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Abstract— This study investigates the vulnerability of direct
data-driven control to adversarial attacks in the form of a small
but sophisticated perturbation added to the original data. The
directed gradient sign method (DGSM) is developed as a specific
attack method, based on the fast gradient sign method (FGSM),
which has originally been considered in image classification.
DGSM uses the gradient of the eigenvalues of the resulting
closed-loop system and crafts a perturbation in the direction
where the system becomes less stable. It is demonstrated that
the system can be destabilized by the attack, even if the
eigenvalues of the original closed-loop matrix with the clean
data are aligned far from the unstable region. To increase the
robustness against the attack, regularization methods that have
been developed to deal with random disturbances are consid-
ered. Their effectiveness is evaluated by numerical experiments
using an inverted pendulum model.

I. INTRODUCTION

Advances in computing power and an increase in available
data have led to the success of data-driven methods in various
applications, such as autonomous driving [1], communica-
tions [2], and games [3]. In the field of control theory, this
success has sparked a trend towards direct data-driven control
methods, which aim at designing controllers directly from
data without the need for a system identification process [4]–
[6]. One prominent scheme is the Willems’ fundamental
lemma-based approach [7], which provides explicit control
formulations and requires low computational complexity [8].

Meanwhile, in the context of image classification, it
has been reported that a data-driven method using neu-
ral networks is susceptible to adversarial attacks [9]–[11].
Specifically, adding small perturbations to images that re-
main imperceptible to human vision system can change
the prediction of the trained neural network classifier. This
type of vulnerability has also been observed in different
domains such as speech recognition [12] and reinforcement
learning [13]. Influenced by those results, adversarial attacks
and defenses have become a critical area of research on data-
driven techniques.

Most work on control system security focuses on vulnera-
bilities of control systems themselves and defense techniques
with explicit model knowledge against attacks exploiting
these vulnerabilities, such as zero-dynamics attack analy-
sis [14], observer-based attack detection [15], and moving
target defense [16]. In addition, there have also been re-
cent studies on data-driven approaches, such as data-driven
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stealthy attack design [17], [18] and data-driven attack detec-
tion [19]. However, the vulnerability of data-driven control
algorithm has received less attention, and there is a need for
dedicated techniques to address this issue.

The main objective of this study is to evaluate the robust-
ness of direct data-driven control methods against adversarial
attacks, and to provide insights on how to design secure
and reliable data-driven controller design algorithms. The
aim of the attacker is to disrupt the stability of the closed-
loop system by making small modifications to the data.
As the worst-case scenario, we first consider a powerful
attacker who has complete knowledge of the system, the
controller design algorithm, and the clean input and output
data. Subsequently, we consider gray box attacks where we
assume that the adversary has access to the model and
the algorithm but not the data, and additionally may not
know design parameters in the algorithm. Effectiveness of
crafted perturbations without partial knowledge is known
as the transferability property, which has been confirmed
in the domain of computer vision [20] and reinforcement
learning [13]. We observe that the data and parameter trans-
ferability property holds in direct data-driven control as well.

Our first contribution is to demonstrate the vulnerabil-
ity of direct data-driven control. We introduce a specific
attack, which we refer to as the directed gradient sign
method (DGSM), based on the fast gradient sign method
(FGSM), which has originally been developed for efficient
computation of a severe adversarial perturbation in image
classification [10]. The idea behind FGSM is to calculate
the perturbation vector in the direction of the gradient of the
cost function while limiting each element’s absolute value to
a specified small constant. DGSM is an adaptation of this
method, designed to destabilize the targeted control system.
DGSM calculates the gradient of the eigenvalues of the
resulting closed-loop system and determines the perturbation
in the direction that makes the system less stable. Fig. 1
illustrates a demonstration of DGSM applied to a discrete-
time linear system. It is shown that while the system can be
stabilized by using clean data where the resulting eigenvalues
are far from the unit circle it can be made unstable by a small
but sophisticated perturbation.

Second, we investigate defense methods using regulariza-
tion. We consider two regularization approaches: the first is
the certainty-equivalence regularization that links the direct
data-driven control with the indirect one via system identifi-
cation using the ordinary least-square estimation [21], [22].
The second is the robustness-inducing regularization that
ensures robustness against noise [8]. We demonstrate that
both approaches can improve robustness against adversarial
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Fig. 1. Demonstration of DGSM applied to a discrete-time linear system with three-dimensional input. The adversarial perturbation created by DGSM is
added to the original signal, but the perturbed signal appears almost identical to the original one. Nevertheless, the resulting closed-loop system obtained
through direct data-driven control with a regularizer becomes unstable due to the adversarial attack. Indeed, the eigenvalues of the closed-loop system
with the clean data are {−0.0177, 0.0212,−0.0275}, while those with the perturbed data are {0.1824, 0.3613, 1.0120}. The specific parameters of this
instance are provided in Appendix. Note that the output signal is also perturbed but its illustration is omitted for clarity.

attacks and compare their effectiveness.

