled-data control can be
written as follows

x(t +1) = Ax(t)+BKx(tk), t ∈ N[tk,tk+1−1]. (3)

Traditional periodic transmission schemes updates the con-
trol input periodically [19], and have been extended to data-
driven cases, e.g., by [12], which determine the maximum
sampling interval for which stability can be guaranteed.
Avoiding “redundant” transmissions in networks, an STS has
been employed by [3] to adaptively determine the transmis-
sion instant tk to save communication resources. The idea
of the STS is to build a function Γ(x(tk)) for computing the
next transmission instant tk+1 based on the current state x(tk)
of system (3)

tk+1 = tk +Γ(x(tk),sk). (4)

However, most existing STSs [3], [4] depend on a precise
system model. The main goals of this paper are to 1) develop
a data-driven STS with unknown matrices A and B, as well as
2) a data-driven design method for computing the controller
gain guaranteeing a desired performance under the data-
driven STS. See Fig. 1 for an illustration of the setup.

III. MAIN RESULTS
For the first goal, the challenge is to predict the next trans-

mission instant using the already transmitted system states
and historical noisy measurements (i.e., {x(T )}, {u(T )})
without explicit knowledge of the system matrices A and
B. To this end, we begin by designing a model-based STS.
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Fig. 1. Structure of data-driven discrete-time systems under STS.
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Fig. 2. Evolution of transmission series.

A. Model-based STS
We first need to define a lifted version of the original

system (3) as suggested in [12]. To this end, let us define
for s > 0, s ∈ N

Bs :=
[

As−1B As−2B · · · B
]
,

Ks :=
[

K⊤ K⊤ · · · K⊤︸ ︷︷ ︸
s times

]⊤
.

The discrete-time sampled-data systems in (3) can be
viewed as switched systems, which is a well-known fact in
the literature [20]

x(tk + sk) = (Ask +Bsk Ksk)x(tk), sk ∈ N[1, s̄] (5)

where sk = tk+1 − tk and s̄ > 1 ∈ N.
We employ the following condition to find Γ(x(tk),sk)

σ1x⊤(tk+sk)Ωx(tk+sk)+σ2x⊤(tk)Ωx(tk)−e⊤(sk)Ωe(sk)≥ 0
(6)

where Ω ≻ 0 is some weight matrix; σ1 and σ2 are pa-
rameters to be designed; e(sk) := x(tk + sk)− x(tk) denotes
the error between the sampled signals x(tk) at the latest
transmission instant and x(tk + sk) at time tk + sk. According
to (5), the condition (6) can be reformulated in the form of
a quadratic matrix inequality (QMI)

Q(x(tk),sk) =

[
(Ask +Bsk Ksk)x(tk)

x(tk)

]⊤
×
[
(σ1 −1)Ω Ω

∗ (σ2 −1)Ω

]
[·]≥ 0. (7)

If (7) is satisfied, the time tk + sk is declared to be the next
transmission instant, i.e., tk+1 = tk + sk. When the sampled
state x(tk + sk) is transmitted to the controller, the ZOH
is used to maintain it within the interval [tk+1, tk+2 − 1].
Simultaneously, the self-triggering module is updated and
employed to predict the next transmission instant tk+2. Con-
sequently, the function Γ(x(tk)) is designed to be

Γ(x(tk)) = max
sk∈N

{
sk > 0

∣∣∣Q(x(tk),sk)≥ 0
}
. (8)
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In Fig. 2, an example illustrating the STS is given. The next
transmission instant is predicted using the current transmitted
measurement; that is, tk+1 is determined by the system state
at time tk.

B. Data-driven STS

In this part, a data-based discrete-time STS is proposed
based on the model-based function in (8) and the measure-
ments {x(T )}ρ+s

T=0, {u(T )}ρ+s−1
T=0 (T,ρ,s ∈ N,ρ > 0,s > 0)

of the perturbed system (2). Our idea is to rebuild a self-
triggering function using the data {x(T )}ρ+s

T=0, {u(T )}ρ+s−1
T=0

to replace the [As Bs]-based representation (8). To that end,
we recall the data-driven parametrization of the lifted matrix
[As Bs] in [12]. Similar to the system expression in (5), we
firstly re-write the perturbed system (2) as follows

x(T + s) = Asx(T )+Bs

 u(T )
...

u(T + s−1)


+
[

As−1Bw · · · Bw
] w(T )

...
w(T + s−1)

 . (9)

Recall that the measured data {x(T )}ρ+s−1
T=0 , {u(T )}ρ+s−2

T=0
are corrupted by the unknown noise {w(T )}ρ+s−2

T=0 . Let us
define the following matrices containing the measurements

X s
+ :=

[
x(s) x(1+ s) · · · x(ρ + s−1)

]
U s :=

 u(0) u(1) · · · u(ρ −1)
...

