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Abstract— The paper considers the problem of the state-
feedback adaptive control of a class of discrete linear time-
varying plant with multisinusoidal parameters. The plant is rep-
resentable in the strict-feedback form, in which the parameters
are on the main diagonal of the state matrix. The amplitudes,
frequencies, and the phases of the multisinusoids are not
known a priori, however the maximum numbers of sinusoids
(harmonics) in each parameter are available. The problem is
solved by design of periodic parameters observers recovering
the parameters dynamics, the plant parameterization, and
developing a discrete-time adaptive backstepping controller.
In order to tune the controller parameters and improve the
closed-loop transient performance, an adaptation algorithm
with memory regressor extension is applied. The main results
of the paper are demonstrated by simulation.

I. INTRODUCTION

The extension of the adaptive control theory to systems
with time-varying (TV) parameters is highly challenging and
may require nontrivial solutions. At the same time, successful
results obtained for uncertain TV systems make it possible
to cover a wider class of control systems in various practical
applications. In order to compensate the deteriorating effect
of variations of uncertain parameters, it is necessary to use
some prior information about these variations. If it is just
assumed that the uncertain TV parameters are arbitrary but
bounded, then robust modifications (e.g., with switching
leakage factor or projection) of adaptation algorithms [1],
[2], [3], [4, Section 4.1] can be applied to tune the controller
parameters. In this case, due to the lack of information about
parameters variations, such solutions do not allow to draw
control errors to zero. If the uncertain TV parameters are not
arbitrary but assumed to be multisinusoidal [5], [6], [7], [8]
or polynomial functions of time [9], [10], then the effect
of parameters variations can be completely compensated
by representing the TV parameters as the outputs of the
exosystems and then by suitable integrating the structure,
variable, and the parameters (or their estimates) of these
models into the structure of controller.

Motivated by numerous practical applications [5], [11],
[12], [13], in this paper we consider the problem of adaptive
control for a class of discrete linear time-varying (LTV)
systems with uncertain multisinusoidal parameters. One
of the widely used models with periodic coefficients de-
scribing electrical, mechanical (including vibromechanical),

*This work was supported by Project 2019-0898.
1Faculty of Control Systems and Robotics, ITMO University,

Saint Petersburg, Russia dngerasimov@itmo.ru,
hiennd@itmo.ru, nikiforov vo@itmo.ru

hydrodynamical systems, systems with frequency modula-
tion and many others can be represented by the forced
Hill’s/Mathieu’s equation (see [11], [13], [14], [12], [15])

y(k) + (α+ βψ(k))y(k − 1) + y(k − 2) = u(k) (1)

with the periodic sequence ψ(k) and constants α and β.
Assuming that ψ(k) is representable in the form of truncated

Fourier series ψ(k) =
N∑
i=1

ai sin(ωi + ϕi), while y(k) and

y(k − 1) are measurable, this model belongs to the class of
models considered in this paper.

As the literature survey shows (see [5], [6], [12], [16],
[17]), the majority of approaches developed mostly for
continuous-time case accepts the assumption about unknown
amplitudes and phases but known frequencies of the periodic
parameters or at least some prior information about the
values of these frequencies. In this paper, we relax this
assumption by developing TV parameters observers allowing
to recover all information about parameters variations.

The paper considers the class of LTV systems repre-
sentable in the discrete strict-feedback form, therefore for de-
sign of adaptive controller we develop a scheme of discrete-
time backstepping procedure inspired by continuous case that
was recently presented in [18] and by the pioneering work
[19]. Apart from this, the discrete-time backstepping is a
powerful tool in many practical applications [20], [21], [22].

Following to [18], in order to improve transient perfor-
mance of the closed-loop systems we include the predicted
values of the adjustable controller parameters ϑ̂(k + i)
generated by the adaptation algorithm with memory regressor
extension (MRE) [23]. As shown in [23], the effect of MRE
allows us to accelerate the controller parameters tuning and,
as a result, to provide rapid tracking error convergence.

