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Abstract— We establish that stabilization of a class of linear,
hyperbolic PDEs with a large (nevertheless finite) number of
components, can be achieved via employment of a backstepping-
based control law, which is constructed for stabilization of a
continuum version (i.e., as the number of components tends to
infinity) of the PDE system. This is achieved by proving that
the exact backstepping kernels, constructed for stabilization of
the large-scale system, can be approximated (in certain sense
such that exponential stability is preserved) by the backstepping
kernels constructed for stabilization of a continuum version
(essentially an infinite ensemble) of the original PDE system.
The proof relies on construction of a convergent sequence of
backstepping kernels that is defined such that each kernel
matches the exact backstepping kernels (derived based on the
original, large-scale system), in a piecewise constant manner
with respect to an ensemble variable; while showing that
they satisfy the continuum backstepping kernel equations. We
present a numerical example that reveals that complexity of
computation of stabilizing backstepping kernels may not scale
with the number of components of the PDE state, when the
kernels are constructed on the basis of the continuum version,
in contrast to the case in which they are constructed on the
basis of the original, large-scale system. Thus, this approach
can be useful for design of computationally tractable, stabilizing
backstepping-based control laws for large-scale PDE systems.

I. INTRODUCTION

Large-scale systems of 1-D hyperbolic PDEs appear in
a variety of applications involving transport phenomena
and which incorporate different, interconnected components.
Among them, large-scale interconnected hyperbolic systems
may be used to describe the dynamics of blood flow, from
the location of the heart all the way through to points
where non-invasive measurements can be obtained [1], [2],
of epidemics spreading, to describe transport of epidemics
among different geographical regions [3], and of traffic flows,
to model density and speed dynamics in interconnected
highway segments [4], [5] and in urban networks [6], to name
a few [7]. Backstepping is a systematic design approach to
construction of explicit feedback laws for general classes of
such systems [8], [9], [10], [11]. Due to potentially large
number of interacting components, incorporated in such sys-
tems, computational complexity of exact backstepping-based
control designs may increase significantly, proportionally to
the number of state components. Motivated by this, we aim at
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developing an approach to computing backstepping kernels
for large-scale hyperbolic PDEs, such that computational
complexity remains tractable, even when the number of state
components becomes very large, while at the same time,
provably retaining the stability guarantees of backstepping.
We achieve this via approximating the exact backstepping
kernels, computed based on a large number of PDEs, uti-
lizing a single kernel that is derived based on a continuum
version of the exact kernels PDEs, and capitalizing on the
robustness properties of backstepping for the class of systems
considered, to additive control gain errors.

The approach of design of feedback laws for large-scale
systems based on a continuum version of the system consid-
ered has been utilized for large-scale ODE systems, such as,
for example, in [12], [13], [14], [15], [16]. However, such an
approach has not been utilized so far for large-scale systems
whose state components are PDEs. The main goals of the
approach developed here, may be viewed also as related to
control design approaches that aim at providing computa-
tional means towards implementation of PDE backstepping-
based control laws with provable stability guarantees, such
as, for example, neural operators-based [17], late-lumping-
based [18], and power series-based [19], backstepping con-
trol laws. Our approach may be viewed as complementary
and different from these results, in that the main goal is
to address complexity due to a potential radical increase in
the number of state components, instead of complexity of
actual numerical implementation (even though these existing
results can be combined with the approach presented here,
for numerical implementation of the controllers).

In the present paper, we provide backstepping-based feed-
back laws for a class of large-scale systems of 1-D hyper-
bolic PDEs, which are described by the class of systems
considered in [9], when the number of state components
n is large. The key idea of our approach is to construct
approximate backstepping kernels for stabilization of the
large-scale (nevertheless, with a finite number of compo-
nents) system relying on the continuum backstepping kernels
developed in [20] for a continuum version of the original,
large-scale system. We establish stability of the closed-loop
system consisting of the original, large-scale PDE system
under a backstepping-based feedback law that employs the
approximate kernels, constructed based on the continuum
version of the PDE system. The proof utilizes the well-
posedness of the respective kernel equations, and the ability
to approximate (in L2) the parameters of the continuum
kernel equations to arbitrary accuracy by step functions.