...
...

u(s−1) u(s) · · · u(ρ + s−2)

 .

We further define the following lifted disturbance

W 1 :=
[

w(0) w(1) · · · w(ρ −1)
]

W s :=

 w(0) · · · w(ρ −1)
...

...
w(s−1) · · · w(ρ + s−2)


W s :=

[
As−1Bw · · · Bw

]
W s, for s > 1.

Then, it is clear that

X s
+ = AsX +BsU s +Bs

wW s (10)

where B1
w := Bw, Bs

w := I for s > 1. For the proposed
approach, the required data are collected offline and can
be transmitted once by the sensor for the controller design
step. Therefore, we can neglect network effects on these data
and we can assume that they are collected with a sampling
period. In practice, the noise is typically bounded. We make
the following standing assumption on the noise.

Assumption 1 (Lifted noise bound): The noise sequence
{w(t)}ρ+s−2

t=0 in the matrix W s satisfies W s ∈ W s with

W s =

{
W s ∈ Rns

w×ρ

∣∣∣[ W s⊤

I

]⊤[ Qs
d Ss

d
∗ Rs

d

][
W s⊤

I

]
⪰ 0

}

for some known matrices Qs
d ≺ 0 ∈ Rρ×ρ , Ss

d ∈ Rρ×ns
w , and

Rs
d = Rs

d
⊤ ∈ Rns

w×ns
w , where n1

w := nw, ns
w := n for s > 1.

Define the set of all pairs [As Bs] consistent with the model
(10) and Assumption 1 as the same as [12]

Σ
s
AB := {[As Bs] ∈ Rn×(n+sm) |

X s
+ = AsX +BsU s +Bs

wW s, W s ∈ W s}. (11)

Then, we obtain the following equivalent expression of
Σs

AB in the form of a QMI

Σ
s
AB =

{
[As Bs]

∣∣∣[ [As Bs]⊤

I

]⊤
Θ

s
AB[·]⪰ 0

}
(12)

where

Θ
s
AB =

[
Qs

c Ss
c

∗ Rs
c

]
:=

 −X 0
−U s 0
X s
+ Bs

w

[
Qs

d Ss
d

∗ Rs
d

]
[·]⊤.

Having obtained a data-based representation of system
(5), we can now translate the model-based self-triggering
function (8) that depends on [As Bs] to a data-based one.
The following technical assumption on the matrix Θs

AB is
required for the subsequent derivation.

Assumption 2: The matrix Θs
AB is invertible and has nw

positive eigenvalues.
In practice, Assumptions 2 is satisfied when the data

are sufficiently rich and Bw is invertible [12]. Based on
Assumption 2, we have the following theorem.

Theorem 1 (Data-driven self-triggering condition): For
given scalars σ1 ≥ 0, σ2 ≥ 0, matrix Ω ≻ 0, controller gain
K, and x(tk) from system (5), Q(x(tk),s) in (7) satisfies

Q(x(tk),s)≥ 0 (13)

for any [As Bs]∈ Σs
AB, if there exists a scalar γ > 0, such that

the following LMI holds for some s ∈ N,s ≥ 1

Q̃(x(tk))− γG̃ s(x(tk))⪰ 0 (14)

where

Q̃(x(tk)) :=
[

I 0
0 x⊤(tk)

][
(σ1 −1)Ω Ω

∗ (σ2 −1)Ω

]
[·]⊤

G̃ s(x(tk)) :=
[

I 0 0
0 x⊤(tk) x⊤(tk)Ks⊤

]
Θ̃

s
AB[·]⊤

Θ̃
s
AB :=

[
−R̃s

c S̃s⊤
c

∗ −Q̃s
c

]
,

[
Q̃s

c S̃s
c

∗ R̃s
c

]
:=

[
Qs

c Ss
c

∗ Rs
c

]−1

.

