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Abstract— We study structural controllability properties of
drift-free bilinear systems under link failures using a graph
theoretic approach. We give an equivalent condition for struc-
tural controllability in the presence of link failures, which can
be checked in polynomial time. We show that the problem of
finding a sparsest structure for structural controllability under
link failures is equivalent to a known NP-hard problem. We also
consider the case of probabilistic link failures. The problem
of deciding whether the underlying system is structurally
controllable with a certain probability is equivalent to an NP-
hard network reliability problem. Finally, we observe that
the problem of designing a structurally controllable bilinear
system from an uncontrollable one under nonuniform cost
constraints is equivalent to an NP-complete strong connectivity
augmentation problem.

I. INTRODUCTION

With the continuous advancement in embedded systems,
such as the Internet of Things and networked systems, there
has been a notable surge in the literature on networked
control and complex systems over the past two decades (see
e.g. [1] and the references therein). In numerous instances,
the exact numerical values within these large-scale sys-
tems are not precisely known; rather, only the zero/nonzero
structure is discerned based on the interconnection pattern.
Additionally, even when numerical values are known up to
a certain precision, the computational cost remains high in
large-scale complex systems. Consequently, the focus shifts
towards exploring the structural properties of the underlying
system. Moreover, there is a growing interest in investigating
properties of systems that are independent of numerical
values and hold for nearly any numerical realization [2], [3].
Structural controllability emerges as one such property of
interest, offering insights into the controllability of systems
based on their inherent structure rather than relying on
precise numerical details.

Structural controllability, initially introduced for Linear
Time-Invariant (LTI) systems in [4], has garnered significant
attention in recent years within the realm of complex systems
and networked control, as evidenced by studies such as [1],
[5]–[7]. The progress made in this field is comprehensively
surveyed in [2], [3], providing a valuable overview of the
advancements in structural controllability. In the analysis of
structural controllability for both linear and bilinear systems,
graph theory plays a prominent role [2], [3], [5]. Recent
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works, such as [8], [9], have successfully provided graph-
theoretic characterizations for the controllability of bilinear
systems on Lie groups. Applications of bilinear systems span
diverse fields, including quantum control [10], biology [11],
socioeconomics [12], and so on. Bilinear models are also
used as approximations to nonlinear models [12]. The early
work on nonlinear control of bilinear systems and Lie groups
is extensively covered in [13]–[15].

Article [5] considers drift-free bilinear systems on Rn of
the form

ẋ(t) =

( m∑
i=1

ui(t)Bi

)
x(t), (1)

where B1, . . . , Bm are (n × n) structured matrices which
belong to the Lie algebra GL(n), SL(n), S̃O(n) of Lie
groups GL(n), SL(n), S̃O(n), respectively. The necessary
and sufficient conditions for structural controllability were
obtained using graph-theoretic methods. The main advantage
of the graph-theoretic characterization is that it allows one
to apply well-known graph-theoretic algorithms [16], [17]
to solve control and optimization problems. Graph theory
provides a versatile framework for modeling and analyzing
dynamic systems independent of specific numerical values.
This independence circumvents the challenges associated
with numerical errors, offering a more robust and reliable
approach for analyzing control and optimization problems.

In networked systems, link failures are quite common
[18], [19], and handling them is a fundamental task for
any communication scheme. Link failures can stem from
various sources, including faults in interconnections or ex-
ternal attacks on cyber-physical systems, such as jamming
or denial of service attacks [20] or packet dropouts [21].
Thus, analyzing a fundamental property like structural con-
trollability of networked systems in the presence of link
failures is crucial. Articles [22], [23] discuss the structural
controllability of multiagent systems under communication
link failures. Similarly, the structural controllability of power
systems under transmission line failures is investigated in
[24]. These studies contribute to the broader understanding
of how structural properties can impact the controllability of
systems experiencing link failures in various domains.