We then present a numerical example that illustrates that
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computation of (approximate) stabilizing kernels based on
the continuum kernel may provide flexibility in computa-
tion, as well as it may significantly reduce computational
complexity. In particular, in this specific example, although
computation of the exact backstepping kernels may require to
solve implicitly the corresponding n+ 1 hyperbolic kernels
PDEs, as closed-form solutions may not be available, the
approximate kernels can be computed with only algebraic
computations, since the continuum kernel is available in
closed form. We also present respective simulation investiga-
tions, which validate the theoretical developments, showing
that as the number of components of the large-scale system
increases, the performance of the closed-loop systems, under
the approximate control laws, is improved.

We start in Sections II and III presenting both the large-
scale PDE system and its continuum counterpart, together
with the respective exact and continuum backstepping ker-
nels PDEs. In Section IV we establish stability of the large-
scale, closed-loop system under the approximate control law.
In Section V we present a numerical example and consistent
simulation results. In Section VI we provide concluding
remarks and discuss related topics of our current research.

We use the standard notation L2(Ω;R) for real-valued
Lebesque integrable functions on a domain Ω. Similarly,
C(Ω;R),C1(Ω;R) denote continuous and continuously dif-
ferentiable functions, respectively, on Ω. We denote by E
the Hilbert space L2([0,1];Rn+1) equipped with the inner
product

〈
(u1

v1 ) ,(
u2
v2 )
〉

E =

1∫
0

(
1
n

n

∑
i=1

ui
1(x)u

i
2(x)+ v1(x)v2(x)

)
dx, (1)

which induces the norm ‖·‖E =
√
〈·, ·〉E . Finally, a system is

called exponentially stable (on E) if for any initial condition
z0 ∈ E the (weak) solution of the system satisfies ‖z(t)‖E ≤
Me−ct‖z0‖E for some M,c > 0.

II. STABILIZATION OF LARGE-SCALE SYSTEMS OF
LINEAR HYPERBOLIC PDES VIA BACKSTEPPING

For n ≥ 1 consider the following set of n+ 1 transport
PDEs on x ∈ [0,1] for i = 1, . . . ,n

ui
t(t,x)+λi(x)ui

x(t,x) =
1
n

n

∑
j=1

σi, j(x)u j(t,x)+Wi(x)v(t,x),

(2a)

vt(t,x)−µ(x)vx(t,x) =
1
n

n

∑
j=1

θ j(x)u j(t,x), (2b)

with boundary conditions

ui(t,0) = qiv(t,0), v(t,1) =U(t), (3)

where U ∈ L2([0,m];R), for any m ∈N, is the control input.
The initial conditions of (2) are ui(0,x) = ui

0(x),v(0,x) =
v0(x), where ui

0,v0 ∈ L2([0,1];R). The parameters of the
system (2), (3) satisfy the following assumption.

Assumption 2.1: We assume that µ,λi ∈ C1([0,1];R),
σi, j,Wi,θi ∈ C([0,1];R) and qi ∈ R for all i, j = 1,2, . . . ,n.

Moreover, the transport velocities are assumed to satisfy
−µ(x)< 0 < λi(x), for all x ∈ [0,1] and i = 1,2, . . . ,n.

Remark 2.2: The presentation of the system (2), (3) is
motivated from [9]. However, here we also make the fol-
lowing modifications. Most notably, the factor 1/n appears
in (2). This is equivalent to equipping the n-part of the
system with the scaled inner product n−1〈·, ·〉Rn . With the
scaling, we guarantee that the sums remain bounded and
convergent as n→ ∞ without having to pose any additional
constraints on the parameters of (2), (3). If one wishes
to proceed without scaling the sums, then some additional
assumptions are needed, e.g., that the respective parameters
form `p sequences for some p ∈ [1,+∞], such that the sums
are well-defined as n → ∞. Moreover, Assumption 2.1 is
sufficient to guarantee well-posedness of (2), (3), e.g., based
on the port-Hamiltonian approach [21, Sect. 13.2].