Proof: The matrix Q(x(tk),s) in (7) is rewritten as

Q(x(tk),s) =
[
(As +BsKs)x(tk)

I

]⊤
Q̃(x(tk))[·]. (15)

Applying the dualization lemma [21, Lemma 4.9] to the
system representation in (12) under Assumption 2, it can
be proven that [As Bs] ∈ Σs

AB if and only if[
[As Bs]

I

]⊤
Θ̃

s
AB

[
[As Bs]

I

]
⪰ 0. (16)

Immediately, through the full-block S-procedure, we have
Q̃(x(tk)) ⪰ 0 for any [As Bs] ∈ Σs

AB if there exists a scalar
γ > 0 such that the LMI (14) holds. End the proof.
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Remark 1 (Explanation of the data-driven STS condition):
Theorem 1 offers a data-driven triggering condition based
on the model-based one in (8). The key idea is that we
leverage the data-based representation in (12) to robustly
verify the STS condition for all [As Bs] consistent with the
data. As a result, the model-based triggering STS function
in (8) is translated into a data-driven one as follows

Γ̄(x(tk),sk) = max
sk∈N

{
sk ≥ 1

∣∣∣Q̃(x(tk))− γG̃ sk(x(tk))⪰ 0
}
.

(17)
Overall, our data-driven STS is given by

tk+1 = tk + Γ̄(x(tk),sk) (18)

under Assumptions 1 and 2 for system (5). Note that, in The-
orem 1, the data-driven condition Q̃(x(tk))− γG̃ s(x(tk))⪰ 0
sufficiently guarantees the model-based one Q(x(tk),s) ≥ 0
in (8) that is consistent with system stability characteristics.
A smaller triggering interval may be produced by (17), since
(17) only provides a sufficient condition for (8).

Remark 2 (Summary of data-driven STS algorithm):
According to (18), the next transmission instant tk+1 of
system (3) can be computed using only collected data
{x(T )}ρ+s−1

T=0 and {u(T )}ρ+s−2
T=0 . Note that the matrix Θ̃s

AB
in (18) needs to be determined in advance from the given
noise bound. To that end, we recall [12, Algorithm 1],
which can be used to construct a lifted noise bound as
in Assumption 1 based on pointwise bound ||w(T )||2 ≤ w̄
for all T = 0, . . . ,ρ + s − 2 with some w̄ > 0. This leads
to a lifted system parametrization as in (12). Then, we
continuously check the data-driven self-triggering condition
using the matrices Θ̃s

AB from [12, Algorithm 1]. The next
triggering instant can be determined by checking the LMI
(14) as soon as the current transmission instant and state
become available.

C. Stability analysis and controller design

In the following, we address the second goal that is co-
designing the triggering matrix Ω and the controller gain
K, such that the unknown system (3) under the transmission
scheme (18) is stable. To this end, a model-based stability
condition for system (3) under the STS (6) is set up first.

Theorem 2 (Model-based condition): For given scalars
σ1 > 0 and σ2 > 0, system (3) is asymptotically stable under
the triggering condition (6), if there exist matrices P ≻ 0,
Ω ≻ 0, and F , such that the following LMI holds

H +J ≺ 0 (19)

where Ei :=
[
0n×(i−1)n, In, 0n×(3−i)n

]
, (i = 1,2,3), and

H := E⊤
2 PE2 −E⊤

1 PE1

J := Sym
{

F(AE1 +BKE3 −E2)
}
+σ1E⊤

1 ΩE1

+σ2E⊤
3 ΩE3 − (E1 −E3)

⊤
Ω(E1 −E3)

Proof: Choose the following functional for system (3)

V (t) = x⊤(t)Px(t), P ≻ 0, t ∈ N[tk,tk+1−1]. (20)

Calculating the forward difference of V (t) yields

∆V (t) = ζ
⊤(x, t)

(
E⊤

2 PE2 −E⊤
1 PE1

)
ζ (x, t) (21)

with ζ (x, t) :=
[
x⊤(t),x⊤(t +1),x⊤(tk)

]T .
Through the descriptor method, the system representation

(3) can be written as

0 = 2ζ
⊤(x, t)F

(
AE1 +BKE3 −E2

)
ζ (x, t) (22)

for t ∈N[tk,tk+1−1], where F is a matrix of dimensions 3n×n.
In spirit of (6), when the current system state is not

transmitted, the following inequality is true

ξ
⊤(x, t)

[
σ1E⊤

1 ΩE1 +σ2E⊤
3 ΩE3

− (E1 −E3)
⊤

Ω(E1 −E3)
]
ξ (x, t)≥ 0. (23)

Summing up (21)-(23), we arrive at

∆V (t)≤ ζ
⊤(x, t)(H +J )ζ (x, t). (24)

Finally, H +J ≺ 0 implies that ∆V (t)< 0 whenever ζ ̸= 0.
We conclude that system (3) is asymptotically stable under
the triggering condition (6) if the LMI (19) holds. This
concludes the proof.

