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Range-only Distributed Formation Control and Network Localization
based on Distributed Contracting Bearing Estimators

Jin Chen!, Matteo Marcantoni? and Bayu Jayawardhana!

Abstract— This paper investigates the distributed formation
control problem solely based on range-only measurement, with-
out the availability of bearing or relative bearing information.
Without bearing information, local relative position necessary
for maintaining rigid formation control cannot be obtained
only based on range measurement. Correspondingly, range-only
bearing estimator for a single landmark is proposed that can
be directly combined with standard distributed rigid formation
control law. Asymptotic stability analysis of the desired forma-
tion shape is presented and the proposed distributed approach
is validated via numerical simulations.

I. INTRODUCTION

Formation shape control of mobile agents has been exten-
sively studied for the past decades and it has been deployed
in various real-world applications [1], such as multi-agent
search and rescue, navigation and operation. The original
formation control laws are based on the use of global
position measurement [2], and they can be grouped into
position-based and displacement-based methods. In recent
years, new multi-agent applications have imposed some
design constraints and limitation on the available on-board
sensors. Consequently, formation shape control based on
partial measurement information has attracted a renewed
research interest [3]. Furthermore, the existing duality be-
tween network localization and formation control problems
has contributed to this revived interest, as both communities
have adopted methods from one another [4].

Bearing-only and angle-based approaches are two domi-
nant formation control methods as far as the partial measure-
ment is concerned. In bearing-only formation control [5], [6],
[7], agents are required to achieve desired bearing-based rigid
shape only depending on bearing information (commonly
sensed by camera). In angle-based formation control [8], [9],
[10], angle-based and inner-angle based rigidity are defined
to characterize the desired formation shape, while control law
is designed by angle measurement between agents or the di-
ameter of neighboring agents represented by inner angle. As
an example, angle measurements can be obtained by visual
information coming from on-board cameras. Complementary
to the aforementioned methods, the potential of range-only
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approaches has been widely explored in the literature. Unlike
the classical distance-based formation control techniques,
which rely on relative position measurements from GPS or
on-board Lidar, the aim of range-only algorithms is to reach
and maintain a desired formation shape using only distance
information. The above methods are typically applied when
range-only sensors, such as acoustic and radio devices, are
deployed. This occurs when GPS is inaccessible (e.g. indoor
environments) or when on-board Lidar cannot be used.

There are several existing works on range-only formation
control and network localization [11], [12], [13], [14]. In
[11], a stop-and-go strategy is presented where each agent is
included in cyclical periods with identification and control,
while the others must remain stationary when they are not
included. In [12], the authors demonstrated that each agent
can infer its neighbours’ positions in its own local coordinate
frame, given a modest number of distance measurements to
anchors and communication capabilities between neighbours.
The estimated positions can then be directly used in classical
distance-based formation shape methods. In [13], a relative
localization and affine formation control approach is pro-
posed based on range measurement, odometry measurement
and local communication. The approach is a discrete-time
scheme and relies on leader-follower structure with directed
graph. In [14], the authors propose a novel consensus al-
gorithm based on the simultaneous perturbation stochastic
approximation (SPSA) method for distributed tracking under
unknown-but-bounded disturbances. The algorithm is applied
to estimate relative bearing information in a formation con-
trol scenario, where agents can measure the noisy squared
distances between each other.

In this paper, we investigate the continuous-time range-
only formation control problem based on undirected rigid
formation graph. Distinct from the aforementioned works,
we propose a scheme for distributed formation control and
network localization under a distance-based rigid formation
graph, where only range measurements, local odometry
measurements and local communication are available to the
agents. Note that position measurements are crucial for the
agents to determine the direction of movement. In particular,
we extend the discrete-time bearing estimator in [15] to
the continuous-time case to reconstruct the relative bearings
between the agents and a single stationary landmark. Via
contraction theory, we perform the convergence analysis
for the proposed continuous-time observer. Leveraging this
bearing estimator and via local information exchange of the
estimated relative positions to the neighbors, we can directly
combine the proposed local observer with the standard



distance-based formation control scheme. Furthermore, an
asymptotic stability analysis of the overall systems, con-
sisting of the local bearing estimators and the distributed
formation control, is presented.

