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Abstract— In this paper, the problem of identifying inertial
characteristics of a generic space vehicle relying on the physical
and structural insights of the dynamical system is presented.
To this aim, we exploit a recently introduced framework for
the identification of physical parameters directly feeding the
measurements into a backpropagation-like learning algorithm.
In particular, this paper extends this approach by introducing
a recursive algorithm that combines physics-based and black-
box techniques to enhance accuracy and reliability in estimating
spacecraft inertia. We demonstrate through numerical results
that, relying on the derived algorithm to identify the inertia
tensor of a nanosatellite, we can achieve improved estimation
accuracy and robustness, by integrating physical constraints
and leveraging partial knowledge of the system dynamics.
In particular, we show how it is possible to enhance the
convergence of the physics-based algorithm to the true values
by either overparametrization or introducing a black-box term
that captures the unmodelled dynamics related to the off-
diagonal components.

Index Terms— Aerospace, Nonlinear systems identification,
Grey-box modeling, Physics-based neural networks

I. INTRODUCTION

The knowledge of a spacecraft inertia tensor is crucial to
the performance of the satellite itself. Typically, the inertia
is calculated before launch by tabulating the masses and
locations of spacecraft components, but the accuracy of such
estimates is rather limited. Moreover, a spacecraft inertia may
change in unpredictable ways while operated on orbit. This
can be due, for instance, to fuel consumption or satellite dam-
age, or in specific scenarios, be a consequence of a mating
maneuver leading to a combined system, characterized by
new inertial properties that need to be estimated to properly
control it. This may happen during on-orbit service missions
such as refueling, infrastructures upgrade, and active debris
removal. As a result, the ability to estimate a spacecraft
inertia during its operative lifetime would allow to largely
increase robustness to modeling uncertainty and component
failures, thus resulting in improved pointing performance.

Several algorithms for estimating a spacecraft inertia pa-
rameters from telemetry data have been proposed in the
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literature. The majority is based on least squares (LS)
methods mainly for on-ground estimation, see e.g., [1], [2],
[3]. On the other hand, the ability to estimate a spacecraft
inertia on orbit can offer improved pointing performance and
robustness to modeling uncertainty and component failures.
In this framework, Kalman Filters have shown better per-
formance than LS methods as presented, e.g., in [4] with
an extended Kalman filter for estimating parameters in the
case of a gyroless satellite and in [5] with an unscented
Kalman filter. In [6], a recursive algorithm for on-orbit
estimation of a spacecraft inertia tensor is presented. The
estimation problem is formulated as a semi-definite program
with explicit enforcement of positive-definiteness and other
constraints on the elements of the inertia tensor, which
enhances convergence and guarantees that a physically valid
result is returned.

However, when dealing with complex systems as space
vehicles, relying on purely physics-based identification tech-
niques may be not sufficient. This is especially true in the
frequent situation in which the available physical model is
only partially known: the presence of unmodeled components
tends to hinder the estimation accuracy of the interpretable
physical parameters. Indeed, in such cases, the identification
algorithm tries to capture and encompass in the identified
physical parameter value also the residual dynamical effects
caused by the unmodelled part, with the aim of minimizing
the prediction error. This comes at the cost of wrong and
unreliably identified physical values.

In this paper, we show how it is possible to exploit a
purely physics-based identification approach, as the one first
proposed in [7], and still achieve a reasonable accuracy of
the estimation properly enforcing physical constraints [7]
and relying on the concept of “benign over-fitting” [8],
[9]. Moreover, differently from what it can be done when
exploiting standard neural networks approaches, we show
how the proposed method allows to enforce the physics of
the system through physical constraints in the optimization
problem. In the specific case under analysis, we account
for the physical properties of the components of the inertia
tensor, i.e., symmetry, positive definiteness, and the triangle
inequality constraint to retrace the main features of any
inertia matrix.