In this paper, building upon the results of [5], we give
an equivalent condition for the structural controllability of
bilinear systems (1) in the presence of link failures. Note that
the nonzero entries of structured matrices can be considered
as interconnection links in networked control systems. Subse-
quently, an equivalent condition for structural controllability
in the presence of link failures gives a robust structural
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controllability condition. We also consider the problem of
obtaining a sparsest control structure in the presence of link
failures. In [25], a similar notion of resilience of structured
matrices under k-edge erasure is studied and polynomial
time solutions are provided using max-flow problems on
bipartite graphs. However, the context is different from
the one considered here. Besides, we consider the case of
probabilistic link failures with the possibility of having a
structurally controllable system with a given probability.
Finally, we address the problem of designing a structurally
controllable system from an uncontrollable one under the
given cost constraints. While these problems, except for the
first one, are computationally challenging [26], polynomial
time approximation algorithms with approximation guaran-
tees can be employed from the existing literature on graph
theory.

Organization: This paper is organized as follows. The
next section introduces essential preliminaries and outlines
the problems under consideration. Section III presents our
observations, delving into the computational complexity of
the discussed problems. Finally, the paper is concluded in
Section IV.

Notation: Z and N denote the set of integers and positive
integers, respectively. Abstract matrix Lie groups are denoted
by LG and the corresponding Lie algebra by LG. We use
GL(n), SL(n), SO(n) to denote the general linear, the spe-
cial linear, and the special orthogonal groups, respectively;
whereas GL(n), SL(n), SO(n) are used to denote their
respective Lie algebras. G(V, E) denotes a graph with V as
the vertex set and E as the edge set. The set of structured
matrices with nonzero pattern Λ is denoted as BΛ. The entries
of structured matrices taking arbitrary real values are denoted
by ∗. The symbol ⊕ denotes the direct sum of vector spaces.
The cardinality of a set Λ is denoted by |Λ|.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries and Background

We first define the matrix Lie groups GL(n),SL(n), and
S̃O(n) as follows [5]

GL(n) = {A ∈ Rn×n | det(A) 6= 0},
SL(n) = {A ∈ GL(n) | det(A) = 1},
S̃O(n) = {A ∈ GL(n) | A>A = αI and det(A) > 0}.

Lie groups also have the structure of a manifold [27]. The
tangent space to the Lie group manifold LG at the identity
element is called its Lie algebra LG. The Lie algebra of
a matrix Lie group is a vector space closed under the Lie
bracket operation given by

[A1, A2] := A1A2 −A2A1,

where A1, A2 ∈ LG. It turns out that the Lie algebras GL(n),
SL(n), S̃O(n) of the Lie groups GL(n), SL(n), S̃O(n) are

given by

GL(n) = {A ∈ Rn×n},
SL(n) = {A ∈ Rn×n | trace(A) = 0},
S̃O(n) = {A ∈ Rn×n | A = −A>} ⊕ span{I}.

Note that for {A1, . . . , Ak} ∈ LG, the vector space ob-
tained by the repeated Lie bracket operation on the set
{A1, . . . , Ak} is called the Lie subalgebra generated by
{A1, . . . , Ak}. For more details on Lie groups and Lie
algebras, we refer the reader to [27].

Next, we briefly discuss the notion of controllability for
bilinear systems. The bilinear control system (1) is said to be
controllable if for a given pair x0,xf ∈ Rn \{0}, there exist
piecewise continuous control inputs u1(·), . . . , um(·) which
drive the state from x(0) = x0 to x(T ) = xf . The bilinear
system (1) is controllable if and only if the Lie subalgebra
formed by B1, . . . , Bm is equal to the Lie algebra LG [5],
[14].

We consider drift-free bilinear systems [15] of the form
(1). We define the set of structured matrices on the matrix
Lie algebra LG(n) ⊆ Rn×n as follows

BΛ := {B ∈ LG(n) | B(i, j) = ∗ if (i, j) ∈ Λ,

B(i, j) = 0 if (i, j) /∈ Λ}, (2)

where Λ ⊂ {1, 2, . . . , n} × {1, 2, . . . , n}. Note that in (1),
B1, . . . , Bm ∈ BΛ and LG could be GL(n),SL(n) or
S̃O(n). Furthermore, entries ∗ in BΛ specified by Λ could
be arbitrary real numbers (that satisfy the properties of LG)
and the remaining entries are set to zero. In other words,
Λ determines the zero pattern of BΛ. Note that the set of
matrices with the structure BΛ forms a vector space. The
structure Λ corresponds to the interaction/non-interaction
pattern among the state variables in networked systems.