Thus, the contribution of the paper consists in design
of direct adaptive control for a class of discrete-time LTV
systems representable in the strict-feedback form with the
following distinguishing features:

• to cope with uncertain amplitudes, phase, and frequen-
cies of harmonics of the multisinusoidal TV parameters,
we propose observers that enable parameterization of
the plant and further application of the certainty equiv-
alent adaptive control;

• using the parameterized plant, a new iterative procedure
of discrete-time adaptive backstepping is proposed;

• discrete-time adaptation algorithm with MRE is in-
troduced to improve the transient performance of the
closed-loop system and calculate the predicted values of
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the adjustable parameters necessary for implementation
of the backstepping controller.

The proposed solution is motivated by adaptive controller
recently presented for continuous-time system in [24]. How-
ever, as the experience of analytical computations showed,
the discrete solution is quite different from the continuous
one especially at the backstepping stage.

Notations: R (Rn or Rn×n) is the space of real numbers
(n-dimensional vectors or n×n-dimensional matrices); R+ is
the space of real positive numbers; N is the space of natural
numbers including zero; I is an identity matrix; diag{xi} is
the diagonal matrix; |x| is Euclidean norm of a vector x;
||x||∞ is the infinity norm of a vector x; k ∈ N is discrete-
time step; z is the shift forward operator.

II. PROBLEM STATEMENT

Consider a discrete-time scalar system given by

xi(k + 1) = ψi(k)xi(k) + xi+1(k), (2)
xn(k + 1) = ψn(k)xn(k) + u(k), (3)
y(k) = x1(k), (4)

where i = 1, 2, . . . , n−1, xj ∈ R (j = 1, 2, . . . , n) are the el-
ements of the state measurable vector x = [x1, x2, . . . , xn]

⊤

with the initial condition xj(0); y ∈ R is the plant output,
u ∈ R is the control signal, ψj(k) are the unknown
parameters given by the functions

ψj(k) =

Nj∑
i=1

aj,i sin(ωj,ikT + φj,i), (5)

with a priori unknown constant amplitudes aj,i, phases φj,i,
and frequencies ωj,i of harmonics, however known discrete
time interval T and maximum numbers of harmonics Nj

1.
We make the following assumptions regarding the plant.
Assumption 1: The parameters ψj(k) are the outputs of

the exosystems

zj(k + 1) = Γjzj(k), zj(0), (6)

ψj(k) = h⊤j zj(k), (7)

where zj ∈ Rmj are the inaccessible for measurement states
of the exosystems, Γj ∈ Rmj×mj are the unknown matrices,
hj ∈ Rmj are the unknown vectors. ■

The objective is to design a control law that will provide
the boundedness of all the closed-loop signals and:
O1. if for all i = 1, 2, . . . , n, some N0 ∈ N and for all

k ≥ N0, the inequalities |xi(k)| ≥ x0i hold, where
x0i ∈ R+ are the selected thresholds, then

lim
k→∞

ε(k) = lim
k→∞

(ym(k)− y(k)) = 0. (8)

where ym(k) is a bounded reference signal with known
next step n values;

O2. otherwise

lim
k→∞

|ε(k)| ≤ ∆, (9)

1Hereafter, we will omit the dependence from k for the sake of brevity
and if is not in contrary to the context.

where ∆ ∈ R+ is a maximum steady-state error, the
value of which can be reduced by changing design
parameters. ■

III. PERIODIC PARAMETERS OBSERVERS

To overcome the obstacle of uncertain LTV parameters,
we represent the exosystems (6) in the canonical form (see
continuous-time representation in [25, Chapter 2])

ξj(k + 1) = Gjξj(k) + ljψj(k), (10)

ψj(k) = θ⊤j ξj(k) (11)

with the states ξj ∈ Rmj , some initial conditions ξj(0), mj×
mj Hurwitz matrices

Gj =

[
O(mj−1)×1 I(mj−1)

0 O1×(mj−1)

]
mj-dimensional vectors lj = [0, 0, . . . , 0, 1]⊤ selected so
that the pairs (Gj , lj) are controllable, and the vectors of
unknown parameters θj ∈ Rmj dependent from the unknown
frequencies ωj,i (i = 1, 2, . . . , Nj).