The paper is organised as follows. Section II presents
the preliminaries and problem formulation. The proposed
continuous-time range-only estimator and its corresponding
convergence analysis are presented in Section III. In Sec-
tion IV, the range-only distributed formation control law is
introduced together with the asymptotic stability analysis.
Numerical simulations are provided in Section V, and finally,
conclusions are given in Section VI.

II. PRELIMINARIES & PROBLEM FORMULATION
A. Notation

For a given matrix A € R"*", the corresponding extended
matrix is defined by A= A®I, € R"*P" where ®
denotes the Kronecker product. With I,,,, we refer to the m-
dimensional identity matrix. For a given vector z € R™, the
diagonal matrix D, is defined by D, = diag (z;).

i=1,...,m

B. Graph

An undirected graph G is defined by the tuple (V,&),
where V = {1,2,--- ,n} is the vertex set and € C ¥V x V
is the edge set. |£| denotes the cardinality of the set £. The
ordered pair (7, j) € € refers to an edge which is represented
by an arrow with node 7 on its tail and node j on its head.
We assume throughout the paper that there is no self-loop
in G, ie., (4,4) ¢ € for all 4 € V. The set of the neighbours
for the vertex 4 is denoted by N; = {j € V| (i, j) € £}. Cor-
respondingly, the set of edges associated to the pair (4, ;)
is denoted by K; := {k|(i,7) = & for somej € N;}. We
define the elements of the incidence matrix B € RIVIXI€l of
G by

+1 if i=g
biw £ 4 —1 if i=¢ghead (1

0 otherwise,

where £ and £ denote the tail and head nodes of the
edge &, ie., & = (£, ghead),

Given a finite collection of agent’s positions {p;}.—, in
R2, with n > 2, we define a configuration of G by p =
[p]—, Al }T € R?". A framework in a 2D-plane, which
is denoted by (G, p), is a combination of an undirected graph
G and a configuration p, i.e., every vertex ¢ € V) is mapped
to the point p; in the configuration.

C. Infinitesimally rigid framework and distance-based rigid
formations

Let us recall the notion of infinitesimally rigid framework
in [16], [17] in order to define a desired formation shape. A
commonly used relative displacement measurement is given
by z; = p; — p; for every (i,j) € &£. From this we use
an edge function given by fg(p) = col jyeelllpi — pjll}
to defined a distance-based formation shape. Associated to
fe(p), the rigidity matrix R(z) of the framework (G, p) is
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defined by the Jacobian of the edge function fg(p), which
satisfies R(z) = D] BT. For a given desired formation
shape, where the desired distance on every edge is given
by d = col(; jyeelll2f;]I} with [[z7;]| the desired distance for
the edge (7,j), the set of all equilibrium points that satisfy
such distance constraint is F := {p|fc(p) = d}. For a
given desired distance vector d, the corresponding desired
framework (G, p*), with p* € FE, is said to be infinitesimally
rigid if the rank of R(z*) is 2|V| — 3, for for the 2D case,
and 3|V| — 6, for the 3D one. For an infinitesimally rigid
framework (G, p*), the admissible infinitesimal displacement
is translational and rotational motion [18].

Using the framework (G,p), let each agent position p;
evolves in R according to p; = u,, forall ¢ = 1,...,n,
where u; € R? is the velocity control input. Using the
infinitesimally rigid framework, distributed distance-based
formation control methods have been widely studied in the
literature, see for example [18], [19] and the references
therein. In these works, the distance formation error in the
k-th edge is defined by e 2]t — di with I > 1 be
any positive integer number. Associated to every edge k,
the distributed control design method amounts to finding a
positive definite function Vi (ex), so that the local gradient-

based control law for each agent i is given by wu;

T
=D kek, 8‘?’;}5%) . In particular, if Vj, = $||ey||? is chosen,
one can obtain the closed-loop system dynamics of the whole

system in the following compact form
p=—BD.Dze=—R(2) Dze
¢ =1D;D] B"p = —ID:R(2)R(z) " Dze

2)

where e,z € RI€l are the stacked vectors of e;’s and
l|z&]|'=2’s respectively, for all k& € 1,...,|&|. The above
distance-based formation control law guarantees exponential
stability, as studied in [18], [19], [20].

