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Multidimensional signed Friedkin-Johnsen model

Muhammad Ahsan Razaq' and Claudio Altafini!

Abstract— The multidimensional signed Friedkin-Johnsen
(SFJ) model introduced in this paper describes opinion dynam-
ics on a signed network in which the agents hold opinions on
multiple interconnected topics and are allowed to be stubborn.
In the paper, we establish sufficient conditions for the stability
of the multidimensional SFJ model, and analyze convergence
to consensus in concatenated instances of this model.

I. INTRODUCTION

Opinion dynamics models are essential for examining
the dissemination of information or opinions on different
topics among individuals within a community or group [1].
The models have found extensive practical applications in
diverse fields, such as parliamentary systems [2], finance
[3], social behavior [4], and psychology [5]. These models
help investigate the dynamics of social attitudes and their
evolution over time. A graph-based approach is normally
adopted, where individuals (i.e., agents) serve as nodes,
the interactions between different individuals represent the
edges, and the opinions of each individual are represented
by the states of the agent.

The fundamental model employed is the DeGroot model
[6]. This model operates through an averaging rule based
on the interactions between agents, which drives the dy-
namics towards consensus. This model was expanded into a
Friedkin-Johnsen (FJ) model in [7], incorporating the stub-
bornness of the agents into the dynamics. In the FJ model,
the opinions of the agents tend to approach each other, yet
they do not normally reach a consensus. If an FJ model
represents a discussion event, a series of discussion events
on the same topics can be represented by a concatenated
FJ model [8]-[10]. This model can be examined using a
two-time-scale framework, similar to the one introduced in
[11]. The motivation behind employing a concatenation of
FJ models lies in the observation that if each single instance
of the FJ model leads to opinions that get closer to each
other, then concatenating FJ models (i.e., using the endpoint
of the preceding discussion as the starting point for the next
discussion) may gradually lead to a consensus opinion, in
spite of the persistent stubbornness.

In [12] and [13] the DeGroot and concatenated FJ models
were investigated within the framework of signed networks,
in which the antagonism among agents is introduced via
negative edge weights. These models leverage the algebraic
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property of matrices that are Eventually Stochastic (ES) for
the discrete time (DT) case, and Eventually Exponentially
Positive (EEP) for the continuous time (CT) case [14]. In
particular, in [13] we refer to the FJ model over a signed
network as signed FJ (SFJ) model, and to its concatenated
version as concatenated SFJ.

Assume now that our opinion dynamics models are used
to investigate multiple topics that are up for discussion
simultaneously, and that these multiple topics are interdepen-
dent. An example could be students’ opinions on different
subjects, where preferences for one subject may negatively
correlate with preferences for another (e.g., a preference for
mathematics may be negatively correlated with a preference
for humanities), and positively correlate with yet another
subject (e.g., a preference for mathematics may positively
correlate with a preference for physics). Such interdepen-
dences among multiple topics are typically captured by the
so-called multidimensional models [9], [15]-[19]. The paper
[16], for instance, proposes a multidimensional extension of
the DT FJ model in which, alongside the usual interaction
graph among the agents, a second interaction graph for topics
is considered. For CT dynamics, [19] proposes two models
that introduce interdependency among topics, and provides
sufficient conditions for convergence of the resulting model.
The models of [16], [19] both necessitate to have non-
negative interaction weights among agents, and so do [9],
[15], [17], [18].

In this paper, we explore the behaviour of both CT and DT
multidimensional opinion models incorporating both stub-
bornness and antagonistic interactions. In particular, our SFJ
models describe the agent-to-agent interaction graph using
an ES matrix for DT and an EEP Laplacian for CT. Conse-
quently, our models exhibit the flexibility to be either stable
or unstable, contingent on the selection of the interaction
graph, stubbornness values, and topic dependencies. Several
cases of topic interdependence matrices are investigated in
the paper, and sufficient conditions for convergence are es-
tablished. The only other model of multidimensional opinion
dynamics models with antagonistic inter-agent interactions
we are aware of is [20], which however is limited to a
much simpler agent-to-agent signed interaction matrix, that
is always Schur stable unless it is structurally balanced (the
rows of the interaction matrix in absolute value sum to 1, CT
equivalent of what in [21] is called an “opposing” Laplacian).
The stability analysis of this model is rather straightforward,
and its dynamical behavior much more limited, even in the
multidimensional case.