On the other hand, the use of purely black-box based tech-
niques might be able to capture the entire dynamics of the
system at the cost of leading to non interpretable parameters.
In the framework of neural-network based estimation, [10]
exploits a recurrent neural network to estimate the moment-
of-inertia (MOI) of a satellite. More specifically, they showed
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that while it is not possible to determine distinctively the
absolute MOI but rather the relative MOI ratios, on the other
hand, when a (partial) knowledge of the disturbance torque is
provided to the neural network, the accuracy estimation error
is significantly reduced, suggesting that the neural network
is able to predict the MOI.

Another crucial aspect of models derived only from fun-
damental physical principles is that they may fail to capture
the complexity of the actual system dynamics. A potential
solution is the use of a physics-informed, or gray-box model,
that extends a physics-based model with a data-driven part.
In [11] the proposed approach is based on a physics-informed
online learning of gray-box models, which does not require
any prior knowledge than the white-box sub-model.

In this paper, we propose a blended approach, where we
combine the multi-step identification method we introduced
in [7], based on the closed-form computation of the gra-
dient of a multi-step loss function and where the physical
insights are reflected directly into a backpropagation-like
learning algorithm, with a black-box term, which aims at
compensating (possible) unmodeled dynamics in the physical
model. The proposed method uses partial knowledge of the
nonlinear system’s physical description and combines it with
black-box basis functions to define an NN-like structure to
counterbalance the lack of a reliable dynamical model. In
particular, the black-box component works as a “safety net”,
capturing the unforeseen dynamics and possible model over-
simplification, and improving the overall accuracy and reli-
ability of the model. In the numerical results, we show how
the regularized black-box contribution is able to capture the
unmodelled dynamics related to the off-diagonal elements
of the inertia matrix, thus leading to faster convergence of
the parameters to the true values and higher accuracy of the
estimates.

The remainder of the paper is structured as follows. In
Section II, we define the considered framework, introducing
the main features of the considered system dynamics and
of the estimation model. Section III is dedicated to the
definition of physics constraints to be enforced into the
optimization problem while the extension to a blended
identification approach including a black-box term is
described in Section IV. Simulation results obtained with
the proposed approach are discussed in Section V and main
conclusions are drawn in Section VI.

Notation Given a vector v, we denote by v1:T
.
= {vk}Tk=1 the

set of vectors {v1, . . . , vT }. Given integers a ≤ b, we denote
by [a, b] the set of integers {a, . . . , b}. The Jacobian matrix
of αk with respect to βk is denoted as J α/β

k ∈ Rnα×nβ ,
i.e., ∂αk

∂βk
. Similarly, J α/α

k ∈ Rnα×nα is the Jacobian matrix
of αk with respect to αk−1, i.e., ∂αk

∂αk−1
.

II. FRAMEWORK DEFINITION

In this section, we briefly recall the main results of [7],
related to a physics-based framework for the identification
of dynamical systems, in which the physical and structural

insights are reflected directly into a backpropagation-like
learning algorithm.

A. Problem setup and modelling

We consider a nonlinear, time-invariant system that cap-
tures the physical interaction between variables. In the spe-
cific framework of inertial parameter estimation considered
in this paper, the system is a satellite, whose rotational
dynamics can be modeled in continuous time exploiting the
standard Euler equations

S : ω̇ = J−1
C

(
M − ω × JCω

)
, (1)

where ω = [ωx ωy ωz]
⊤ is the satellite angular velocity

expressed in the body frame, M represents the sum of
external input, and JC = [JC,ij ] ∈ R3×3 is the inertia matrix
to be identified. Moreover, we assume that for the case under
analysis, we have the observations z̃ = ω + ηz , with ηz the
observation noise.