It follows from [9, Thm 3.2] that the system (2), (3) is
exponentially stabilizable by a state feedback law of the form

U(t)=
1∫

0

[
1
n

n

∑
i=1

ki(1,ξ )ui(t,ξ )+ kn+1(1,ξ )v(t,ξ )

]
dξ , (4)

where, for i = 1, . . . ,n+1, ki satisfy

µ(x)ki
x(x,ξ )−λi(ξ )ki

ξ
(x,ξ ) =

λ
′
i (ξ )k

i(x,ξ )+
1
n

n

∑
j=1

σ j,i(ξ )k j(x,ξ )+θi(ξ )kn+1(x,ξ ),

(5a)

µ(x)kn+1
x (x,ξ )+µ(ξ )kn+1

ξ
(x,ξ ) =

−µ
′(ξ )kn+1(x,ξ )+

1
n

n

∑
j=1

Wj(ξ )k j(x,ξ ),

(5b)

on a triangular domain 0≤ ξ ≤ x≤ 1 with boundary condi-
tions

ki(x,x) =− θi(x)
λi(x)+µ(x)

, (6a)

µ(0)kn+1(x,0) =
1
n

n

∑
j=1

q jλ j(0)k j(x,0), (6b)

for all x ∈ [0,1]. Note the scaling of the sums by 1/n as per
Remark 2.2.

III. STABILIZATION OF A CONTINUUM OF LINEAR
HYPERBOLIC PDES VIA CONTINUUM BACKSTEPPING

While large-scale, yet, consisting of a finite-number of
components, systems of hyperbolic PDEs can be studied in
the framework of Section II, we also consider the continuum
limit case as n → ∞, for which we present the generic
framework of a continuum of hyperbolic PDEs studied in
[20] and sketched in Fig. 1. That is, instead of having
n rightward transport PDEs as in Section II, consider a
continuum of such PDEs as in [20] with y ∈ [0,1] being
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the index variable2

ut(t,x,y)+λ (x,y)ux(t,x,y) =
1∫

0

σ(x,y,η)u(t,x,η)dη

+W (x,y)v(t,x), (7a)

vt(t,x)−µ(x)vx(t,x) =
1∫

0

θ(x,y)u(t,x,y)dy, (7b)

with boundary conditions

u(t,0,y) = q(y)v(t,0), v(t,1) =U(t), (8)

for almost every y ∈ [0,1], i.e., the continuum variables
and parameters are considered L2([0,1];R) functions in y.
The following assumption is needed, for the parameters
involved in (7), (8), to guarantee the existence of a continuum
backstepping control law [20, Thm 3].

Assumption 3.1: We assume that µ ∈ C1([0,1];R),λ ∈
C1
(
[0,1]2;R

)
,W,θ ∈ C([0,1];R) × L2([0,1];R),σ ∈

C([0,1];R)× L2
(
[0,1]2;R

)
and q ∈ C([0,1];R). Moreover,

λ (x,y) > 0 uniformly for all x ∈ [0,1] and almost every
y ∈ [0,1], and −µ(x)< 0 for all x ∈ [0,1].

u(t,x,y)

v(t,x)
U(t)

q(y)
W (x,y)

∫
θ(x,y) ·dy

∫
σ(x,y,η) ·dη

y

x

Fig. 1. Schematic view of the continuum PDE system (7), (8). Boundary
terms are denoted in magenta and in-domain terms are denoted in blue.