Organization and Notation

The paper is organized as follows. Sec. II reviews key con-
cepts of direct data-driven control based on the fundamental
lemma and discusses a technique for generating adversarial
perturbations used in image classification with neural net-
works. In Sec. III, we outline the attack scenario and present
the adversarial method adapted for direct data-driven control
that leads to destabilization. Sec. IV provides experimental
evaluation to discuss the vulnerabilities of interest and the
improvement in robustness through regularization. Finally,
Sec. V concludes and summarizes the paper.

We denote the transpose of a matrix M by MT, the trace
and the spectrum of a square matrix M by tr(M) and σ(M),
respectively, the maximum and minimum singular values of
a matrix M by σmax(M) and σmin(M), respectively, the
max norm of a matrix M by ∥M∥max, the right inverse of a
right-invertible matrix M by M†, the positive and negative
(semi)definiteness of a Hermetian matrix M by M ≻ (⪰) 0
and M ≺ (⪯) 0, respectively, and the component-wise sign
function by sign(·).

II. PRELIMINARY

A. Data-Driven Control based on Fundamental Lemma

We first review the direct data-driven control based on the
Willems’ fundamental lemma [7]. Consider a discrete-time
linear time-invariant system x(t+1) = Ax(t)+Bu(t)+d(t)

for t ∈ N where x(t) ∈ Rn is the state, u(t) ∈ Rm is the
control input, and d(t) ∈ Rn is the exogenous disturbance.
Assume that the pair (A,B) is unknown to the controller de-
signer but it is stabilizable. We consider the linear quadratic
regulator (LQR) problem [23, Chap. 6], which has widely
been studied as a benchmark problem. Specifically, design
a static state-feedback control u(t) = Kx(t) that mini-
mizes the cost function J(K) =

∑n
i=1

∑∞
t=0{x(t)TQx(t)+

u(t)TRu(t)}|x(0)=ei with Q ⪰ 0 and R ≻ 0 where ei is the
ith canonical basis vector. It is known that the cost function
can be rewritten as J(K) = tr(QP ) + tr(KTRKP ) where
P ⪰ I is the controllability Gramian of the closed-loop
system when A+BK is Schur.

The objective of direct data-driven control is to design
the optimal feedback gain using data of input and output
signals without explicit system identification. Assume that
the time series U0 := [u(0) u(1) · · ·u(T − 1)] ∈ Rm×T

and X := [x(0) x(1) · · ·x(T − 1) x(T )] ∈ Rn×(T+1) are
available. The first and last T -long time series of X are
denoted by X0 ∈ Rm×T and X1 ∈ Rm×T , respectively.
Letting D0 := [d(0) d(1) · · · d(T − 1)] ∈ Rm×T , we have
the relationship

X1 −D0 = [B A]W0,

where W0 := [UT
0 XT

0 ]
T. We here assume that rankW0 =

n+m holds. This rank condition, which is generally neces-
sary for data-driven LQR design [24], is satisfied if the input
signal is persistently exciting in the noiseless case as shown
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by the Willems’ fundamental lemma [25].
The key idea of the approach laid out in [7] is to param-

eterize the controller using the available data by introducing
a new variable G ∈ RT×n with the relationship

[KT I]T = W0G. (1)

Then the closed-loop matrix can be parameterized directly
by data matrices as A+BK = [B A]W0G = (X1−D0)G.
The LQR controller design can be formulated as

min
P,K,G

tr(QP ) + tr(KTRKP )

s.t. X1GPGTXT
1 − P + I ⪯ 0

P ⪰ I and (1)
(2)

by disregarding the noise term.
However, it has been revealed that the formulation (2) is

not robust to disturbance [21]. To enhance robustness against
disturbance, a regularized formulation has been proposed:

min
P,K,G

tr(QP ) + tr(KTRKP ) + γ∥ΠG∥

s.t. X1GPGTXT
1 − P + I ⪯ 0

P ⪰ I and (1)
(3)

with a constant γ ≥ 0 where Π := I − W †
0W0 and ∥ · ∥

is any matrix norm. The regularizer γ∥ΠG∥ is referred to
as certainty-equivalence regularization because it leads to
the controller equivalent to the certainty-equivalence indirect
data-driven LQR with least-square estimation of the system
model when γ is sufficiently large [21]. Meanwhile, another
regularization that can guarantee robustness has been pro-
posed:

min
P,K,G

tr(QP ) + tr(KTRKP ) + ρ tr(GPGT)

s.t. X1GPGTXT
1 − P + I ⪯ 0

P ⪰ I and (1)
(4)

with a constant ρ ≥ 0. The regularizer ρ tr(GPGT) plays the
role to reduce the size of the matrix GPGT to achieve the
actual stability requirement (X1−D0)GPGT(X1−D0)