The aim is to estimate the physical parameters θ and initial
condition x0 from T -step measured, input sequence ũ0:T−1

and the corresponding T collected observations z̃0:T−1,
leading to a model Ŝ of (1) of the form

Ŝ : x̂k+1 = f(x̂k, uk, θ̂),

ẑk = g(x̂k),
(2)

where x̂k and ẑk are the estimated state and output at time
k, respectively, such that Ŝ is the best approximation of
S, given its underlying physical structure and the measured
data {ũ0:T−1, z̃0:T−1}. Clearly, the setup in (2) can be recast
from (1) setting x

.
= ω, u .

= M , and letting θ denotes the
elements of the inertial tensor. Hence, f can be immediately
obtained by discretization of (1).

Given the dynamical model S , we propagate each state
variable xi, i ∈ [1, nx] over a desired horizon T . Then,
given the output predictions ẑ and the true measurements z̃
sampled over the horizon, we define the multi-step prediction
error at time k as ek

.
= ẑk − z̃k, and the local loss at time k

as the weighted norm of the error, i.e.,

L(ek, θ)
.
=

1

T
∥ek∥2Q

.
=

1

T
e⊤k Qek, (3)

with Q ⪰ 0. Then, we consider the minimization of the
multi-step regression cost C, defined as the sum of local
losses over the prediction horizon T , i.e.,

C(ek, θ) =
T−1∑
k=0

L(ek, θ)
.
=

T−1∑
k=0

Lk. (4)

Since the overall objective function in (4) is (in gen-
eral) non-convex, due to the nonlinearity1 in θ and xk of
f(xk, uk, θ) and g(xk) in (2), we can rely on gradient-based
algorithms (see, e.g., [12]) to address the optimization prob-
lem, aiming to reach some (local) minima, and eventually,
compute a (sub)optimal estimation of θ and x0.

1Note that the problem would be still be nonconvex if the systems
dynamics were linear, due to the multi-step cost.
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Specifically, relying on the similarity between the multi-
step dynamics propagation and the well-known structure of
neural networks, we have that each time step k is seen
as a “layer” composed by nx “neurons”. Hence, the inter-
connection links between layers and neurons, are activated
or deactivated according to the system dynamical structure
defined in S. The peculiarity of the proposed approach is
that, unlike neural network backpropagation, we have the
same weights θ and the same functions in all layers, which
allows to derive a closed-form of the gradient of C(ek, θ)
with respect to θ and x0, i.e., ∇C = [∇θC, ∇x0

C].
In the following, we briefly recall the backpropagation-

based algorithm introduced in [7] to compute the gradient in
closed-form, which will also be extended to the identification
problem discussed in Section IV. The interested reader is
referred to [7] for additional details.

B. Closed-form gradient computation

First, let us derive the gradient of the cost function C at
epoch ℓ with respect to θ, i.e., ∇θC(ℓ), as the product of some
intermediate partial derivatives. Specifically, we can define
∇θC(ℓ) by considering the effect of the current (in terms of
epochs) estimate θ̂ for each time step k on the cost C, i.e.,

∇θC(ℓ)=

T−1∑
k=1

dC(ℓ)

dθ

∣∣∣∣
k

=

T−1∑
k=1

(
∂C(ℓ)

∂θ

∣∣∣∣
k|k

+

T−1∑
τ=k+1

dC(ℓ)

dθ

∣∣∣∣
τ |k

)
.

(5)
Applying the chain rule of differentiation, as typically done
in classical backpropagation, in (5), the closed-form of
∇θC(ℓ) is given by

∇θC(ℓ) =

T−1∑
k=1

γk +

T−1∑
k=1

ΓkJ x/θ
k

+

T−1∑
k=1

T−1∑
τ=k+1

(
Γτ

τ−k−1∏
c=0

J x/x
τ−c

)
J x/θ
k .

(6)

Then, at each epoch ℓ, the gradient can be simply eval-
uated at the current value of θ̂(ℓ), x̂

(ℓ)
0 , and the ensuing

predictions x̂
(ℓ)
1:T and ẑ

(ℓ)
0:T−1.