Example 1: Consider 3 × 3 pattern matrices belonging
to GL(3) as follows. Let Λ1 := {(1, 2), (1, 3), (2, 3)} and
Λ2 := {(1, 1), (3, 1), (2, 3), (3, 2)}. Then,

BΛ1
:=

0 ∗ ∗
0 0 ∗
0 0 0

 , BΛ2
:=

∗ 0 0
0 0 ∗
∗ ∗ 0

 .
We now define the notion of structural controllability [5].
Definition 1: The pattern BΛ is said to be structurally

controllable (or m-structurally controllable) if there exists
m ∈ N and B1, . . . , Bm ∈ BΛ such that (1) is controllable.

Next, we succinctly cover some basics from graph theory
required to analyze structural controllability. A directed
graph G(V, E), also known as digraph, consists of a vertex
set V and an edge set E whose elements are ordered pair
of vertices. A directed edge from vertex i to j is denoted
as (i, j) ∈ E . A directed edge from a vertex to itself is
called a self-loop. A directed path between two vertices
i1, ik is the sequence of vertices {i1, i2, . . . , ik} such that
(ij , ij+1) ∈ E for j = 1, . . . , k − 1. A digraph is said to
be strongly connected if there exists a directed path between
any two vertices. A digraph G is said to be k-edge connected
if |V| > k + 1 and deletion of an arbitrary subset of E with
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cardinality strictly less than k leaves a strongly connected
graph [17], [28]. A digraph is said to be complete if every
vertex is connected to every other vertex by a directed edge.
For ease of reference, we give below definitions from [5]
of a digraph associated with the pattern matrix BΛ and the
transitive closure of digraphs .

Definition 2: Given a pattern matrix BΛ, the digraph as-
sociated with it is denoted by G(BΛ) with the vertex set
V = {1, . . . , n} and the edge set

E = {(i, j) ∈ V × V | BΛ(i, j) 6= 0}.

Definition 3 (Transitive closure): Let G(V, E) be a di-
graph with |V| = n. Let E(r) ⊆ V × V be the ordered
pair of vertices (i, j) such that there exists a path of length
at most r between i and j (r ≥ 1). Then, the digraph
G(r) := G(V, E ∪ E(r)) is called the rth transitive closure
of G. The nth transitive closure is the transitive closure of
G(V, E).

The following result from [5] gives a graph theoretic
characterization of the structural controllability of (1).

Theorem 1: The following are equivalent:
(i) BΛ is structurally controllable.

(ii) The transitive closure of G(BΛ) is a complete graph.
(iii) G(BΛ) is strongly connected.

Theorem 1 holds when the pattern BΛ is associated with
GL(n), SL(n), and S̃O(n). The strong connectivity of
G(BΛ) can be checked in polynomial time using algorithms
in the literature [16], [17]. For BΛ to be m-structurally
controllable, the conditions given by Theorem 1 must be
satisfied for at least one numerical realization of B1, . . . , Bm.
Note that if the system (1) is m-structurally controllable,
then it is controllable for almost all numerical realizations
of B1, . . . , Bm [5, Th. III.1].

We briefly cover below the background of the complexity
theory; we refer the reader to [26] for more details. If there is
an algorithm that solves a decision problem in time bounded
by a polynomial function on the size of the inputs, then the
problem is said to belong to class P . A decision problem is in
class NP whenever a solution to the problem can be verified
in polynomial time. Class P forms a subset of class NP and
it is not known if the two classes are equal. A problem P is
said to be NP-hard if every problem in the class NP can be
reduced to P in polynomial time, and it is said to be NP-
complete if it is NP-hard and also belongs to the class NP.
Every optimization problem can be converted into a decision
problem and if a decision problem is NP-complete, then the
optimization problem is NP-hard.

B. Problem Formulation

We consider the structured bilinear system (1) where,
due to a number of link failures, some nonzero entries
of the pattern BΛ become zero. The first problem is to
obtain a necessary and sufficient condition for structural
controllability in the presence of these link failures.

Problem 1: Find a graph theoretic equivalent condition
for the structural controllability of BΛ under k link failures.