In the paper we also provide necessary conditions for
consensus in the concatenation of such multidimensional SFJ
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model. To the best of our knowledge, this has not been
treated before in the literature.

The structure of the paper is as follows: Section II presents
basic concepts related to signed graphs and matrix theory.
Section III introduces our DT and CT multidimensional SFJ
models, along with sufficient stability conditions for the
SFJ models. Furthermore, Section IV establishes sufficient
conditions for the asymptotic stability of the multidimen-
sional SFJ models. Lastly, Section V addresses consensus
for concatenations of multidimensional SFJ models.

II. PRELIMINARY MATERIAL

Notations. Lower case letters y, z, o, ... denote real num-
bers, and bold letters v, w,x,... represent vectors. The
vectors of 0 and 1 are written as 0,,1, € R™. The one-
norm, Euclidean-norm and infinity-norm of a vector x is
represented as ||x||1, ||x||2, and ||x||» respectively. Capital
Latin or Greek letters W, X, ©,... denote matrices. For a
matrix H = [H;;] € R™", its transpose and kernel are
represented as H” and ker(H), respectively. For a matrix
H e C"*™, H* represents the complex conjugate transpose.
The diagonal matrix diag (x) € R™*™ has the entries of vec-
tor x € R™ on its diagonal. A (H) = {\; (H),...,\, (H)}
gives the spectrum of the matrix /. The maximum absolute
eigenvalue p(H) = 1111axn|)\¢ (H)| is called the spectral

radius of the matrix H and if p(H) > |AN(H)| YA € A(H),
A # p(H), then it is strictly dominant. For two sets H1, Hs €
C, the product of sets is defined as HiHo = {h1ha : by €
H1, ha € Ha}. Furthermore, Co(H) gives the convex hull
of the set H. Let LHP (LHP,.) and RHP (RHP.) denote
the open (closed) left and open (closed) right half plane of
the complex plane, respectively.

A. Signed Graphs

A directed graph (digraph) is a triplet G = (V, £, A) with
n nodes V = {v1,va,...,v,}, a link set £ in which a pair
(4,7) € & signifies a link from node v; to v;, and a weighted
adjacency matrix A where A;; = 0 if (j,7) ¢ £. In signed
graphs, the entries of A;; may assume positive or negative
values, reflecting a friendly or antagonistic relationship be-
tween the nodes. In an undirected graph, A satisfies AT = A,
while in a weight balanced digraph, we have Al = AT1.
For a signed graph, the weighted in-degree vector is defined

> Ay

J=Li7] nx1
[21] is defined as L = %;, — A where %;, = diag (oin). By
construction L1 = 0. A path from node ¢ to k in the graph
is given by the pairs (¢,1),(1,2),...,(j —1,7),(j,k) € €
which is equivalent to Ag;Aji_1)... A21A1; # 0. In the
graph, a directed spanning tree exists with root node ¢ if
there is a directed path from node i to all other nodes in
the graph. A strongly connected graph has a directed path
between each pair of nodes.

as oy = € R". The “repelling Laplacian”

B. Matrix Theory

The matrix H is called Hurwitz (resp. Schur) stable if
R (H)) < 0 (resp. |A(H)| < 1). It is marginally stable

if RIAN(H)) <0 (resp. |A(H)| < 1), and the eigenvalues
such that R (A (H)) = 0 (resp. |A(H)| = 1) are simple
eigenvalues. The matrix H is said reducible if 3 a permu-
H, H,
0 Hs
and Hj3 are non-trivial square matrices. It is irreducible if
it is not reducible. A positive matrix, H > 0, has positive
entries, Hy; > 0, and a nonnegative matrix, H > 0, has
non-negative entries, Hy; > 0. The dimension of ker (H) is
known as corank of a matrix H. For a normal matrix H, we
have HH” = HT H. A positive definite (resp. semi-definite)
matrix [, represented as [ > 0 (resp. I > 0), is defined
as XTHSme > 0 (resp. XTHSme >0)VxeR", x#0
where Hgym = (H + H7)/2. A negative definite (resp.
semi-definite) matrix is denoted H < 0 (resp. H = 0) and
obviously corresponds to —H > 0 (resp. —H > 0). The
Kronecker product between two matrices H1 and H is given
by H1 X H2 and )\(Hl X Hg) = )\(Hl))\(HQ)

tation matrix P such that PTHP = where H;