Replacing (11) in (10), we obtain the autonomous form of
exosystem

ξj(k + 1) = Gjξj(k), (12)

where Gi = Gi + liθ
⊤
i . It can be shown that the form (12),

(11), is equivalent to the form (6), (7).
Using the results presented in [24] for continuous-time

systems, in a similar way we obtain the TV parameters
observers given by

ξ̂i(k) = ζi(k) +Ni(k − 1)xi(k), (13)
ζi(k + 1) = Giζi(k) +GiNi(k − 1)xi(k) (14)

−Ni(k)xi+1(k), i = 1, 2, . . . , n− 1,

ξ̂n(k) = ζn(k) +Nn(k − 1)xn(k), (15)
ζn(k + 1) = Gnζn(k) +GnNn(k − 1)xn(k) (16)

−Nn(k)u(k),

where ξ̂j is the estimate of ξj , j = 1, 2, . . . , n,

Nj(k) = Nj(xj(k), σj(k)) = lj
xj(k)

x2j (k) + σ2
j (k)

(17)

are the nonlinear functions with σj given by

σj(k) =

{
0 if |xj(k)| ≥ x0j ,

σ0j otherwise,
(18)

x0j , σ0j > 0 are some constant design parameters.
The observers have the following properties.
Lemma 1: The observers (13)–(16) generate the estimates

ξ̂j(k) that for any initial conditions ξj(0), ζj(0)

ϵj(k) ≜ ξj(k)− ξ̂j(t) = Gk
j ϵj(0) (19)

+ (zI −Gj)
−1
li

[
σ2
j (k)

x2j (k) + σ2
j (k)

ψj(k)

]
.

The norms ||ϵj(k)||∞ are bounded and can be reduced by
reduction of the corresponding gains σ0j and/or x0j . ■
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The lemma is proved by calculation of the next step values
ϵj(k + 1) in view of (19), (10), (13)-(18), and (2)-(4).

In order to design a control law, we will need to get the
predicted values of a regressor containing the vectors ξ̂i. To
this end, we formulate the following corollary of Lemma 1.

Corollary 1: The estimates ξ̂j(k) (j = 1, 2, . . . , n) can be
represented in the form

ξ̂j(k) = G
n−1

j ξ̂j(k − n+ 1) + ϵj(k), (20)

where ϵj(k) = G
n−1

j ϵj(k−n+1)−ϵj(k), Gi are the matrices
defined in (12). ■

Applying the result of Lemma 1 and Corollary 1 and
introducing new notations

ϑ = [θ⊤1 G
n−1

1 , θ⊤2 G
n−1

2 , . . . , θ⊤nG
n−1

n ]⊤ ∈ R
n∑

i=1
mi

,

ϖi = [O⊤
m1
, . . . , O⊤

mi−1
, ξ̂⊤i (k − n+ 1), O⊤

mi+1
, . . . , O⊤

mn
]⊤,

we represent the TV plant parameters in the form

ψi(k) = ϑ⊤ϖi(k) + ϵ̂i(k)

with ϵ̂i = θ⊤i (ϵ̄i + ϵi).
As a result, the plant (2)–(4) can be parameterized in the

form
xi(k + 1) = ϑ⊤ϖi(k)xi + ϵ̂i(k)xi + xi+1,

xn(k + 1) = ϑ⊤ϖn(k)xn + ϵ̂n(k)xn + u,

y = x1,

(21)

where i = 1, 2, . . . , n− 1.
Using the form (21), in the next section we propose the

adaptive controller.