D. Contraction theory

Consider a time-varying nonlinear system
&= f(x,1) 3)

where x € X C R" is the state and f(x,t) is a continuously
differentiable function. Following the theoretical framework
in [21], the system (3) is said to be contracting if for any
two trajectories x1(t) and xo(t) of (3), starting from two
different initial states z1(0) # xz2(0) € X, there exist
positive constants ¢ and «, such that

1 (t) — 22(t)|| < ce™*||z1(0) — 22(0)||, VE>0. (4)

This contraction property can be established via the varia-
tional system of (3) given by

_of
- Oz
where dx denotes the variational state.

Lemma 2.1 (Lohmiller and Slotine in [21]): If the varia-
tional system (5) is uniformly stable in X, then (3) is
contracting.

ox (x,t)0x )



E. Problem formulation

In this paper, we consider a multi-agent system and a static
landmark. In particular, for each agent A;, withi =1,... n,
its dynamics is given by

X

where p;,u; € R? denote the position of the agent 7 and its
the velocity input, respectively, I* € R? is the true position of
a static landmark (which is unknown to the agent) and y; €
R, is the available local measurement of relative distance
between the agent ¢ and the landmark. We define the relative
position vector between A; and the landmark by

Di = Uy

. (6)
yi = 1" = pill

cos 0; }
sin 6;

(7

where 0; € R is the true relative bearing. By definition, 6;
is given by

pii=pi— 1 =y

S [IF = pi)a
(I —pih
where [.]; and [.]o denote the first and second components
of a 2D vector, respectively.
In addition, we denote z;, € R? and e;, € R to represent
the relative position vector and the distance error for the edge
Er = (i,7), and they are defined by

where dj, € R is the desired distance between agent 7 and
agent j of the edge &. Additionally, the stacked vector of
the relative positions can be compactly written as

z=DB"p.

0; = tan (3

k. = Pi —Dj
ex = |z — d3

©))

As given in the Introduction, there are two design prob-
lems that are simultaneously treated in this paper. Firstly,
we design an estimator to reconstruct the relative bearing
between each agent ¢ and a static landmark. Secondly, we
develop a control law which allows the agents to maintain
a distance-based rigid formation shape using the estimates
obtained from the above observers. The main advantage of
our method is that it only requires range measurements,
therefore eliminating the need to deploy bearing sensors,
which are used in many current studies [2], [19], [22].

Distributed Range-Only Formation Control with Bear-
ing Estimation Problem:

Q1.

For each agent i, design a distributed estimator

01‘ - fi(eia yi7ui)a
with continuously differentiable function f; such
that the bearing estimation error ef = 0, — 6;
converges to zero as t — oo.

For an infinitesimally rigid framework (G,p),

VieV (10)

Q2.

linked to agents with bearing estimator
(10),  design a_ distributed control  law
U; = Z(i,j):é‘k ki(ei, Hj,yi, dk) for all z € V such

that e, — 0 as t — oo for all & € &.
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III. RELATIVE BEARING ESTIMATOR FOR EACH AGENT

In this section, we present the design of the distributed
bearing estimator for each agent that addresses Q1. Since
the convergence of the observer to a single landmark is
independent for each agent, we present our first result for the
single agent case. Subsequently, we will use this distributed
bearing estimator in the context of distributed formation
control.

Firstly, with v we denote a unit vector that gives the
direction from the agent to the static landmark and with o
its estimation, where the estimated relative angle is 6. Let w
be a unit vector orthogonal to v, i.e.

_ |cosB| | siné
U7 lsing|t YT | = cost

As before, w denotes the estimation of w where 0 replaces 6.
As in QI, the estimated angle error is defined as e =0-0.
Using these notations, the proposed relative bearing estimator
is given by

(1)

b= <“y“> +ysign({u, &) (5 — §)

| (12)
:() = - <u7ﬁ>

where v and w are as in (11), «y is a positive estimator gain
and y is the rate of change of distance.

A. Contraction analysis

Proposition 3.1: Suppose that v and @ are such that there
exists ¢ € (0, 1) satisfying || (u, @) || > ¢||ul|. If the estimator
gain v > _- then (12) is contracting.