Analogously, we can derive in closed-form the gradient
with respect to the initial condition ∇x0

C(ℓ) obtaining

∇x0
C(ℓ) =

T−1∑
k=1

Γk

k−1∏
c=0

J x/x
k−c. (7)

Once the gradients ∇θC(ℓ) and ∇x0
C(ℓ) are computed, it

is possible to apply a gradient-based algorithm to solve the
optimization problem (4), such that the estimate of θ and x0
are updated at each epoch ℓ.

III. PHYSICS-BASED CONSTRAINTS AND
OVERPARAMETRIZATION

In order to ensure that the estimated parameters align
with the physics of the phenomena under investigation,
it is necessary to take into account the specific behavior
of the system. This means that the identified model shall
comply with the fundamental laws and be consistent with

the physical principles. This aspect is formally embedded
into the cost C by means of penalty terms that introduce
physical constraints of the form

h(x̂k, θ) ≤ 0, ∀k ∈ [0, T ],

q(x̂k, θ) = 0, ∀k ∈ [0, T ],

with h, q : Rnx × Rnθ → R time-invariant, differentiable
functions with continuous derivatives. Specifically, the gen-
eral cost C is modified as follows

C =

T−1∑
k=0

Lk + λh(x̂k, θ) + νq(x̂k, θ)
2,

where λ ∈ R and ν ∈ R control the relevance of the physical
inequality constraint, i.e., h(x̂k, θ), and of the physical
equality constraint, i.e., q(x̂k, θ), such that the higher the
violation of the physical properties in the predicted states
and weights is, the larger the associated loss value will be.

For the system under analysis, three physical constraints
on the elements of the inertia matrix are accounted, i.e., sym-
metry, positive definiteness, and the triangle inequality [6].

A. Symmetry

1) By design: The symmetry of the identified matrix
can be imposed by identifying the lower-triangular matrix
and forcing the matrix to be symmetric in the model. In
particular, the inertia matrix is parametrized as

ĴC
.
=

 θ̂1 θ̂2 θ̂4
θ̂2 θ̂3 θ̂5
θ̂4 θ̂5 θ̂6

 .
2) Via overparametrization: The second approach to en-

force symmetry relies on the recent findings in the field
of neural networks related to the concept of “benign over-
fitting” [8], [9]. This method allows to achieve more accurate
estimates and faster convergence to the true values by the
overparametrization of the vector of parameters θ̂ ∈ R9.
In this case, the symmetry of the overparametrized inertia
matrix

ĴC
.
=

 θ̂1 θ̂2 θ̂3
θ̂4 θ̂5 θ̂6
θ̂7 θ̂8 θ̂9

 ,
is imposed by enforcing the following set of equality con-
straints

q1(x̂k, θ)
.
= θ̂2 − θ̂4 = 0,

q2(x̂k, θ)
.
= θ̂3 − θ̂7 = 0,

q3(x̂k, θ)
.
= θ̂6 − θ̂8 = 0.

B. Positive semi-definiteness

The positive semi-definiteness of the inertia matrix is
enforced by imposing the matrix to be diagonal dominant
with real non-negative diagonal entries. Hence, the following
inequality constraints are defined

h1(x̂k, θ)
.
= |ĴC,12|+ |ĴC,13| − |JC,11| ≤ 0

h2(x̂k, θ)
.
= |ĴC,21|+ |ĴC,23| − |JC,22| ≤ 0

h3(x̂k, θ)
.
= |ĴC,31|+ |ĴC,32| − |JC,33| ≤ 0.
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Such non-differentiable constraints are effectively handled
by projecting the parameters into the feasible parameter set
defined by the inequalities whenever a violation occurs.