IV. CONTROL LAW

As it is seen from the structure of (21), the uncertainties
collected in the vector ϑ are not matched with the control
signal u and cannot be compensated directly. To overcome
this problem, we apply an iterative procedure of adaptive
backstepping. To this end, we introduce the errors z1 = ym−
y = ym − x1, zi = αi−1 − xi (i = 2, 3, . . . , n), where α1,
α2,...,αn−1 are the virtual control laws given by

α1 = −c1z1(k)− x1(k)ϖ
⊤
1 (k)ϑ̂(k) + ym(k + 1), (22)

αi = −cizi(k) (23)

+

i−1∑
j=1

∂αi−1

∂xj
(k + 1)xj(k)ϖ

⊤
j (k)− xi(k)ϖ

⊤
i (k)

 ϑ̂(k)

+

i−1∑
j=1

∂αi−1

∂xj
(k + 1)xj+1(k)+

+

i−2∑
j=0

∂αi−1

∂ym(k + j)
(k)ym(k + j + 1) + ym(k + n),

where i = 2, 3, . . . , n−1, cj : |cj | < 1 (i = 1, 2, . . . , n−1)

are constant design parameters, ϑ̂ ∈ R
n∑

i=1
mi

is the vector of
adjustable parameters corresponding to the vector ϑ.

The procedure is finished by design of the actual control

u(k) = αn(k), (24)

where αn is calculated using (23) with i = n.
Remark 1: Here and hereafter, the partial derivatives

∂αi−1

∂xj
and ∂αi−1

∂ym(k+j) are used only for compact represen-
tation of the resulting control law. This representation is
admissible due to the linear dependence of the virtual control
laws from the variables xj and ym(k + j). ■

Remark 2: The control law (22)–(24) depends on the
predicted values ϖj(k + i) that are implementable and the
predicted adjustable parameters ϑ̂(k+ i) (i = 1, 2, . . . , n−1,
j = 1, 2, . . . , n) that are not measurable, however can be
recovered by the adaptation algorithm proposed below. ■

Lemma 2: The error model for the closed-loop system
consisting of the parameterized plant (21) and the control
law (22)–(24) can be represented as

z(k + 1) = Az(k) +B(k)ϑ̃(k) +D(k)Ez(k)x(k), (25)

where Ez(k) = diag{ϵ̂i(k)} (i = 1, 2 . . . , n),

A =



c1 1 · · · 0 0

0 c2
. . . 0 0

...
. . . . . . . . .

...

0 0
. . . cn−1 1

0 0 · · · 0 cn


,

D(k) =


−1 0 · · · 0 0
α1
1(k) −1 · · · 0 0
...

. . . . . . . . .
...

αn−1
1 (k) αn−1

2 (k) · · · αn−1
n−1(k) −1

 ,
B(k) = D(k)X(k)W (k),

W (k) = [ ϖ1(k)
... ϖ2(k)

... · · ·
... ϖn(k) ]⊤,

αi
j(k) =

∂αi

∂xj
(k + 1), X = diag{xi}. ■

In (25), D(k) = D(ϑ̂(k), . . . , ϑ̂(k + n −
1), ϖ1(k), . . . , ϖ1(k + n − 1), ϖ2(k), . . . , ϖ2(k + n −
2), . . . , ϖn−1(k), ϖn−1(k + 1), ϖn(k)).

The lemma can be proved by evaluation of the next step
values z1(k + 1) = ym(k + 1) − y(k + 1), zi(k + 1) =
αi−1(k + 1)− xi(k + 1) in view of (21) and (22)–(24).

By the following lemma we demonstrate the crucial prop-
erty input-to-state stability (ISS) of the model (25).