We now derive a data-based stability certificate for the
self-triggered control system (3). Motivated by [12], the main
idea is to employ a system expression using the data {x(T )},
{u(T )} to replace the system matrices [A B] in Theorem 2.
We begin with an algebraically equivalent system to (3).

Assume that G∈Rn×n is nonsingular, and let x(t) =Gz(t).
The system (3) is restructured as follows

z(t +1) = G−1AGz(t)+G−1BKcz(tk) (25)

for t ∈N[tk,tk+1−1], where Kc :=KG. The system (25) exhibits
the same stability behavior as (3), and the triggering condi-
tion (6) remains effective. Based on Theorem 2, we have the
following theoretical result.

Theorem 3 (Data-driven co-design): For given scalars
σ1 > 0, σ2 > 0, α , there exists a controller gain K such
that system (3) is asymptotically stable under the triggering
condition (18) for any [A B] ∈ Σ1

AB, if there exist a scalar
ε > 0, and matrices P ≻ 0, Ωz ≻ 0, G, Kc such that the
following LMI holds[

Y1 Y2 +K
∗ H +J̄ +Y3

]
≺ 0 (26)

where Z1 :=
[

I 0
]
, Z2 :=

[
0 L

]
,

J̄ := Sym
{
−L GE2)

}
+σ1E⊤

1 ΩzE1 +σ2E⊤
3 ΩzE3

− (E1 −E3)
⊤

Ωz(E1 −E3)

L := (E1 +αE2)
T , K :=

[
E⊤

1 G⊤, E⊤
3 K⊤

c

]⊤
Y1 := εZ1Θ

1
ABZ ⊤

1 ,Y2 := εZ1Θ
1
ABZ ⊤

2 ,Y3 := εZ2Θ
1
ABZ ⊤

2 .

Moreover, K = KcG−1 and Ω = G−1⊤ΩzG−1 are desired the
controller gain K and triggering matrix.

Proof: It is known from Theorem 1 that data-driven
STS (18) implies Q(x(tk),sk) ≥ 0 in (13), which is equal
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to (23). Then, choose a functional V (z, t) for the system
(25), where V (z, t) comes from (20). Similar to the proof
of Theorem 2, it can be obtained that

∆V (z, t)≤ ζ
⊤(z, t)(H +J )ζ (z, t) (27)

where ζ (z, t) :=
[
z⊤(t),z⊤(t +1),z⊤(tk)

]⊤
.

We can use the descriptor method as in (22) to rewrite the
system description (25) as follows

0 = 2ζ
⊤(z, t)L (AGE1 +BKcE3 −GE2)ζ (z, t) (28)

where α is a given constant. Replacing the equality (22) by
(28) in the proof of Theorem 2, (27) becomes

∆V (z, t)≤ ζ
⊤(z, t)U ζ (z, t). (29)

where U := Sym
{
L (AGE1 +BKcE3)

}
+H +J̄ .

Now, the matrix U can be defined as

U :=
[

[L A L B]⊤

I

]⊤ [
0 K
∗ H +J̄

][
[L A L B]⊤

I

]
.

According to the data-based representation in (12) with
s = 1, it holds for any [A B] ∈ Σ1

AB that[
[A B]⊤

I

]⊤
Θ

1
AB

[
[A B]⊤

I

]
⪰ 0. (30)

By the full-block S-procedure, we have U ≺ 0 for any
[A B] ∈ Σ1

AB if there exists a scalar ε > 0 such that[
0 K
∗ H +J̄

]
+ ε

[
Z1Θ1

ABZ ⊤
1 Z1Θ1

ABZ ⊤
2

∗ Z2Θ1
ABZ ⊤

2

]
≺ 0.

Finally, by Schur Complement Lemma, the LMI (26) is
a sufficient stability condition for the system (25) under
the triggering condition (18) for any [A B] ∈ Σ1

AB. Since G
is nonsingular, the system (25) exhibits the same stability
characteristics as (3).

Remark 3 (Model-based design under STS): A model-
based co-design method under the STS (8) can be derived
analogously by replacing (26) by the condition U ≺ 0.