C. Perron-Frobenious property and Eventual Positivity

The following definitions and properties can be found in
[12], [13].

e The matrix H € R™*"™ satisfies the Perron-Frobenius
(PF) property (denoted H € PF) if IX € A(H) real
and positive which is a simple and strictly dominant
eigenvalue, and the corresponding right eigenvector is
positive.

e The matrix H € R™*" is said Eventually Positive (EP)
if H* > 0 for k > k,, k, k, € N and it is represented
as H ; 0. y

o For a EP matrix H € R™*™, we have H” > 0 and both
H, HT ¢ PF.

o The matrix H € R™*" is said Eventually Exponentially
Positive (EEP), if H + dI ¥ 0 for some d € Rxg.

D. Eventually Stochastic Matrices
The following definition and property can be found in [14].
e The matrix H € R™ "™ is said Eventually Stochastic
(ES) if H >0 and H1 = 1.
o For a ES matrix H, 1 € A (H) is a simple and strictly
dominant eigenvalue, with right and left eigenvectors
v > 0and w > 0.

E. Numerical Range

The following definitions and properties can be found in
[13], [22].

e The numerical range of a matrix H € C"*" is defined
as the compact and convex set in C given by w(H) =
{x*Hx: x € C", |x]| = 1}.

e The numerical range of a matrix H encapsulates all
eigenvalues of H, i.e., A(H) C w(H).

e The numerical radius of a matrix H € C™*"™ is defined
as r(H) = max{|z| : z € w(H)}.

o For a matrix H, we have the following relation between
spectral radius p(H ), numerical radius (H ) and norm
1AL

p(H) < r(H) < |[H|| < 2r(H)
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e A matrix H € C"*™ is called radial if p(H) =
|Hllz (= r(H)).

o The matrix H is radial iff p(H)I, — HTH = 0. By
construction, symmetric (Hermitian), skew-symmetric
(skew-Hermitian), unitary, and normal matrices are ex-
amples of radial matrices.

The following lemma gives the numerical range of Kro-
necker products of matrices.

Lemma 1 [22] Let Hy € R"*", and Hy € R™*™, then

(2) w(Hy)w(Hz2) C Co(w(Hy)w(H2)) C w(H; @ Hy).

(b) If Hy is normal, then w(H1®@Hs) = Co(w(H1)w(Hz)).

(c) If e Hy = 0 for some 9 € [0,27), then w(H, ® Hy) =
W(Hl)w(HQ).

III. PROBLEM FORMULATION

In this section, we explore the multidimensional SFJ
model for both discrete time (DT) and continuous time (CT).
Multidimensional implies that individuals hold opinions on
multiple topics, and the opinions on these topics are inter-
connected. Let there be m topics and n agents.

A. Discrete-time multidimensional SFJ

The multidimensional model is similar to the one provided
in [16] but with signed weighted adjacency matrix. The
dynamics for agent 7 is given by

Bt 1) = (1= 8)0 wigay(0) +6,0,00),

where x;(t) € R™ denote the opinions of agent ¢ on the
m topics, §; € (0, 1) gives the stubbornness value, w;; €
R represents the signed weighted interaction of the agent j
n
towards ¢ satisfying ) w;; =1, and C' € R™*" describes
j=1
the inter-dependency of topics common to all agents and is
referred to as multi-issues dependence structure (MiDS) [16].
In matrix form using Kronecker product, we can write

x(t+1)=(I,-0)WaC)x(t)+(© I,)x(0), (1)
where x(t) = [zT(t) ... 2T ()] € R"™, W = [wijlnxn

n
is the signed weighted adjacency pattern describing the
communication graph G, and © = diag([f1, .. .,6,]). When
C = I,,, we get m independent SFJ models in which the
topics converge to equilibrium points independently. The DT
SFJ model (1) with C = I, converge to an equilibrium
point according to Lemma 2, where the results of [13]
are enhanced to include radial matrices and the following

assumption that all agents are partially stubborn is used.