C. Triangle inequality

Last, we rely on the physical property of an inertia
tensor defined by the triangle inequality. Indeed, as detailed
in [6], if a symmetric, positive semi-definite real matrix
does not satisfy the triangle inequality, it doesn’t represent
a physically possible distribution of mass. Hence, triangle
inequality constraints are imposed on the diagonal entries of
the inertia matrix to prevent nonphysical predictions. These
constraints are defined as follows

h4(x̂k, θ)
.
= ĴC,11 − ĴC,22 − ĴC,33 ≤ 0,

h5(x̂k, θ)
.
= ĴC,22 − ĴC,11 − ĴC,33 ≤ 0,

h6(x̂k, θ)
.
= ĴC,33 − ĴC,11 − ĴC,22 ≤ 0.

IV. BLACK-BOX MODEL EXTENSION

In this section, we show how we can include into the previ-
ous identification approach a black-box term that counterbal-
ances the unmodelled dynamics and improves the accuracy
and the convergence rate of the estimated parameters to their
true values.

Suppose that the physical model f in (2) is not com-
pletely available. Instead, we have access to an approximated
physical model f̂ that does not capture entirely the physics
of the phenomenon, leading to an unmodeled dynamics
that is too relevant to allow an accurate identification of
the physical parameters θ simply relying on f̂ and a pure
physics-based identification procedure. Then, it is possible
to extend the model Ŝ introducing a black-box component
to the physics-based one to capture the information that
remains unaccounted by the physical priors. The extended
model dynamics can be defined as

x̂k+1 = f̂(x̂k, uk, θ̂) + ψ(x̂k,Ω,W,B),

ẑk = g(x̂k),
(8)

where ψ(x̂k,Ω,W,B) = [ψ1, . . . , ψnx
]⊤, and

Ω = [ωιj ] ∈ Rnx,m, W = [W (1), . . . ,W (nx)] ∈ Rnx,nxm

with W (ι) = [w
(ι)
ij ] ∈ Rnx,m, and B = [bιj ] ∈ Rnx,m are

the black-box additional weights to be learned during the
training procedure, without any physical interpretation. Let
us define φ ∈ Rm, i.e., the vector of basis functions
φ(x̂k) = [φ1(x̂k), . . . , φm(x̂k)]

⊤, with φj : Rnx → R.
Here, the term ψ captures the discrepancy between the true
system and the incomplete model f̂ , and its ι-th element is
defined as

ψι =

m∑
j=1

ωιjφj

(
nx∑
i=1

w
(ι)
ij x̂i,k + bιj

)
, ι ∈ [1, nx] . (9)

Hence, let us consider the modified multi-step regression cost
C as the sum of local losses over the prediction horizon T
accounting for the black-box term, i.e.,

C(ek, θ,Ω) =
T−1∑
k=0

L(ek, θ,Ω)
.
=

T−1∑
k=0

LΩ
k . (10)

The local loss at time k is defined by the weighted norm of
the error (3), plus a regularization term, i.e.,

LΩ
k
.
=

1

T
∥ek∥2Q +

ρ

T

nx∑
ι=1

∥ω⊤
ι ∥1,

with ω⊤
ι the ι-th row of Ω, and ρ ∈ R penalizing the

regularization term such that the lower the sparsification of Ω
rows is, the larger the associated black-box loss value will
be. Notice that, since the ℓ1-norm is not differentiable, it
must be replaced with a differentiable approximation of the
absolute value to allow gradient computation. In this work,
we exploit the softplus approximation of the absolute value
proposed in [13], resulting in the following definition of the
differentiable local loss operator

LΩ
k
.
=

1

T
∥ek∥2Q +

ρ

T
∥Ω∥1µ,

∥Ω∥1µ
.
=

1

µ

nx∑
i=1

m∑
j=1

[
log(1+e−µωij ) + log(1+eµωij )

]
,

(11)
where the tunable parameter µ controls the level of the
ℓ1-norm approximation. Last, we define the novel hybrid
identification problem as

(θ̂⋆, x̂⋆0,Ω
⋆,W ⋆, B⋆)

.
= arg min

θ,x0,Ω,W,B
CT ,

in which we aim to minimize the mean squared error over
the sampled measurements to obtain an estimate of θ and
x0.