Lemma 3 (the ISS property): Let B(k)ϑ̃(k) be consid-
ered as the input of the model (25), while z is its state.
Then the model (25) is ISS. ■

Proof: Taking into account the linear dependence of
αi (i = 1, 2, . . . , n − 1) from xj (j = 1, 2, . . . , i), from
definitions of z1, zi we have

z(k) = K(k)x(k)− x(k) + ȳm(k) (26)

where ȳm(k) = ȳm(ym(k), ym(k + 1), . . . , ym(k + n)),
K(k) = K(ϑ̂(k), . . . , ϑ̂(k + n − 1), ϖ1(k), . . . , ϖ1(k +
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n− 1), ϖ2(k), . . . , ϖ2(k+ n− 2), . . . , ϖn−1(k), ϖn−1(k+
1), ϖn(k)) is n× n matrix defined as

K(k) =


0 0 . . . 0 0

k2,1(k) 0 . . . 0 0
k3,1(k) k3,2(k) . . . 0 0

...
. . . . . . . . .

...
kn,1(k) kn,2(k) . . . kn,n−1(k) 0

 .
The functions ȳm(k), K(k) are bounded by definition.

Proceeding with (26), we have

z(k) = (K(k)− I)x(k) + ȳm(k).

As a result, (25) is representable in the form

z(k + 1) = Ā(k)z(k) +B(k)ϑ̃ (27)

−D(k)Ez(k)(K(k)− I)−1ȳm(k),

in which Ā(k) =
(
A−D(k)Ez(k)(K(k)− I)−1

)
, while

the inverse matrix (K(k) − I)−1 exists for any k ∈ N
(det(I −K(k)) = (−1)n ̸= 0).

Since all the elements of Ez(k) = diag{ϵ̂i(k)} are
inverse proportional to the corresponding squares x2i (k) (see
Lemma 1 and the definitions of ϵ̂i(k) and ϵ̄i(k)), then
D(k)Ez(k)(K(k)− I)−1ȳm(k) is bounded and

lim
|x|→∞

Ā(x, k) = lim
|z|→∞

Ā((K(k)−I)−1(z−ȳm(k)), k) = A.

As a result, there exists such sufficiently large value of
||z(k)||∞ <∞ that the system (27) is asymptotically stable
due to stability of the matrix A. This completes the proof.

Remark 3: As seen from the proof of Lemma 3, in the
considered discrete-time case the role of nonlinear damping
terms (see [26]) are played by nonlinear functions ϵj(k)
given by (19) and suitably involved into the matrix function
Ez(k) in (25). ■

V. ADAPTATION ALGORITHM

To generate the vector of adjustable parameters ϑ̂(k) and
its predicted estimates ϑ̂(k+ 1), ϑ̂(k+ 2), . . . , ϑ̂(k+ n− 1)
and then achieve the objective (8), (9), we need to represent
the model (25) in a static form. To this end, we formulate
the swapping lemma.

Lemma 4: Let us introduce the swapping filters

ζz(k + 1) = Aζz(k) +B(k)ϑ̂(k), (28)
Z(k + 1) = AZ(k) +B(k) (29)

and the augmented error

z̄(k) = z(k) + ζz(k). (30)

Then the vector z̄ can be represented as the output of the
static error model

z̄(k) = Z(k)ϑ+ ϵ̄z(k), (31)

where ϵ̄z is the vector function satisfying the equation

ϵ̄z(k + 1) = Aϵ̄z(k) +D(k)Ez(k)x(k) (32)

with the initial condition ϵ̄z(0) = z(0) + ζz(0)− Z(0)ϑ. ■
The lemma is proved by evaluation of the next step value

ϵ̄z(k + 1) = z(k + 1) + ζz(k + 1) − Z(k + 1)ϑ in view of
(25), (28), and (29).

Corollary 2: If the conditions of the problem objective
O1 hold, then the term ϵ̄z(k) exponentially tends to zero as
k → ∞. Otherwise, it is bounded for any k ≥ 0. ■

The corollary is followed from (32), definitions of ϵi and
ϵ̂i, and expressions (18), (19).