Assumption 1 All agents in the network are partially stub-
born, ie., 0; € (0,1) Vi=1,...,n.

Lemma 2 ( [13] Theorem 1, 2) Under Assumption 1, if
C = I, and W is a ES and radial matrix, then p((I, —
©)W) < 1, and the independent models in (1) converge to
x* = (Pw ® I,,)x(0) where Py = (I, — (I, —©)W)~ 'O

is an ES matrix with left eigenvector 1% (I, — ©)710
corresponding to the eigenvalue 1.

The affine model (1) has an equilibrium point if
p((In —©)W ® C) < 1, and the equilibrium point is given
by x* = Qwx (0) where

Qw = Inm — I, —O)WoC) " (O01,). @

Lemma 3 Under Assumption 1, if W is ES and radial, then
r((I, — )W) < L

Proof. Using the Cauchy-Schwarz inequality |[|(, —
OW a2 < [[(In — O)2IW 2 < 1, as [|(Ln — O)> < 1
and |W||2 = 1. With »((I,, — ©)W) < ||(I, — ©)W||2, the
Lemma is proved. L]

B. Continuous-time multidimensional SFJ

The dynamics for the agent ¢ in CT can be written as

@;(t) = (1 —6;)C Z aij (zj(t) —zi(t))
JEN;
— (I — C)zi(t) — 0; (Czi(t) — 24(0)),

where x;(t) € R™ defines the opinions on the m topics, §; €
(0, 1) represents the stubbornness value, A = [a;j]nxn is the
adjacency matrix of the signed graph G, and C € R™*™ ig
the MiDS matrix. A compact version in matrix form with
Kronecker products is given by

%(t) = = (Lam = (1o = ©) (I = L)) ® C)x (1)
+(O®1,)x(0),

where x(t) € R, © = diag([f1,...,0]), and L = %;,, —

A is the signed Laplacian matrix. When C = I[,,,, we get

the m independent SFJ models. The CT SFJ model (3) with

C = I,, converges to an equilibrium point as per Lemma 4
where the results of [13] now include radial matrices.

3)

Lemma 4 ( [13] Theorem 3, 4) Under Assumption 1, if
C = I, and —L is an EEP and a radial matrix, then
—((I, — ©)L + ©) is Hurwitz, and the independent models
in (3) converge to x* = (P ® I,,)x(0) where P, =
(© + (I, — ©)L)™1O is an ES matrix with left eigenvector
17(1,, — ©)~'© corresponding to the eigenvalue 1.

The model (3) has an equilibrium point if
—Inm — ((In—-0)I,—L))®C) is Hurwitz, and
the equilibrium point is given by x* = Q1 x (0) where

Qr=Upm -, —0)I, —L)®C) ' (O 1,). 4

IV. CONVERGENCE IN MULTIDIMENSIONAL SFJ

In this section, we provide sufficient condition for the
multidimensional SFJ model to converge to an equilibrium
point for both CT and DT in the more interesting case of
C # I,. In the following theorem, we use the Assumption 1
that all agents are partially stubborn.

Theorem 1 Under Assumption 1, if
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(i) [DT case:] W is ES and radial matrix and p(C) <
1/p((I, — ©)W), then p((I,, —O)W @ C) < 1.
@ii1) [CT case:] I, — L is ES and radial matrix
and p(C) < 1/p((I, — ©)(I, — L)), then
— (Lnm — (I, — ©) (I, — L)) ® C) is Hurwitz.
The multidimensional DT and CT SFJ models (1) and (3)
converge to x* = Qx(0) where Q € {Qw, Qr} (with Qw
and Qp, defined in (2) and (4)). Furthermore, if \(C) = 1
with the corresponding right and left eigenvectors as v and
wc, respectively, then we have Qv = v and w' Q = w’
where v =1, ® vg and w = (I,, — @)71 o1, @ wc.

Proof. The analysis of stability for both the affine systems
(1), (3) and the linear system resulting from the change of
basis z(t) = x (t) — x* yields the same results, provided
that x* exists uniquely, i.e., when p((I — )W @ C) < 1
and — (I — ((I, — ©) (I, — L)) ® C) Hurwitz. Hence, we
need to prove that (I, — ©)W ® C' is a Schur matrix in DT
and —(Ipm — ((In — ©) (I, — L)) ® C) is a Hurwitz matrix
in CT. Denoting D = I,, — © and using Lemma 2 in DT, for
W ES and a radial matrix, we have that p(DW) < 1, and
p(C) < 1/p(DW). This leads to p(DW ® C') < 1, which
proves that the DT multidimensional SFJ model (1) is stable.