Remark 1 (Gradient computation for the blended model):
Notice that the closed-form gradient computation algorithm
in [7] is general and it can be used also when a black-box
compensation term is included in the loss function. In
particular, this can be done redefining the local loss term
with a new differentiable function, as the one in (11). In
the considered case, the terms in the closed-form gradient
formulas (6), (7) are consequently redefined as

γΩk
.
= ∇θLk +

ρ

T
∇θ∥Ω∥1µ,

ΓΩ
k
.
= ∇eLkJ e/z

k J z/x
k +

ρ

T
∇x∥Ω∥1µ.

V. NUMERICAL RESULTS

We consider a 3U CubeSat with a mass of 4 kg, a (true)
tensor of inertia

JC =

 0.04027 0.00312 0.000145
0.00312 0.04028 0.000971
0.000145 0.000971 0.00801

 ,
and initial condition x0 = [0,−0.0011, 0]

⊤. In this ex-
ample, we rely on a strategy similar to the one pro-
posed in [14] to generate a random input signal that
persistently excites the system and simulates a tumbling
motion useful for the identification of the inertia matrix.
Hence, we consider M ∼ N (10−5, σMd

) with σMd
=

10−7 rad
s . The observation noise is assumed to be a Gaussian
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white noise ηzk ∼ N (0, σηz ) with standard deviation
σηz =

[
5 · 10−4, 5 · 10−4, 3 · 10−3

]⊤
rad/s 2.

The following analyses involve the identification of the
optimal values for the satellite inertia matrix (i.e., the
physical parameters θ̂ are the elements of JC) using the
proposed gradient approach and a first-order gradient descent
algorithm with an adaptive learning rate. The simulations are
run in MATLAB 2021a over an Apple M1 with an 8-core
CPU, 8GB of RAM, and a 256 GB SSD unit.

First, we consider the scenario where the physical model
fully describes the true system dynamics, that is θ contains all
the elements of the inertia matrix. We generate a sequence of
T = 500 data, integrating (1) with a sampling time Ts = 0.1s
over a 50s simulation. Hence, we consider the forward Euler
discretization of the same model as the physical model for
the identification (2), i.e.,

ωk+1 = ωk + TsJ
−1
C

(
M − ωk × JCωk

)
.

Here, we analyze the results obtained with the identification
algorithm proposed in [7] and resumed in Section II-B, ob-
serving how the overparametrization affects the identification
of the parameters. Following the approach detailed in Section
III-A, we first minimize the number of parameters to identify
(i.e., θ̂ represent the element in the lower-triangular part of
JC), while forcing symmetry directly into the definition of
the estimated inertia matrix. Then, we exploit the concept of
“benign over-fitting” increasing the number of parameters
to identify (i.e., θ̂ contains all the elements of JC) and
symmetry is forced by additional equality constraints, as
described in Section III-A.2.

In Fig. 1 we observe the evolution of the estimated
parameters with respect to the algorithm epochs ℓ for N =
100 different initial conditions of θ̂, randomly selected
as θ̂0

.
= θ + N (0, θ). It can be observed that, although

both approaches provide a good mean estimation of the
parameters, overparametrization leads to faster convergence
and more accurate estimates. This reflects that the majority of
the trajectories reach the vicinity of the true parameter value
in a shorter time and with a lower estimation error. This
behavior is confirmed by the evolution of the loss functions
over epoch ℓ ∈ [0, 250] drawn in Fig. 2.