By [20, Thm 1], the system (7), (8) is exponentially
stabilizable by a state feedback law of the form

U(t) =
1∫

0

 1∫
0

k(1,ξ ,y)u(t,ξ ,y)dy+ k̄(1,ξ )v(t,ξ )

dξ , (9)

where k, k̄ satisfy

µ(x)kx(x,ξ ,y)−λ (ξ ,y)kξ (x,ξ ,y)−θ(ξ ,y)k̄(x,ξ ) =

λξ (ξ ,y)k(x,ξ ,y)+
1∫

0

σ(ξ ,η ,y)k(x,ξ ,η)dη , (10a)

µ(x)k̄x(x,ξ )+µ(ξ )k̄ξ (x,ξ ) =

−µ
′(ξ )k̄(x,ξ )+

1∫
0

W (ξ ,y)k(x,ξ ,y)dy, (10b)

2In the scope of this paper, we do not formally consider whether (7) is
the continuum limit of (2) as n→ ∞, but rather use (7) as an educated
guess to obtain a continuum version of the respective backstepping kernels
ki, i = 1, . . . ,n, given in (5).

on a triangular domain 0≤ ξ ≤ x≤ 1 with boundary condi-
tions

k(x,x,y) =− θ(x,y)
λ (x,y)+µ(x)

, (11a)

µ(0)k̄(x,0) =
1∫

0

q(y)λ (0,y)k(x,0,y)dy, (11b)

for almost every y ∈ [0,1].

IV. STABILIZATION OF THE LARGE-SCALE SYSTEM VIA
CONTINUUM APPROXIMATION OF EXACT KERNELS

A. Statement of the Main Result
The core idea of the continuum approximation that we

present here is that we approximate n+ 1 kernel equations
by a continuum of kernel equations. Provided that the
approximation is sufficiently accurate, we show that the
backstepping controller derived from the continuum kernel
equations exponentially stabilizes the n+1 system associated
with the original finite system of n+1 PDEs.

Thus, consider an n + 1 system (2), (3) with parame-
ters λi,Wi,θi,σi, j,qi for i, j = 1,2, . . . ,n satisfying Assump-
tion 2.1 and consider any continuous functions λ ,W,θ ,σ ,q
that satisfy Assumption 3.1 with

λ (x, i/n) = λi(x), (12a)
W (x, i/n) =Wi(x), (12b)
θ(x, i/n) = θi(x), (12c)

σ(x, i/n, j/n) = σi, j(x), (12d)
q(i/n) = qi, (12e)

for all x ∈ [0,1] and i, j = 1,2, . . . ,n. There are infinitely
many functions satisfying (12) and Assumption 3.1, as
well as ways to construct them, e.g., by utilizing auxiliary
functions {pi}n

i=1 that satisfy pi(i/n) = 1 and pi(`/n) = 0 for
` 6= i. The relations in (12) could as well be defined in
other ways, e.g., using (i− 1)/n in place of i/n, but we
find (12) the most convenient option for our developments.
The continuum kernel equations (10), (11) with parameters
λ ,µ,W,θ ,σ ,q, satisfying (12) and Assumption 3.1 have a
unique, continuous solution (k, k̄) by [20, Thm 3]. Thus,
construct the following functions for all 0≤ ξ ≤ x≤ 1

k̃i(x,ξ ) = k(x,ξ , i/n), i = 1,2, . . . ,n, (13a)

k̃n+1(x,ξ ) = k̄(x,ξ ). (13b)

Our main result is the following.
Theorem 4.1: Consider an n + 1 system (2), (3) with

parameters λi,µ,Wi,θi,σi, j,qi for i, j = 1,2, . . . ,n satisfying
Assumption 2.1. Let the parameters λ ,µ,W,θ ,σ ,q satisfy
Assumption 3.1 and relations (12). Then

U(t) =
1∫

0

[
1
n

n

∑
i=1

k̃i(1,ξ )ui(t,ξ )+ k̃n+1(1,ξ )v(t,ξ )

]
dξ ,

(14)

where
(

k̃i
)n+1

i=1
are given in (13), with

(
k, k̄
)

being the
solution to (10), (11), exponentially stabilizes system (2), (3).
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B. Proof of Theorem 4.1

The proof of Theorem 4.1 relies on Lemmas 4.2 and 4.3
presented below. We show first that the functions defined in
(13) approximate the solutions to the n+1 kernel equations
(5), (6) to arbitrary accuracy as n increases. In order to
do this, we first interpret the solutions to the n+ 1 kernels
equations (5), (6) as piecewise constant solutions with respect
to y, to the continuum kernels equations (10), (11). One way
to do this is highlighted in the following lemma, which is
to transform the Rn-valued components of the n+ 1 kernel
equations (5), (6) into step functions in y ∈ [0,1].