IV. EXAMPLE AND SIMULATION

In this section, one numerical example from [22] is em-
ployed to certificate the effectiveness and merits of our pro-
posed methods. All numerical computations were performed
using Matlab, together with the SeDuMi toolbox.

Example 1: Consider the linear system used in [22]

ẋ(ν) =
[

0 1
0 −0.1

]
x(ν)+

[
0

0.1

]
u(ν), ν ≥ 0.

Through system discretization with an interval Tk > 0, the
system with the linear sampled-data state-feedback controller
u(t) = Kx(tk) can be written as

x(t +1) = A(Tk)x(t)+B(Tk)Kx(tk), t ∈ N[tk,tk+1−1] (31)

where

A(Tk) := e

[
0 1
0 −0.1

]
Tk

,B(Tk) :=
∫ Tk

0
eA(s)

[
0

0.1

]
ds.
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Fig. 3. Trajectories of system (3) under data-driven STS (18) with the
initial condition x(0) = [3 −2]⊤.

In the following, the proposed data-driven STS (18) is
applied for system (31)

(Data-driven STS control) Assume that the matrices A and
B are unknown. We set the discretization interval as Tk =
0.2 and generated measurements {x(T )}800

T=0, {u(T )}800
T=0,

where the data-generating input was sampled uniformly from
u(T ) ∈ [−1, 1]. The measured data were perturbed by a dis-
turbance distributed uniformly over w(T )∈ [−0.001, 0.001]2.
Such disturbance w(T ) fulfills Assumption 1. The matrix
Bw was taken as Bw = 0.01I, which has full column rank.
According to [12, Algorithm 1], the bound on the lifted
disturbance in Assumption 1 can be computed by using
above measurements with ρ = 750 and s̄ = 50. Then, it is
straightforward to obtain the data-based matrices G̃ s(x(tk))
for s ∈ N[1, s̄] in (14) based on the matrix Θs

AB from the
bound in Assumption 1. Solving the data-based LMIs (26)
in Theorem 3 with σ1 = σ2 = 0.9, α = 2, the controller and
triggering matrices are co-designed as follows

K = [ −0.1537 −1.6465 ], Ω =

[
0.0001 0.0008
0.0008 0.0091

]
.

We simulate the system state trajectory under the data-based
STS (18), as depicted in Fig. 3 for t ∈ [0, 500]. All states
converge to the origin, thereby validating the practicality
of our proposed co-design method and STS. Note that, in
Fig. 3, only 17 out of 250 samples were transmitted to
the controller. This illustrates the usefulness of the STS in
reducing transmissions while ensuring stability.

(Compared with model-based STS control) We compare
the data-driven approach described above to an alternative
approach, consisting of least-squares identification of the
system matrices and subsequent model-based STS (8). In
the system identification step, the following least-squares
problem is considered

[Â B̂]⊤ = arg min
(A B)

ρ

∑
T=0

∥x(T +1)−Ax(T )−Bu(T )]∥2
2.

Using the least-squares approach and the same measurements
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Fig. 4. Trajectories of system (3) under identification-based STS (8) with
the initial condition x(0) = [3 −2]⊤.

as in the data-driven control, the system matrices are

Â =

[
1.0000 0.0995
0.0000 0.9900

]
, B̂ =

[
0.0005
0.0100

]
.

Subsequently, by solving the model-based approach in Re-
mark 3 with the same parameters as in data-driven control,
the controller and the triggering matrices were computed as

K = [ −0.0944 −1.3662 ], Ω =

[
0.0001 0.0006
0.0006 0.0092

]
.

The trajectories of system (31) under the identification-
based STS (8) were depicted in Fig. 4 over t ∈ [0,500].
The simulation results show that x(t) approaches to zero as
t → ∞ under the identification-based STS with the above
designed K and Ω. The comparison between Figs. 3 and
4 certificates the effectiveness of our data-driven STS in
guaranteeing stability characteristics at the approximate level
to model-based one. However, in contrast to the direct data-
driven design, the identification-based STS approaches do
not provide stability guarantees.

V. CONCLUDING REMARKS

In this paper, we proposed a data-based STS for discrete-
time systems, as well as a data-driven method for co-
designing the controller gain and the triggering matrix for the
discrete-time STS systems. Finally, a numerical example was
presented to corroborate the role of our triggering schemes
in saving communication resources, as well as the merits
and effectiveness of our co-designing methods. Our future
works will center on extending the data-driven STS to more
complicated systems, such as multi-agent systems [23] and
complex dynamic networks.
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