The answer to Problem 1 (Theorem 2) gives a robust
characterization of structural controllability. Subsequently,
using Theorem 2, we discuss the computational complexity
of the following two problems.

Problem 2: Minimize |Λ| subjected to the structural con-
trollability of BΛ under k link failures.

Problem 3: Let p be a probability of link failure for any
edge e ∈ G(BΛ) and suppose edge failures are independent.
Is BΛ structurally controllable with probability q > 0 or
higher?

Problem 2 deals with designing a sparsest pattern Λ
subjected to structural controllability under k link failures.
Suppose there is a uniform cost associated with each nonzero
entry in the pattern matrix BΛ; each of these nonzero
entry corresponds to an interconnection between the state
variables. In that case, a solution of Problem 2 gives a pattern
Λ, which is structurally controllable under k link failures,
with minimum cost. Problem 2 is naturally applicable in the
design of large-scale systems, where the aim is to achieve
structural controllability with minimum interconnections (i.e.
avoiding superfluous links).

In Problem 3, we consider the case of probabilistic link
failures. This becomes significant in real-world scenarios
where uncertainties in the environment can cause link failures
in networked systems. We also consider the problem of
designing a structurally controllable pattern from an uncon-
trollable structure BΛ by adding more interconnections under
the cost constraints; this is addressed in Theorem 5.

III. STRUCTURAL CONTROLLABILITY UNDER LINK
FAILURES

In this section, we discuss our approach towards address-
ing the problems mentioned in the previous section. We
leverage the graph-theoretic characterization of the structural
controllability of drift-free bilinear systems given by Theo-
rem 1 to answer Problem 1. It turns out that Problems 2 and
3 are equivalent to well-known NP-hard problems on graphs.
We give references to the available approximation algorithms
in the literature and also mention further classification (on
a finer scale) of these problems from the literature. The
following theorem follows from Theorem 1 and the definition
of (k + 1)-edge connected graphs [16], [17].

Theorem 2: BΛ is structurally controllable under k link
failures (k ≥ 0) if and only if G(BΛ) is (k + 1)-edge
connected.

Proof: (⇒): By Theorem 1, structural controllability of
BΛ under k link failures implies that after removing k edges
in G(BΛ), the digraph is strongly connected. This shows that
G(BΛ) is (k + 1)-edge connected.

(⇐): G(BΛ) is (k + 1)-edge connected implies that after
removing k edges, it is still strongly connected. Therefore,
by Theorem 1, BΛ is structurally controllable after k link
failures.

The k-edge connectivity of a digraph can be checked by
polynomial time algorithms [17].

Example 2: Consider a bilinear system (1) with BΛ ⊆
GL(3) with Λ1 = {(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)}
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(b) G(1)(BΛ2)

Fig. 1: G(BΛ1) and G(BΛ2) for the system in Example 2.

and Λ2 = {(1, 2), (2, 3), (3, 1), (3, 2)}. Their respective
graphs G(BΛ1) and G(BΛ2) are as shown in Fig. 1. Notice
that G(BΛ1) is 2-edge connected, whereas G(BΛ2) is strongly
connected (i.e., 1-edge connected) but not 2-edge connected.
Therefore, unlike BΛ2

, the pattern matrix BΛ1
is structurally

controllable under 1 link failure.
Theorem 3: Problem 2 is NP-hard.

Proof: Problem 2 is equivalent to the minimum (k+1)-
edge connected spanning subgraph problem (known as the
minimum (k + 1)-ECSS problem [28]) which is a known
NP-hard problem [26], [28] for k ≥ 0.

In [28], a (1 + 4/
√
k)-approximation algorithm is given

with time complexity O(k3|V|2 + [E ]1.5(log |V|)2). The ap-
proximation factor was improved in [29] to 1 +

√
2/k for

k ≥ 15, and to 1 + 5/k for 5 < k < 15. These algorithms
can be used to give approximate sparse structures with
the mentioned approximation guarantees to solve Problem
2. In [30], it is shown that for c > 0 and any integer
k ≥ 1, a polynomial time algorithm for the minimum k-
ECSS problem on digraphs within an approximation ratio
1 + c/k would imply P = NP . Linear-time approximation
algorithms with approximation guarantees are given in [31].