Lemma 4.2: Consider the n+ 1 kernel equations (5), (6)
where the parameters satisfy Assumption 2.1 and define the
following functions for all x ∈ [0,1], piecewise in y for i, j =
1,2, . . . ,n3

λ
n(x,y) = λi(x), y ∈ ((i−1)/n, i/n], (15a)

σ
n(x,y,η) = σi, j(x), y ∈ ((i−1)/n, i/n], (15b)

η ∈ (( j−1)/n, j/n], (15c)
W n(x,y) =Wi(x), y ∈ ((i−1)/n, i/n], (15d)
θ

n(x,y) = θi(x), y ∈ ((i−1)/n, i/n], (15e)
qn(y) = qi, y ∈ ((i−1)/n, i/n]. (15f)

Construct the following function for all 0 ≤ ξ ≤ x ≤ 1,
piecewise in y for i = 1,2, . . . ,n

kn(x,ξ ,y) = ki(x,ξ ), y ∈ ((i−1)/n, i/n], (16)

where
(
ki
)n+1

i=1 is the solution to (5), (6). Then,
(
kn,kn+1

)
satisfies the kernel equations (10), (11) for the parameters
defined in (15) and the original µ .

Proof: See the proof of [22, Lem. 4.2].
Let us next consider the continuum of kernel equations

(10), (11) with continuous parameters λ ,µ,W,θ ,σ ,q that
satisfy (12) and Assumption 3.1, together with the respective
kernel equations (10), (11) with piecewise constant param-
eters λ n,µ,W n,θ n,σn,qn in y constructed in Lemma 4.2.
In the next lemma, we show that the solution

(
kn, k̄n

)
to

the latter approximates the solution (k, k̄) to the former to
arbitrary accuracy, provided that n is sufficiently large.

Lemma 4.3: Consider the solutions
(
kn, k̄n

)
to the kernel

equations (10), (11) with parameters λ n,µ,W n,θ n,σn,qn

from Lemma 4.2. There exist continuous parameters
λ ,µ,W,θ ,σ ,q constructed such that they satisfy Assump-
tion 3.1 and (12), and for any such parameters the solution(
k, k̄
)

to the respective kernel equations (10), (11) exists and
satisfies the following implications. For any δ > 0, there
exists an nδ ∈ N such that for all n≥ nδ we have

max
(x,ξ )∈T

‖k(x,ξ , ·)− kn(x,ξ , ·)‖L2([0,1];R) ≤ δ , (17a)

max
(x,ξ )∈T

|k̄(x,ξ )− k̄n(x,ξ )| ≤ δ , (17b)

where we denote T = {(x,ξ ) ∈ [0,1]2 : 0≤ ξ ≤ x≤ 1}.

3These functions can be extended to y ∈ [0,1] by assigning the value at
y = 0 arbitrarily, which does not affect the functions in the L2 sense. The
same applies to (16).