T−
P+I ⪯ 0 using the constraint X1GPGTXT

1 −P+I ⪯ 0. We
refer to the latter one as robustness-inducing regularization.
For reformulation of (2), (3), and (4) into convex programs,
see [26].

B. Fast Gradient Sign Method

The fast gradient sign method (FGSM) is a method to
efficiently compute an adversarial perturbation for a given
image [10]. Let L(X,Y ; θ) be the loss function of the neural
network where X ∈ X is the input image, Y ∈ Y is the label,
and θ is the trained parameter, and let f : X → Y be the
trained classification model. The objective of the adversary
is to cause misclassification by adding a small perturbation
∆ ∈ X such that f(X +∆) ̸= f(X). Specifically, the max
norm of the perturbation is restricted, i.e., ∥∆∥max ≤ ϵ with
a small constant ϵ > 0.

Fig. 2. Threat model considered in this paper. The adversary is able to
add a perturbation (∆U,∆X) to the original input and output data (U0, X)
with knowledge of the system model, the signals, and the controller design
algorithm. The controller K̂ is designed using the perturbed data (Û , X̂),
which results in the closed-loop matrix A+BK̂.

The core idea of FGSM is to choose a perturbation that lo-
cally maximizes the loss function. The linear approximation
of the loss function with respect to ∆ is given by

L(X +∆, Y ; θ) ≃ L(X,Y ; θ) +
∑
k,ℓ

(∇XL(X,Y ; θ))kℓ∆kℓ

(5)
where the subscript (·)kℓ denotes the (k, ℓ) component. The
right-hand side of (5) is maximized by choosing ∆kℓ =
ϵ sign(∇XL(X,Y ; θ))kℓ, whose matrix form is given by

∆ = ϵ sign(∇XL(X,Y ; θ)).

FGSM creates a series of perturbations in the form increasing
ϵ until misclassification occurs. In the next section, we apply
this idea to adversarial attacks on direct data-driven control
for destabilization.

III. ADVERSARIAL ATTACKS TO DIRECT
DATA-DRIVEN CONTROL

A. Threat Model

This study considers the following threat model: The
adversary can add a perturbation (∆U,∆X) to the input
and output data (U0, X). Additionally, the adversary knows
the system model (A,B), the data (U0, D0, X), and the
controller design algorithm. This scenario is depicted in
Fig. 2. The controller K̂ is designed using the perturbed data
(Û , X̂) := (U0+∆U,X+∆X), which results in the closed-
loop matrix A+ BK̂. The attack objective is to destabilize
the system by crafting a small perturbation such that the
closed-loop matrix has an eigenvalue outside the unit circle.

Additionally, we consider gray-box attacks where the
adversary has access to the system model (A,B) and the
controller design algorithm but not the data (U0, D0, X),
and additionally may not know the design parameters γ
and ρ. In this case, a reasonable attack strategy is to use
hypothetical input Û and disturbance D̂0 and calculate the
corresponding state trajectory X̂ . We refer to effectiveness of
the attack without knowledge of the data as the transferability
across data. Additionally, when the design parameters are
unknown, hypothetical design parameters γ̂ or ρ̂ are also
used. We refer to the effectiveness in this scenario as the
transferability across parameters. We numerically evaluate
the transferability properties in Sec. IV.
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B. Directed Gradient Sign Method

We develop the directed gradient sign method (DGSM) to
design a severe perturbation ∆ := (∆U,∆X) that satisfies
∥∆∥max ≤ ϵ with a small constant ϵ > 0. Let

Λ(U0, X,∆) := σ(A+BK̂)

denote the eigenvalues of the closed-loop system with the
direct data-driven control (3) or (4) using the perturbed data
(Û , X̂). The aim of the attack is to place some element of
Λ(U0, X,∆) outside the unit circle.