To prove that v = 1,, ® v is the right eigenvector of
Qw corresponding to the eigenvalue 1 when A\(C) = 1,
notice that we have (DW ® C)v = (D ® I,)v, which
can be rewritten as (I, —DW®C)v = (0 ® I,,)v,
and (I, — DW @ C)' (© ® I,,)v = v. To prove that
wl = 1TD710 ® wcT is the left eigenvector of Qu
corresponding to the eigenvalue 1 when A(C') = 1, notice
the following chain of equalities:

1Teo o weh)(Iym —WDoC) ' =11 @ we?.
Multiplying from the right by D~'0O ® I,,, gives
170 @ weT)(Inm — WD @ C) (D 'O ® I,) = w”,
1’0 @we")(D® I, - DWD&C) (O 1,) =w’,
W (I —DW @ C)" YO ®I,) =w".
The proof of CT counterpart follows from the DT one by

replacing W with I,, — L and using the property of a Schur
matrix A that A — I is Hurwitz. ]

Notice that in the context of the CT case, we use a
“rescaled” version of the Laplacian, i.e., instead of —L EEP
we use I,, — L ES. The next example shows that, in fact, the
case of —L EEP and normal with a stochastic and normal
MiDS matrix C, may result in an unstable system.

Example 1 For —L EEP and symmetric

4 -0.3 —-51 14
I— -0.3 26 -22 -0.1
-5.1 —-22 133 -6
1.4 -0.1 -6 4.7
. . . 0.1 0.9
with a normal MiDS matrix C = 09 01 and stubborn-

ness values © = diag([0.4, 0.9, 0.8, 0.9]), we notice that

M=Tnm + (In —©) (I, — L)) ® C') = 2.31 which means
that the CT multidimensional model (3) is unstable. [ |

V. CONCATENATION OF MULTIDIMENSIONAL SFJ
MODELS

Similarly to the concatenated SFJ model for a single opin-
ion [13], the multidimensional concatenated case involves
a sequence of discussion events, each encapsulated by a
multidimensional SFJ model, either DT or CT. The opinion
vector, now multidimensional, is denoted as x(s,t) € R™™,
where s represents the event index and ¢ denotes time within
each event. The dynamics governing the SFJ model at event
s in the multidimensional setting can be expressed as:

x(s, 00) = Qx(s,0), Qe{Qw, Qr}- (5)

The concatenation principle remains consistent with the
single-dimensional case: x(s,0) = x(s — 1,00), which
signifies that the opinion state at the end of one discussion
event becomes the starting point for the subsequent event.
The initial opinions at the start of the first discussion are
given by x(0, c0). In essence, the multidimensional concate-
nated SFJ model operates similarly to its single-dimensional
counterpart, but now accommodates multiple topics and (5)
can be rewritten as

x(s, 00) = Qx(s — 1,00),

Qe{Qw, Qr}. (6

The following example shows the importance of finding
sufficient conditions for the concatenated multidimensional
case; as can be seen, the topics independently converge to
consensus, i.e., p(P) = 1 with P € { Py, Pr}. However, in
the multidimensional concatenated case, we have p(Q) > 1,
which indicates unstable behavior.

Example 2 For an ES matrix

0.1 0.8 0.7 —-0.6

W= -02 -03 0.7 0.8 7

08 01 -0.8 09

05 04 04 -0.3
. . . . . 0.1 0.9
with topic dependencies (MiDS matrix) C = 09 0 1]

which is a normal matrix, and stubbornness values © =
diag([0.7, 0.9, 0.4, 0.6]), we notice that the matrix Qw has
spectral radius greater than 1, i.e., p(Qw) = 1.0064, even
though the single multidimensional SFJ model converges
to x* = Qwx(0). Also, the concatenation of independent
topics are themselves stable, i.e., p(Py ) = 1. ]

Theorem 2 Under Assumption 1, if

(1) [DT case:] W is ES and radial matrix
(i) [CT case:] I, — L is ES and radial matrix,

then the concatenated multidimensional SFJ model (6) con-
verges to the consensus value x* = W' x(0)v if 1 € A(C)
is a strictly dominant eigenvalue with either (i) r(C) = 1
(C a radial matrix) or (ii) C > 0, where w = w/|w|1
with w = (I, —©)' 01, ® we, v = v/||v|s with
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v =1,®vg, and W, v are the left and right eigenvectors
of C corresponding to the eigenvalue 1.