Proof: See the proof of [22, Lem. 4.3].
We have by now established convergence of the solutions(

kn, k̄n
)

to the kernel equations (10), (11) with parameters
λ n,µ,W n,θ n,σn,qn defined in (15), to the solutions

(
k, k̄
)

to (10), (11) with parameters λ ,µ,W,θ ,σ ,q. Since the
solutions

(
kn, k̄n

)
are piecewise constant in y satisfying (16)

and (17), where
(
ki
)n+1

k=1 are the solutions to (5), (6) with
parameters

(
λ i
)n

i=1 ,µ,
(
W i
)n

i=1 ,(θ)
n
i=1 ,

(
qi
)n

i=1, the solutions(
kn, k̄n

)
can, in fact, approximate the kernels

(
ki
)n+1

i=1 to
arbitrary accuracy as n gets sufficiently large. This in turn
implies that the control law (14), constructed based on the
solutions

(
k, k̄
)

to the continuum kernel equations (10), (11),
approximates (arbitrarily close as n gets sufficiently large) the
original control law (4) constructed based on the solutions(
ki
)n+1

i=1 to the kernels equations (5), (6). For this, we present
the following lemma.

Lemma 4.4: The control law (14) can be written as

U(t) =
1∫

0

(
1
n

n

∑
i=1

ki(1,ξ )ui(t,ξ )+ kn+1(1,ξ )v(t,ξ )

)
dξ

+

1∫
0

(
1
n

n

∑
i=1

∆ki(1,ξ )ui(t,ξ )+∆kn+1(1,ξ )v(t,ξ )

)
dξ ,

(18)
where

(
ki
)n+1

i=1 is the solution to the n+ 1 kernel equations
(5), (6), and the approximation error terms

(
∆ki(1, ·)

)n+1
i=1

become arbitrarily small, uniformly in ξ ∈ [0,1], when n is
sufficiently large.

Proof: See the proof of [22, Lem. 4.5].
Proof of Theorem 4.1. By Lemma 4.4, the control law

(14) can be split into the part that exponentially stabilizes
the large-scale n+1 system (2), (3) and to the ∆-part which
we treat as a perturbation that becomes arbitrarily small
when n is sufficiently large. Thus, the stability of the n+1
system under the control law (18) can be established based
on existing results for well-posed infinite-dimensional linear
systems, e.g., as in [23, Sect. IV.C]. For details, we refer to
the proof of [22, Thm 4.1].

V. NUMERICAL EXAMPLE

As an example, consider an n+ 1 system (2), (3) with
parameters µ(x) = 1,λi(x) = 1, and

σi, j(x) = x3(x+1)
(

i
n
− 1

2

)(
j
n
− 1

2

)
, (19a)

Wi(x) = x(x+1)ex
(

i
n
− 1

2

)
, (19b)

θi(x) =−70ex 35
π2

i
n

(
i
n
−1
)
, (19c)

qi = cos
(

2π
i
n

)
, (19d)

1977



for i, j = 1, . . . ,n such that continuous functions satisfying
(12) can be constructed as λ (x,y) = 1, and

σ(x,y,η) = x3(x+1)
(

y− 1
2

)(
η− 1

2

)
, (20a)

W (x,y) = x(x+1)ex
(

y− 1
2

)
, (20b)

θ(x,y) =−70ex 35
π2 y(y−1) , (20c)

q(y) = cos(2πy). (20d)

The latter parameter values correspond to the example
considered in [20, Sect. VII], where it is shown that the
solutions of the corresponding continuum kernel equations
are given by

k(x,ξ ,y) = 35y(y−1)e2ξ k̄(x,ξ ), (21a)

k̄(x,ξ ) =
35

2π2 . (21b)

We note that while a closed-form solution exists to the
continuum kernel equations (10), (11) with parameters (20),
we were not able to solve the corresponding n+ 1 kernel
equations (5), (6) with parameters (19) in closed-form when
n ∈ N is arbitrary, nor do we expect that a closed-form
solution can be constructed (even for small n). This is also
consistent with, e.g., [24], in which an explicit solution is
possible to obtain for the specific case n= 1 and for spatially
invariant parameters (19). Regardless, in this particular ex-
ample, the continuum approximation significantly simplifies
the computation of the stabilizing control kernels.

We simulate the n + 1 system (2), (3) with parameters
(19) under the control law (14) computed based on the
continuum kernels (21). Various values of n are considered
to illustrate the behavior of the closed-loop system as n
increases. In fact, the closed-loop system is stable for any
n≥ 2, but the performance is improved for larger n. However,
when n = 1, the system (2), (3) is open-loop stable and
k1(x,ξ ) = k2(x,ξ ) = 0 is the solution to the kernel equations
(5), (6), in which case the approximate control law (14)
destabilizes the system.