PROOF. Since the sign function is non-differentiable, the
proof concerns two cases. We first analyse the case when
sign({u,@)) = 1 and thus (u,@) > c|lul|. The variational
system of (12) is given by

50 = <<“y”> _y <u,a>> 50.

of
20

13)

of

Since == is a scalar, in order to apply Lemma 2.1, we need

to verify that % < 0. Following (13), this implies that we
- Since — [|ul| < (u, 0) < [|ul],

(u,d)
y{u,@)

need to verify that v >
we conclude that

(14)

so that % < 0. Hence by Lemma 2.1, the estimator (12) is
contracting.

Analogously, for the case where sign({u,®)) = —1, i.e.
(u,w) < —cl|ul|, (13) becomes
5 <U,’LA)> ~ n
00 = T+7<u,w> 06 (15)



Following the same reasoning as above, we can derive that
that 8{; < 0 is ensured as long as the observer gain -y satisfies

the following inequality

1 A
ys Lol o (w9 (16)

cy — y(ww) — yuw)
This concludes the proof. (]

B. Convergence analysis

In this subsection, we presents an analysis concerning the
conditions under which the contractivity of the estimator (12)
implies that the estimated angle error landmark position {(t)
converges to the true position [* as ¢ — co. We separate the
analysis into two different cases: curved motion and straight
motion of the mobile agent.

Proposition 3.2: Assume that the hypotheses in Proposi-
tion 3.1 hold for certain ¢,y > 0 so that (12) is contracting.
If the agent is not moving on a straight trajectory, then the
estimated landmark position [ converges to the true landmark
position I* as t — oo, i.e. e?(t) — 0.

PROOF. According to the construction of the estimator, one
of the admissible trajectories of (12) is the case when e = 0.
In this case, the corresponding steady-state trajectory 6 (t)
satisfies

sin 0, (t)
i = [Zl(t) zd) a7)
§(t) = (u(®), [0 ])

which is invariant, i.e. lss(t) [*. By the contraction
property of (12), all trajectories converge exponentially to
each other, i.e. 6(t) — 6s5(t) as t — oo when the initial
error €?(0) # 0.

In the following, we will prove by contradiction that the
steady-state trajectory 0, (¢) is unique when the mobile agent
is not moving on a straight trajectory. Let 0% (t) # 6ss(t)
be another steady-state trajectory satisfying (17) and the
trajectory 6’ (t) corresponds to another static landmark [**.
Since the error is zero for both trajectories, this implies that

i) = (u®). [0 ) = (u [ ) as)

sin 9;5 (t)
In other words,
} _ [ (19)

(uon | |)=0

Based on the relationship between the landmark position and
the distance measurement, we could obtain

cos 044 (t)
sin 044(t)

cos 07 (t)

cos 044 (t)
sin 044(t)

cos 0’ (t)
sin 07 (t)

* cos 05 (t)
F=y) [ ]+ o) o0
*% 3924
e =y(t) [Searrtn ] + e
According to (19) and (20), we have
(w(),l* =1")y=0 21

If 07 (t) # 0s5(t), it is obvious that I* # [**. Therefore, (21)
is satisfied only when u(t) is orthogonal to the vector I* —1**.
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In the 2D plane, this means that the estimated static landmark
position [* mirrors another possible static landmark position
I** with respect to the axis u(t). In our case, the mobile agent
is not moving on a straight line implying that the direction
of u(t) will change. Because [* is static, another possible
landmark position [** will change according to the mirror
relationship. This leads to a contradiction that [** is static.
Thus, we conclude that 6,4(t) is unique and corresponds to
I*, and [(t) converges to [*, i.e. €?(t) — 0 with ¢t — co. [J

Proposition 3.3: Assume that the hypotheses Proposition
3.1 hold for certain ¢,y > 0 so that (12) is contracting. If the
agent is moving on a straight trajectory, then the estimated
landmark position [ converges either to the true landmark
position [* or to another point [** (mirrored to [* with respect
to the axis collinear with u(t)) as t — oco.