To design an adaptation algorithm generating ϑ̂(k) to-
gether with ϑ̂(k+1), ϑ̂(k+2), . . . , ϑ̂(k+n−1), we use the
result presented in [23] and modified for discrete systems.
To obtain the algorithm, we left-multipy (31) by Z⊤. Then
we introduce an asymptotically stable transfer function

L(z) :=

n−1∏
i=1

1− di
z − di

(33)

so that ||L(z)||∞ < 1, where 0 ≤ di < 1 are the function
poles, and applying it to the regression (31) obtain the
memory extended regression model 2

Y (k) = Ω(k)ϑ+ ϵL(k) (34)

with the memory extended output Y = L(z)
[
Z⊤z̄

]
, the

memory extended regressor matrix Ω = L(z)
[
Z⊤Z

]
, ϵL =

L(z)[Z⊤ϵ̄z]
3.

Extended regression (34) allows us to apply robust adap-
tation algorithm with memory regressor extension 4

ϑ̂(k + 1) = (1− σ̄(k))ϑ̂(k) + γR−1(k)Ω(k)E(k), (35)

where E := Y − Ωϑ̂ = Ωϑ̃ + ϵL is the memory extended
error, γ ∈ (0, 1) is the adaptation gain, σ̄(k) is the leakage
factor defined as

σ̄(k) = L(z)[σθ(ϑ̂(k))], (36)

σθ(ϑ̂) =

{
0 if |ϑ̂| < ϑ∗,

σθ0 if |ϑ̂| ≥ ϑ∗,
(37)

ϑ∗ ≥ 2|ϑ| is a large enough constant, R = ρIn + Ω2 is
the normalization matrix, ρ ∈ R+ is some small constant,
σθ0 ∈ [0, 12 (1− γ)) is a constant parameter.

Due to the choice of the transfer function L(z), we are
able to calculate the predicted values ϑ̂(k + l + 1) (l =
0, 1, . . . , n− 1) via the following recursive procedure:

ϑ̂(k + l + 1) = (1− σ̄(k + l))ϑ̂(k + l) (38)

+ γR−1(k + l)Ω(k + l)E(k + l),

2The term “memory regressor extension” was taken from [23], where the
improvement of the adaptation process was achieved by using past values
of the regressor that are collected by the filter L(z).

3If di = 0, the algorithm becomes (n − 1)-step-ahead predictor
considered in [27].

4Extended form of robust σ-modification of the gradient adaptation
algorithm that can be found, e.g. in [28], [29, Section 3.8]
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in which E(k + l) = Y (k + l)− Ω(k + l)ϑ̂(k + l),

σ̄(k + l) =
d(1)zl

d(z)
[σθ(ϑ̂(k))], R(k + l) = ρIn +Ω2(k + l),

Y (k + l) =
d(1)zl

d(z)

[
Z⊤(k)z̄(k)

]
,

Ω(k + l) =
d(1)zl

d(z)

[
Z⊤(k)Z(k)

]
.

After replacement of (34) in (35), we obtain the following
parametric error model:

ϑ̃(k + 1) = ϑ̃(k) + σ̄(k)ϑ̂(k)− γR−1(k)Ω(k)E(k). (39)

Now, formulate the main result of the paper.
Proposition 1: Under Assumption 1, The adjustable back-

stepping controller (22)–(24) together with the TV parame-
ters observers (13)–(16), the swapping filters (28), (29), the
augmented error (30), and the robust adaptation algorithm
with MRE (35)–(38) ensures the following properties of the
closed-loop system:

P1.1 the boundedness of all the signals in the system;
P1.2 control objective in accordance with (8) and (9). The

maximum steady-state error ∆ can be decreased by
decreasing max

j=1,2,...,n
{σ0j};

P1.3 if the conditions of the objective O1 are satisfied, and

Ω2(k) ⪰ λΩ(k)In (40)

holds for some positive function λΩ(k) /∈ L1
5, then

|ϑ̃(k)| approaches zero asymptotically as k → ∞;
P1.4 if the conditions of the objective O1 are satisfied, Z ∈