In the simulations, the system (2), (3) is approximated
using finite differences with 256 grid points in x ∈ [0,1].
The ODE resulting from the finite-difference approximation
is solved using ode45 in MATLAB. The initial conditions
for all n are ui

0(x) = qi for i = 1, . . . ,n and v0(x) = 1. Fig. 2
displays the control law (14) when n = 2, . . . ,6. We note that
the control law also acts as a weighted average of the solution
to (2), (3), i.e., we can also assess the exponential decay rate
of the solutions based on U(t). However, as k(x,ξ ,1) = 0 in
(21), the component un(t,x) does not affect the control in
any way. Therefore, un(t,x) is displayed separately in Fig. 3
for n= 2, . . . ,5, which shows that also un(t,x) decays to zero
as t→ ∞.

Fig. 2 and Fig. 3 show that the approximate control law
based on the continuum kernels (21) is indeed stabilizing
already when n = 2, even if the rate of decay is very
slow. However, Fig. 2 and Fig. 3 show that the closed-
loop performance significantly improves when n becomes

0 2 4 6 8 10

-300

-200

-100

0

100

200

300

Fig. 2. The controls U(t) based on the approximate control law (14) when
n = 2, . . . ,6.

Fig. 3. The solution component un(t,x) when n = 2, . . . ,5.

larger, and in Fig. 2 the controls for n = 5 and n = 6 are
virtually indistinguishable. However, as we consider larger
values of n separately in Fig. 4 and Fig. 5, some changes
in U(t) and un(t,ξ ) are still noticeable between n = 6 and
n = 10. Regardless, in all studied cases beyond n > 5, the
controls, along with the solutions, have practically converged
to zero by t = 6. We note that it takes the control input
1/µ +1/λ = 2 time units to traverse through the system (2),
(3) for any n, which is why, e.g., the state component un(t,ξ ),
may grow rapidly in the beginning of the simulation as seen
in Fig. 3 and Fig. 5 before getting stabilized by the controls.
However, due to the in-domain coupling between u and v
in (2), the controls do affect the ui components through v
already before entering the ui channels at time t = 1/µ = 1.

Overall, the simulations demonstrate that the approximate
control law (14) based on the continuum kernels (21) ex-
ponentially stabilizes the n+ 1 system (2), (3) when n is
sufficiently large, and that the approximation error of the
control law decreases as n increases. Thus, the simulations
are well in accordance with the theoretical results. Moreover,
in this example the approximate control law had good
performance already for very moderate n, showing that the
sufficiently large n appearing in the theoretical results may
be, in practice, relatively small. However, one should not
expect this to be the case in general, as this is dependent on
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Fig. 4. The controls U(t) based on the approximate control law (14) when
n = 6,10,15,20.

Fig. 5. The solution component un(t,x) when n = 6,10,15,20.

the parameters of both the system (2), (3) and the continuum
approximation.

VI. CONCLUSIONS AND DISCUSSION

Computation of approximate stabilizing kernels based on
the continuum kernel may provide flexibility in computa-
tion, as well as it may significantly improve computational
complexity (although, practically, such computation also
depends on the sampling method chosen for the continuum
kernel). This is confirmed in the numerical example in which
computational burden of stabilizing kernels is significantly
improved, since the approximate kernels computed based on
the continuum can be computed in closed form, in contrast to
the exact kernels that would have to be computed implicitly
based on the solution to the kernel PDEs.

In general, we may expect that the complexity of com-
putation of stabilizing control gains via the continuum
approximation approach to not scale with n, i.e., to be
O(1); while the complexity of computation of the exact
control kernels to be O(n), i.e., to grow with the number
of state components. Thus, this approach may be useful for
computationally efficient control of large-scale PDE systems.
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