PROOF. The proof of the proposition follows the same
reasoning as the proof of Proposition 3.3, where we conclude
that there are two distinct points [* and [**, that satisfy (21).
This means that the estimated static landmark position [*
mirrors another possible static landmark position [** with
respect to the axis u(t). If the agent is moving on a straight
trajectory, the axis of u(¢) remains unchanged, and we could
obtain the other static landmark position {** by the mirror
relationship.

Moreover, from geometrical considerations we can con-
clude that when I(t) converges to the other steady-state point
[**, then the estimated error converges to «(t) defined as

o(t) = 2 cos™! ( {u(t), 1" — p(t)) )

[0 = () I u@®)]]
IV. RANGE-ONLY FORMATION CONTROL WITH THE
RELATIVE BEARING ESTIMATOR

(22)

O

Equip with the proposed bearing estimator in (12), we
can solve Q2. Consider a multi-agent system with a static
landmark as in (6). The relative positions between neighbors,
the formation framework and distance errors are as discussed
in Section ILE.

Recall the definition of the relative position between agent
1 and the static landmark in (7). By assuming that all the local
coordinate frames are aligned with each other, the relative
position vector for the k-th edge can be given by

) ! 0. 0; 0!
= —p = [ — e [0 = el [0
(23)

where 92 denotes the angle of relative position vector for
the k-th edge. Therefore, by deploying (12) to reconstruct
the bearing information, the estimated states can be given
by

cos éi ]
sin é,

ﬁi:yi[

cos 0

(24)

J=ul

cos b; }

sin 6;

éllg:ﬁé‘*ﬁgj:yj[

= Jlall |

sin 6
ol
cos 0, :|
. Al
sin 6,



where p! denotes the estimated positions between each agent
and the landmark, while 2! is the relative position vector for
the edge k. It is obvious that when both 6; and éj converge
to 0; and ; respectively, then A% converges to 6L.

In general, the standard distance-based control law is
designed as follows

p=—BD.D:ze (25)

where e,2 € RI®l are the stacked vectors of e;’s and
|2 ]|™*’s respectively, for all k € 1,...,|&|. In our for-
mation control law with bearing estimator, we substitute z
with 2! so that the above law becomes

p=—BD.,D:se (26)

The dynamics of the distance error for the overall closed-
loop system can thus be derived as follows:
1 o
¢=——D:D!B"BD;D:ze (27)
m
Proposition 4.1: Consider the closed-loop system (27)
with graph G under the distributed control law (26). If the
agents do not move in a straight line and the formation in
the desired shape is infinitesimally and minimally rigid, then
the system is locally asymptotically stable.

PROOF. First, to simplify the analysis, let us rewrite (2) as
1 o
é¢=——D:D!B"BD;iD:se

m (23)

1 . 1
—EDZR(Z)R(Z) Dze + EP(z)Dgz,zDze

where R(2) = D] BT, P(2) = D:D] B"B and D;i_ is a
cos é;’cfcos 0;; i|

sin éfv—sin 19§c
According to [23], both the vector z and the matrix
R(2)R(2)7 can be rewritten as a smooth function of e and
it is positive-definite in the neighborhood of e = 0.

To prove local stability of the equilibrium point e = 0
of (27), we choose V = ;L lel|* as a Lyapunov function,
which satisfies

v
dt

diagonal matrix with diagonal elements ||z || {

—e"R(2)R(2) e +e"P(2)Ds_,Dze
~Amin lel® + Smax [P(2) 1Dzl llell®

(29)

IN

where || P(2)]|,, || Dz||, are smooth functions of e and 0max =
maX{szH\/(cos 0% —cos 01 )2+ (sin 6. —sin 0;)2}, representing the
maximum singular value of D;i_,. According to Proposition
3.1 and Proposition 3.2, #%, will converge to 6. exponentially
fast. Hence, Omax(t) — 0 exponentially fast as ¢ — oo.
Consequently, there exists a 7 > 0 such that when ¢ > 7
then dax < HP(Z)/\HW so that V(t) < 0 for all t > 7.
Therefore, we can conclude that the closed-loop system (27)
is locally asymptotically stable. ]

Remark 4.1: In most cases, the distributed formation con-
trol law will result in non-straight trajectories. The initial
conditions, where the agents’ motion in a formation control
is a linear one, correspond to the scaled version of the desired
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shape. Therefore, the assumption of agents not moving in a
straight line in Proposition 4.1 is a mild one.