In the second scenario, we consider the same sequence
of T = 500 data. However, we consider the satellite as a
rigid, symmetric body, obtaining a simplified model due to
the diagonality of the inertia matrix, leading to the following
set of equations, discretized using a forward Euler method

ωx,k+1 = ωx,k + Ts

(
Mx,k

JC,11
− JC,33 − JC,22

JC,11
ωy,kωz,k

)
,

ωy,k+1 = ωy,k + Ts

(
My,k

JC,22
− JC,11 − JC,33

JC,22
ωx,kωz,k

)
,

ωz,k+1 = ωz,k + Ts

(
Mz,k

JC,33
− JC,22 − JC,11

JC,33
ωx,kωy,k

)
.

(12)

2The noise values are compatible with the case study selected (i.e., around
10% of the state values).
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Fig. 1. Comparison between estimated parameters θ̂i obtained relying on
the complete physical model when symmetry is forced by definition (purple)
and when overparametrization is exploited (blue).
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]
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Fig. 2. Evolution of the cost functions for the two approaches.

This choice for Ŝ oversimplifies the model, considering
only the dynamical terms that result from the diagonal
entries of the inertia matrix and neglecting the dynamics
arising from the off-diagonal terms. In this case, we compare
the performance achievable with the purely physics-based
identification algorithm (i.e., (12) directly represents the
term f in (2)) and with the blended approach, where we
include the black-box term (9), as detailed in Section IV.
In the latter case, (12) represents the term f̂ in (8), while
the selected vector of basis functions consists of sigmoid,
softplus, hyperbolic tangent, and trigonometric functions.
The regularization term in (11) is tuned with ρ = 0.1 and
µ = 100.

Fig. 3 shows the trajectories of the estimated parameters
with respect to the algorithm epochs ℓ, calculated over N =
100 simulation for different parameter initial conditions. It
is worth noting that, when the identification relies on a
simplified and incomplete physical model, the parameters
converge to incorrect values, “absorbing” the dynamic effects
that are not considered. On the other hand, the black-
box compensation is able to recover these effects, enabling
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Ĵ

C
;1

1
[K

g
m

2
]

3̂phy 3̂phy+BB 3true

0 5 10
` [-]

0 200 400 600 800 1000
` [-]

0

0.05

0.1

0.15

Ĵ
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Fig. 3. Comparison between estimated parameters θ̂i obtained relying on
the given physics only and exploiting a black-box compensation.
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Fig. 4. Evolution of the cost functions for the two approaches.

physical parameters to converge to better estimates in a
neighborhood of the true values with a higher convergence
rate. Additionally, analyzing the zoomed portion on the right-
hand side of Fig. 3, it is possible to notice that the influence
of the black-box terms appears to immediately steer the
parameter values towards a more favorable region of the pa-
rameters space. This, in turn, allows reaching lower values of
the cost function and better local minima, as shown in Fig. 4.
In particular, it can be noticed that the mean value of the loss
functions over all the trajectories is reduced by one order of
magnitude when the black-box is exploited to compensate for
missing terms in the physical model. However, it is important
to remark that having access to the complete physical model
results in faster convergence of all the parameters towards
the true values (∼250 epochs compared to ∼600) with
comparable mean squared errors, especially when involving
overparameterization. This is shown in Table I, where the
average of the mean square error over N = 100 simulations
is shown for all the proposed approaches.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we presented an identification algorithm that
combines physics-based and black-box techniques. Numer-

TABLE I
AVERAGE MSE OVER 100 SIMULATIONS.

Approach e
avg
MSE

Full model 1.66 · 10−4

Full model + OP 1.10 · 10−5

Simple model 6.00 · 10−3

Simple model + BB 3.70 · 10−5

ical results showed that either overparametrization or the
introduction of a black-box term capturing unmodeled effects
can lead to improved accuracy and reliability in estimating
the spacecraft inertia matrix. Based on this analysis, we
conclude that having access to the complete physical model
results in faster convergence of the parameters towards the
actual values, leading to lower prediction errors. Hence, it
is always optimal to leverage all available physics, but in
situations where it is not feasible, black-box compensation
plays a crucial role in maintaining accurate identification
outcomes.
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