Before proving this Theorem, we need the following Lemma
whose proof is omitted as it is similar to the proof of Lemma
4 in [13].

Lemma 5 Consider

(1) [DT case:] W is ES and radial matrix
(i1) [CT case:] I,, — L is ES and radial matrix,
and © such that Assumption 1 is obeyed. Whenever (I, —
(I, —O)W&C)~tin DT and (I, — (I, — ©) (I, — L) ®
C)~ 1 in CT exist, then the condition p(Q) < 1, where Q €
{Qw, Qr} (with Qw and Q| defined in (2) and (4)), is
equivalent to either of the following
() [DT case:] (I, — O 1@ I,) Iy — W @ C) having
none of the eigenvalues in the interior of the unit disk
centered at 1:

’/\ (Inm -
(i) [CT case:] (Lnm — O ' @ L) Lnm — (I, — L) ® O)

having none of the eigenvalues in the interior of the
unit disk centered at 1:

(Inm - @71 ® Im)(Inm -We® C))| > L.

‘A(Inm L — O @ L) (Lo — (I — L) ® C))‘ > 1.

Proof of Theorem 2. Using Theorem 1, we find that
p((I,—0)YW®C) < 1, ensuring that —I,,,, +(I,—©)W&C
is Hurwitz. Consequently, Lemma 5 is applicable as the
assumptions are satisfied. Let D = —(I,,, — O~ ! @ I,,,)
and F' = I, — W ® C. When 1 € A(C) is a simple and
strictly dominant eigenvalue with either C' a radial matrix
or (C) = 1, it follows that F' > 0 using Lemma 1 with
corank(F') = 1 given that 1 € A (W ® C) is a simple and
strictly dominant eigenvalue. Note that, since 0 < 6; < 1 Vi,
we also get D > 0 and D > 0. Using arguments similar to
those in the proof of Theorem 2 in [13], we can prove that
AM=DF) € LHP. with corank(DF) = 1 which leads to
the presence of exactly one eigenvalue of —DF on the unit
disk centered at 1. Using Lemma 5 and Theorem 1 where
we have Qwv = v, establishes that 1 € A(Qw ) is indeed
simple and satisfies 1 > |[A(Qw )| for all A (Qw) # 1.

Denote D = (I, — ©)Y%(I, — W)(I, — ©)'/?2 @ C.
When C >~ 0, notice that Qu is similar to (02 ®
I,)(Inm +D)~*(©Y2®1,,) with the transformation matrix
T = 0Y%(I, —©) Y2 ® I,,. Since D > 0, we get that
7((Lnm + D)~1) < 1 and consequently p(Qw) < 1. Notice
that corank of D is 1, which implies that 1 € A(Qw ) is a
simple and strictly dominant eigenvalue.

The same arguments holds for the CT case, by replacing
W by I, — L. Notice, from Theorem 1, that Qv = v
and wI'QQ = w’ implies that the consensus value is given

by x* = W!x(0)¥v where W = w/||w|; with w =
(I-0)"'01,8wc, and V = v/||[v||l» with v = 1,8 vc.
This completes the proof. |

Remark 1 In our simulations, we have not encountered a
matrix C' with p(C) < 1 that leads to p(Q) > 1 for W
(or I, — L) ES and radial matrix. However, we have yet
to provide a formal proof for this observation. Furthermore,
notice that p(C) > 1 may also lead to convergence to an
equilibrium point for the single multidimensional SFJ model
(1) or (3), but the concatenation of such multidimensional
SFJ model will be unstable as p(Q) > 1. The conditions on
the matrix C, i.e. C a radial matrix or C' > 0, are practically
relevant as in the radial matrix there will be some symmetry
in the relationship among topics, and C' > 0 implies higher
self weights in topic dependency.