Theorem 4: Problem 3 is NP-hard.
Proof: Consider an instance where both p and q are

rational numbers. By Theorem 1, the problem is equivalent
to G(BΛ) being strongly connected with probability q or
higher. This is the well-known network reliability problem
on digraphs known to be NP-hard [26].

Network reliability problems are known to be #P -
complete [32], i.e., NP-hard problems which may require
exponential time even if P = NP . In [33], a polynomial
time approximation algorithm is given for the case where
there is a fixed node (called the root) and the problem is to
find a path to every other node in the network.

We now consider the problem of designing a structurally
controllable system from a structurally uncontrollable system
under cost constraints.

Theorem 5: Suppose BΛ is structurally uncontrollable.
Let w(i, j) ∈ N be the cost associated with making the entry
B(i, j) nonzero. Suppose the costs w(i, j) are not uniform.
Then, the problem of deciding if there exists a set Λ1 ⊂
{1, . . . , n}×{1, . . . , n} such that

∑
(i,j)∈Λ1

w(i, j) ≤ b ∈ N
and BΛ∪Λ1

is structurally controllable is NP-complete.
Proof: Since BΛ is structurally uncontrollable, it fol-

lows from Theorem 1 that G(BΛ) is not strongly connected.
The costs w(i, j) can be identified with edge weights and
the set Λ1 can be identified with the edge augmentation
of G(BΛ) to G(BΛ∪Λ1). Furthermore, by Theorem 1, the

structural controllability of BΛ∪Λ1
is equivalent to G(BΛ∪Λ1

)
being strongly connected. This is the strong connectivity aug-
mentation problem which is NP-complete for non uniform
costs [26], [34].

It turns out that if the edges in the graph all have
equal weight, then the various augmentation problems also
have efficient algorithms [34], [35]. The following corollary
follows from the O(|V|+|E|) time algorithm of [34], [36] for
the strong connectivity augmentation problem with uniform
costs.

Corollary 5.1: If the costs w(i, j) are identical for all en-
tries in Theorem 5, then the decision problem is polynomial
time solvable.

In [35], a 2-approximation algorithm is given which runs
in O(|V|2) time for the strong connectivity augmentation
problem. This can be used to find an approximate solution
to the cost-constrained structural controllability problem dis-
cussed above. It is shown in [37] that the problem is fixed
time tractable with running time 2O(k log k)nO(1). (Fixed time
tractability is one of the types of parameterized complexity
that allows the classification of NP-hard problems on a finer
scale).

Problems similar to the ones mentioned here are consid-
ered in [38] for the structural controllability of LTI systems.
One of them is the minimal cost link-addition problem to
make LTI systems controllable, which is similar to the case
of Theorem 5. The other two are the minimum cost link-
deletion problem and the minimum cost input-deletion prob-
lem such that the LTI system is structurally uncontrollable.

In [39], a problem similar to Theorem 5 is considered for
the structural controllability of multiagent systems subject to
cost constraints. Both input and output measurement costs
are accounted for, with the objective of minimizing the cost
while adhering to structural controllability constraints. The
structural controllability is characterized using the notion
of dynamic graphs. A polynomial time algorithm is given
to solve the minimum cost control configuration problem
for single input discrete-time bilinear systems subject to the
structural controllability constraints.

Remark 1: We have considered a single pattern BΛ for
structured systems. In general, one can have different pattern
matrices BΛ1 , . . . ,BΛl

in (1). In [5, Th. IV.2], equivalent
structural controllability conditions for such cases are ob-
tained using colored graphs where the edges of G are colored
according to the pattern BΛi

they are associated with. The
equivalent conditions require strong connectivity of G. The
observations mentioned in this paper extend to these general
cases as well in the presence of link failures. Furthermore,
these observations also hold for structural accessibility of
bilinear systems with drift in the presence of link failures.

IV. CONCLUSION

We extended graph theoretic equivalent conditions of [5]
for the structural controllability of driftless bilinear systems
to the case where there are link failures. We used results
from graph theory to study complexity issues of a few more
problems such as finding the sparsest patterns in the presence
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of link failures and deciding structural controllability under
probabilistic link failures. Finally, we showed that the prob-
lem of designing a structurally controllable bilinear system
from an uncontrollable one under cost constraints is NP-hard.
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