Remark 4.2: In Proposition 4.1, we show the convergence
of the agents to the desired shape without having the con-
vergence of the bearing estimators to the real bearing. In
other words, it is possible that the bearing estimators reach
a steady-state when the desired formation has been reached.
This can also be seen from the foregoing stability analy-
sis, where when 0. < HHZ?\TW has been satisfied
because dyx has become sufficiently small, then we have
V(t) < 0 for the rest of the time. This result shows that the
convergence of the bearing estimator to the real bearing mea-
surement for each agent is not necessary for the multi-agent
system to converge to the desired formation. Furthermore,
according to Proposition 3.1, the convergence of the bearing
estimators can be guaranteed through group maneuvers once
the desired formation shape has been achieved.

V. NUMERICAL SIMULATIONS

A. Simulation setup

For the simulation setup, we consider an infinitesimally
and minimally formation of three agents with incidence ma-
0 —

trix B given by B = {—0 110 } The three agents and the
static landmark are initialized at p1(0) = [ 1433 ], p2(0) =
[ 3k ,p3(0) = [158],0* = [4&]. Additionally, the

estimated angles between each agent and the static landmark

are initialized as < 01(0) = g,ég(o) = g—g,ég,(o) = %} For
the desired formation shape, the desired distance set for
the three edges is set as {d; = 10,dy = 10,d3 = 10}.
The numerical simulations were conducted using MATLAB
2023a.

B. Simulation results

Let us denote ey = ||z [> — d3 as the distance error for
k-th edge where k € {1,2,3}, and denote ¢/ = éﬁ — 0!
as the estimated angular error between i-th agent and the
landmark, with ¢ € {1, 2, 3}. Figure 1 shows the trajectories
of the three agents under the proposed distributed control
law, the true landmark position, and the estimated positions
of the landmark for each agent. In the figure, the agents
are able to maintain the desired triangular shape, while
estimating the real position of the landmark. The distance
errors of the edges and the estimated angle errors for each
agent are presented in Figure 2 and 3, respectively. Figure 2
illustrates that all distance errors converge to zero. According
to Figure 3, the estimated angle errors are bounded reflecting
the convergence property emphasized in Remark 4.2.

VI. CONCLUSION

In this paper, we have proposed a range-only distributed
formation control law for a multi-agent system. To ob-
tain accurate relative bearing estimates for each agent, a
continuous-time bearing estimator has been designed. By
applying results from contraction theory, we establish the
exponential convergence of the proposed observer. In ad-
dition, the asymptotic stability analysis for the closed-loop



y(m)

25 30 35
(m)

Fig. 1: Trajectories and estimated positions of the landmark for the three

agents with the distributed control law; (m,

, =) = (agentl, agent2,

agent3), X represents the real position of the landmark and o the estimated
positions of the landmark by the agents.

Distance error [m]

10
time 5

20

Fig. 2: Distance error trajectories e (t) for each edge k of the multi-agent
formation.

multi-agent system is presented, ensuring that the agents are
able to achieve the desired rigid formation shape. Numerical
simulation are carried out to validate our theoretical results.

[1]

[2]
[3]

[6]

[7]

REFERENCES

J. Alonso-Mora, S. Baker, and D. Rus, “Multi-robot formation control
and object transport in dynamic environments via constrained opti-
mization,” The International Journal of Robotics Research, vol. 36,
no. 9, pp. 1000-1021, 2017.

K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424-440, 2015.

L. Chen and Z. Sun, “Gradient-based bearing-only formation control:
An elevation angle approach,” Automatica, vol. 141, p. 110310, 2022.
L. Chen, K. Cao, L. Xie, X. Li, and M. Feroskhan, “3-d network
localization using angle measurements and reduced communication,”
IEEE Transactions on Signal Processing, vol. 70, pp. 2402-2415,
2022.

S. Zhao and D. Zelazo, “Bearing rigidity and almost global bearing-
only formation stabilization,” IEEE Transactions on Automatic Con-
trol, vol. 61, no. 5, pp. 1255-1268, 2015.