The core idea of DGSM is to choose a perturbation
that locally shifts an eigenvalue in the less stable direction.
We temporarily fix the eigenvalue of interest, denoted by
λi(U0, X,∆), and denote its gradient with respect to ∆ by
∇∆λi(U0, X,∆). The linear approximation of the eigenvalue
with respect to ∆ is given by

λi(U0, X,∆) ≃ λi(U0, X, 0) +
∑
k,ℓ

∇∆λi(U0, X,∆))∆kℓ.

(6)
We choose ∆kℓ such that the right-hand side of (6) moves
closer to the unit circle. Specifically, DGSM crafts the
perturbation

∆ = ϵ sign(Πλi
(∇∆λi(U0, X,∆)))

where Πλi : C(m+n)×(2T+1) → R(m+n)×(2T+1) is defined
by

Πλi
(Z) := Re (λi)Re (Z) + Im (λi)Im (Z) (7)

with

Z := ∇∆λi(U0, X,∆).

The role of the function Πλi
is illustrated in Fig. 3. Suppose

that Zkℓ faces the direction of λi. More precisely, the angle
between λi and Zkℓ, denoted by ϕ, is less than π/2, which
leads to Πλi(Zkℓ) > 0. We now suppose that the angle
between λi and another element Zk̃ℓ̃, denoted by ϕ̃, is greater
than π/2. Then we have Πλi

(Zk̃ℓ̃) < 0. In both cases, owing
to the function Πλi

, the perturbed eigenvalue moves closer
to the unit circle as depicted in the figure. By aggregating
all components, the linear approximation of the perturbed
eigenvalue λ̂i is given by

λ̂i ≃ λi + ϵ
∑

k,ℓ sign(Πλi
(Zkℓ))Zkℓ,

which is expected to be placed outside the unit circle by
increasing ϵ.

DGSM performs the procedure above for every λi for
i = 1, . . . , n increasing ϵ until the resulting system is
destabilized. Its algorithm is summarized in Algorithm 1,
where {ϵk} denotes possible candidates of the constant ϵ
in the ascending order. Algorithm 1 finds a perturbation ∆
with the smallest ϵ in {ϵk} such that the resulting closed-loop
system becomes unstable.

Fig. 3. Role of the function Πλi
in (7). Since Zkℓ faces the direction

of λi, the angle ϕ between λi and Zkℓ is less than π/2, which leads
to Πλi

(Zkℓ) > 0. On the other hand, since ϕ̃ between λi and Zk̃ℓ̃ is
greater than π/2, πλi

(Zk̃ℓ̃) < 0. As a result, in both cases, the perturbed
eigenvalue moves closer to the unit circle.

Algorithm 1 Directed Gradient Sign Method (DGSM)
Input: {ϵk}, A,B,U0, X, γ, ρ
Output: ∆

1: flag← 0
2: k ← 0
3: while flag = 0 do
4: k ← k + 1
5: for i = 1, . . . , n do
6: ∆← ϵksign(Πλi

(∇∆λi(U0, X,∆)))
7: if |λi(U0, X,∆)| > 1 then
8: flag← 1
9: break

10: end if
11: end for
12: end while
13: return ∆

IV. NUMERICAL EXPERIMENTS

A. Experimental Setup

We evaluate our adversarial attacks through numerical
experiments. We consider the inverted pendulum [27] with
sampling period 0.01 whose system matrices are given by

A =

 0.9844 0.0466 0.0347
0.0397 1.0009 0.0007
0.0004 0.0200 1.0000

 , B =

 0.25
0
0

 .

We set the weight matrices to Q = I and R = 10−5I .
The input signal is randomly and independently generated
by u(t) ∼ N (0, 1). We consider the disturbance-free case,
i.e., d(t) = 0. The time horizon is set to T = 10.
The 2-induced norm is taken as the matrix norm in (3).
The gradient ∇∆λi(U0, X,∆) is computed by the central
difference approximation [28, Chapter 4].

B. Robustness Improvement by Regularization

We examine the improvement in robustness through regu-
larization by comparing DGSM with a random attack where
each element of ∆ takes ϵ or −ϵ with equal probability.
Let Nall and Nunstable denote the total number of samples
and the number of the samples where the resulting closed-
loop system is unstable, respectively. In addition, let ϵ̄ denote
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Fig. 4. Curves of ϵ̄ with varying γ for DGSM and the random attack when
using the certainty-equivalence regularization (3).

Fig. 5. Curves of ϵ̄ with varying ρ when using the robustness-inducing
regularization (4).

the minimum ϵ such that Nunstable/Nall ≥ τ for a given
threshold τ ∈ [0, 1]. We set Nall = 50 and τ = 0.8.