Remark 2 In order to simplify the analysis of the multidi-
mensional case, in this paper, for the CT case, we assume
the Laplacian is “rescaled”, L,,, which is such that I,, — L,
is ES. When we compare — L EEP to its “rescaled” version,
L, = oL where 0 < p < 1, both matrices possess identical
left and right eigenvectors corresponding to the eigenvalue 0.
Consequently, a stable system represented by x(t) = —Lx(t)
and its “rescaled” counterpart X(t) = —L,x(t) converge
to the same value (x* = wlx(0)L, with wiL = 0)
when starting from the same initial conditions. However, in
the SFJ model, x(t) = —(0 + (I, — ©)L)x(t) + 6x(0),
the opinions converge to different values: x* = (O +
(I, — ©)L)"1ex(0) = Prx(0) and x* = (© + (I, —
©)L,)"t0x(0) = Pr,x(0). Nonetheless, in the concate-
nated SFJ model, x(s + 1) = Px(s) P € {Pr, P}, the
opinions converge to the identical value: x* = W' x(0)1,,
where W = w/|wl|j; and w = (I, — ©)"1Ow,. Sim-
ilarly, consider the concatenation of the multidimensional
SFJ model with the dynamics x(s + 1) = @Qx(s) where
Q € {Qr,Qr,}. When 1 € A(Qr) is strictly dominant
and simple, the opinions converge to x* = W x(0)V where
w = w/|w|i with w = (I, — ©)"'Ow, @ wg, Vv =
Vv/|[V|leo With v =1,, ® ve, and we, ve are the left and
right eigenvectors of C' corresponding to the eigenvalue 1.

Example 3 Consider an ES and radial matrix

0.7 0 -01 04
0 0.8 0 0.2
W= 04 02 07 -03

-01 0 04 07

with © = diag([0.1, 0.7, 0.1, 0.6]), arbitrary initial condi-
tions x(0), and MiDS matrices C' as follows

0.6 0.4 0.6 —0.4 0.6 0.2
G1= {0.3 0.7] o= [—0.3 0.7 ] O3 = [0 1 } :

Note that with MiDS matrix C; (row stochastic, i.e. with
vc, = 1), consensus is achieved on all topics (See Fig. 1a).
In the case of C5, we observe a bipartite consensus with
respect to the topics (See Fig. 1b), while C3 exhibits an
unusual behavior. In C's, the opinions related to topic 2 reach
a consensus independently and the steady state value of topic
1 depends on the steady state value of topic 2 as per the
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Fig. 1: Simulation results for Example 3 with different MiDS matrix C. (a) Consensus for MiDS matrix Cy, (b) Bipartite
consensus with respect to topics for MiDS matrix Cs, and (c) Independent consensus for topic 2, while topic 1 converges

to 50% of steady state value of topic 2 for MiDS matrix Cs.

matrix C3, i.e., x* = W' x(0)Vv with W = w/||w]/;, w =

O(Iy —0) "My @ wey, V=v/||V|leo, V=14 ® vc,. For
the matrix Cj, the right eigenvector corresponding to the
eigenvalue 1 is given by vg, = [0.5, 1]7, meaning that the
steady state value of topic 1 will be half of the steady state
value attained by topic 2 (See Fig. 1c). The initial values of
topic 1 do not play a role in the consensus values as wg, =
[0, 17" In the case of MiDS matrix C' where p(C) < 1, all
opinions converge to zero. Lastly, when the matrix C' = I,
it results in independent SFJ models for each topic. [ ]

VI. CONCLUSION

In this paper, we extend the results of the FJ model with
antagonism to a multidimensional case, where more than one
topic is considered at any time. We provide sufficient condi-
tions for the single multidimensional SFJ model to converge
to an equilibrium point, that is, p((1, — ©)W)p(C) < 1.
We further investigate the concatenation of such multidimen-
sional SFJ models and find that if 1 € A(C)) is simple, strictly
dominant and either C is radial, or C' > 0, or r(C) = 1,
then the concatenated model converges to different types of
consensus depending on the left and right eigenvectors of
C. The different consensus types include common consensus
value for all topics, bipartite consensus with respect to topics,
as well as more complicated forms of partial consensus. If
p(C) > 1 the concatenated model diverges.
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