M. H. Trinh, S. Zhao, Z. Sun, D. Zelazo, B. D. Anderson, and
H.-S. Ahn, “Bearing-based formation control of a group of agents
with leader-first follower structure,” IEEE Transactions on Automatic
Control, vol. 64, no. 2, pp. 598-613, 2018.

N. P. Chan, B. Jayawardhana, and H. G. de Marina, “Stability analysis
of gradient-based distributed formation control with heterogeneous
sensing mechanism: the three robot case,” IEEE Transactions on
Automatic Control, vol. 67, no. 8, pp. 4285-4292, 2021.

L. Chen, M. Cao, and C. Li, “Angle rigidity and its usage to stabi-
lize multiagent formations in 2-d,” IEEE Transactions on Automatic
Control, vol. 66, no. 8, pp. 3667-3681, 2020.

75

Fig. 3: Estimation angle error trajectories e

25

o

AL
IS

Angle error [deg]

-0.5

10
time 5

20

0

i

(t) of the relative bearing

between each agent 4 and the static landmark.

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

L. Chen and Z. Sun, “Globally stabilizing triangularly angle rigid
formations,” IEEE Transactions on Automatic Control, vol. 68, no. 2,
pp. 1169-1175, 2022.

N. P. Chan, B. Jayawardhana, and H. G. de Marina, “Angle-constrained
formation control for circular mobile robots,” IEEE Control Systems
Letters, vol. 5, no. 1, pp. 109-114, 2020.

M. Cao, C. Yu, and B. D. Anderson, “Formation control using range-
only measurements,” Automatica, vol. 47, no. 4, pp. 776-781, 2011.
B. D. Anderson and C. Yu, “Range-only sensing for formation shape
control and easy sensor network localization,” in 2011 Chinese Control
and Decision Conference (CCDC). IEEE, 2011, pp. 3310-3315.

K. Cao, M. Cao, and L. Xie, “Similar formation control via range and
odometry measurements,” IEEE Transactions on Cybernetics, vol. 54,
no. 6, pp. 3765-3776, 2023.

O. Granichin, V. Erofeeva, Y. Ivanskiy, and Y. Jiang, “Simultaneous
perturbation stochastic approximation-based consensus for tracking
under unknown-but-bounded disturbances,” IEEE Transactions on
Automatic Control, vol. 66, no. 8, pp. 3710-3717, 2020.

M. Marcantoni, B. Jayawardhana, and K. Bunte, “Range-only bearing
estimator for localization and mapping,” IEEE Control Systems Letters,
vol. 7, pp. 2503-2508, 2023.

L. Krick, M. E. Broucke, and B. A. Francis, “Stabilisation of infinitesi-
mally rigid formations of multi-robot networks,” International Journal
of control, vol. 82, no. 3, pp. 423—439, 2009.

B. D. Anderson, C. Yu, B. Fidan, and J. M. Hendrickx, “Rigid
graph control architectures for autonomous formations,” IEEE Control
Systems Magazine, vol. 28, no. 6, pp. 48-63, 2008.

H. G. De Marina, B. Jayawardhana, and M. Cao, “Distributed ro-
tational and translational maneuvering of rigid formations and their
applications,” IEEE Transactions on Robotics, vol. 32, no. 3, pp. 684—
697, 2016.

Z. Sun, S. Mou, B. D. Anderson, and M. Cao, “Exponential stability
for formation control systems with generalized controllers: A unified
approach,” Systems & Control Letters, vol. 93, pp. 50-57, 2016.

R. Rosa and B. Jayawardhana, “Distributed adaptive formation control
for uncertain point mass agents with mixed dimensional space,” IEEE
Control Systems Letters, vol. 7, pp. 2725-2730, 2023.

W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-
linear systems,” Automatica, vol. 34, no. 6, pp. 683-696, 1998.

F. Mehdifar, C. P. Bechlioulis, F. Hashemzadeh, and M. Baradarannia,
“Prescribed performance distance-based formation control of multi-
agent systems,” Automatica, vol. 119, p. 109086, 2020.

U. Helmke, S. Mou, Z. Sun, and B. D. Anderson, “Geometrical
methods for mismatched formation control,” in 53rd IEEE Conference
on Decision and Control. 1EEE, 2014, pp. 1341-1346.