Fig. 4 depicts the curves of ϵ̄ with varying γ for DGSM
and the random attack when using the certainty-equivalence
regularization (3). First, it is observed that the magnitude
of the adversarial perturbation necessary for destabiliza-
tion increases as the regularization parameter γ increases.
This result implies that the regularization method originally
proposed for coping with disturbance is also effective in
improving robustness against adversarial attacks. Second, the
necessary magnitude in DGSM is approximately 10% of that
in the random attack, which illustrates the significant impact
of DGSM.

Fig. 5 depicts the curves of ϵ̄ with varying ρ when using
the robustness-inducing regularization (4). This figure shows
results similar to Fig. 4. Consequently, both regularization
methods are effective for adversarial attacks.

Next, we compare the effectiveness of the two regulariza-
tion methods. We take γ = 0.1 and ρ = 10−5 such that the
resulting closed-loop performances J(K) are almost equal.
Fig. 6 depicts Nunstable/Nall with the two regularized con-
troller design methods (3) and (4) for varying ϵ. It can be ob-
served that the robustness-inducing regularization (4) always
outperforms the certainty-equivalence regularization (3).

C. Transferability

We consider transferability across data where the data
(U0, D0, X) is unknown and DGSM uses a hypothetical
input Û0 whose elements are also randomly and indepen-
dently generated by N (0, 1) and D̂0 = 0. Fig. 7 depicts the
curves of ϵ̄ with varying γ for DGSM without knowledge of

Fig. 6. Ratio of unstable instances Nunstable/Nall with the two regular-
ized controller design methods (3) and (4) for varying ϵ.

Fig. 7. Curves of ϵ̄ with varying γ for DGSM without knowledge of data
and that with full knowledge.

data and that with full knowledge when using the certainty-
equivalence regularization (3). This figure shows that DGSM
exhibits the transferability property across data.

Subsequently, we examine transferability across design
parameters where the regularization parameter γ in addition
to the data (U0, D0, X) is unknown. We use γ = 0.1 as
a hypothetical parameter. Fig. 8 depicts the corresponding
curves As in the transferability across data, the results
confirm the transferability property across parameters.

D. Discussion

The regularization methods described by (3) and (4)
provide a quantitative condition to ensure stability: The
resulting closed-loop system with the certainty-equivalence
regularization is stable when γ and the signal-to-noise ratio
(SNR) defined by SNR := σmin(W0)/σmax(D0) are suffi-
ciently large [26, Theorem 4.2]. That with the robustness-
inducing regularization is stable when ρ is sufficiently large
and σmax(D0) is sufficiently small [8, Theorem 3]. One may
expect that DGSM crafts a severe input perturbation such
that its maximum singular value is large but its elements are
small. However, for the single-input system, σmax(∆U) =
ϵ
√
T for any ∆U whose elements take ϵ or −ϵ. This means

that the input perturbations made by DGSM and the random
attack have the same maximum singular value.

V. CONCLUSION

This study has investigated the vulnerability of direct
data-driven control, specifically focusing on the Willems’
fundamental lemma-based approach with two regulariza-
tion methods, namely certainty-equivalence regularization
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Fig. 8. Curves of ϵ̄ with varying γ for DGSM without knowledge of data
and parameters and that with full knowledge.

and robustness-inducing regularization. To this end, a new
method called DGSM, based on FGSM which has been
originally been proposed for neural networks, has been intro-
duced. It has been demonstrated that direct data-driven con-
trol can be vulnerable, i.e., the resulting closed-loop system
can be destabilized by a small but sophisticated perturbation.
Numerical experiments have indicated that strengthening reg-
ularization enhances robustness against adversarial attacks.

Future research should include further tests of the vulnera-
bility with various types of data and systems under different
operating conditions, a theoretical analysis of DGSM, and
exploration of novel defense techniques for reliable direct
data-driven control. For example, detection of adversarial
perturbations [29] is a promising direction. Finally, for a
more comprehensive understanding of the vulnerability, more
sophisticated attacks should be considered.

APPENDIX

The parameters in the simulation in Fig. 1 are as fol-
lows. The system is a marginally unstable Laplacian system
considered in [21], [30]. Each element of the disturbance
D0 is randomly generated from N (0, d2) with d = 0.05.
The weight matrices are Q = I and R = 10−3I . The
time horizon is set to T = 15. The magnitude of the
adversarial perturbation is set to ϵ = 0.16. The controller
is designed using the certainty-equivalence regularization (3)
with a regularization parameter γ = 10−3.
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