PE, then |ϑ̃(k)| converges to zero exponentially fast
as k → ∞, and the rate of this convergence can be
increased by increasing γ. □□□
Proof: Select the Lyapunov function candidate V (k) =

1
γ ϑ̃

⊤(k)ϑ̃(k) and calculate the difference ∆V = V (k+1)−
V (k) (omitting dependence on k) in view of (39) and (34):

∆V =
1

γ

(
ϑ̃⊤ϑ̃+ σ̄2ϑ̂⊤ϑ̂+ γ2E⊤ΩR−2ΩE + 2σ̄ϑ̃⊤ϑ̂

−2γE⊤R−1E + 2γϵL(k)R
−1(k)E − 2γσ̄ϑ̂⊤R−1ΩE

)
− 1

γ
ϑ̃⊤ϑ̃ = −E⊤R−1

(
In +

1

2γ
In −R−1Ω2

)
E

+ 2
σ̄

γ
ϑ̃⊤ϑ̂+ σ̄2

(
1

γ
+

1

1− γ

)
ϑ̂⊤ϑ̂

−
∣∣∣∣ σ̄√

1− γ
ϑ̂−

√
1− γR−1ΩE}

∣∣∣∣2
−

∣∣∣∣∣R− 1
2

(√(
2

2− γ

)
ϵL −

√(
2− γ

2

)
E

)∣∣∣∣∣
2

+
2

2− γ
ϵ⊤LR

−1ϵL ≤ − 1

2γ
E⊤R−1E + 2

σ̄

γ
|ϑ|
∣∣∣ϑ̂∣∣∣

+
σ̄

γ

(
σ̄

1− γ
− 2

) ∣∣∣ϑ̂∣∣∣2 + 2

2− γ
ϵ⊤LR

−1ϵL

5In the simplest case, λΩ represents the minimum eigenvalue of the
matrix Ω.

Since ||L(z)||∞ < 1, then σ̄(k) ≤ σθ0 and hence

∆V ≤ − 1

2γ
E⊤R−1E

+
σθ0
γ

∣∣∣ϑ̂∣∣∣ (2 |ϑ|+ ( σθ0
1− γ

− 2

) ∣∣∣ϑ̂∣∣∣)+
2

2− γ
ϵ⊤LR

−1ϵL.

For the case, when |ϑ̂| ≥ 2|ϑ|,
σθ0
γ

∣∣∣ϑ̂∣∣∣ (2 |ϑ|+ ( σθ0
1− γ

− 2

) ∣∣∣ϑ̂∣∣∣) ≤

σθ0
γ

(
1 +

(
σθ0
1− γ

− 2

)) ∣∣∣ϑ̂∣∣∣2 ≤ −σθ0
2γ

∣∣∣ϑ̂∣∣∣2
if 0 < γ < 1 and 0 < σθ0 ≤ 1

2 (1− γ).
Finally, we obtain

∆V ≤ − 1

2γ
E⊤R−1E − σθ0

2γ

∣∣∣ϑ̂∣∣∣2 + 2

2− γ
ϵ⊤LR

−1ϵL. (41)

Since ϵL(k) ∈ L∞ by definition and due to result of
Corollary 2, then ϑ̃(k) ∈ L∞, and E⊤(k)R−1(k)E(k)
tends to a residual set with the boundary defined by
4γ
2−γ ϵ

⊤
L (k)R

−1ϵL(k). Since R is strictly positive definite and
|ϵL| ∈ L∞ (due to the properties of the stable dynamic
systems (19), (29), due to the inputs of (19) that are inverse
proportional to x2j + σ2

j ), we have

0 < λRmin(k)|E(k)|2 ≤ 4γ

2− γ
ϵ⊤L (k)R

−1(k)ϵL(k)

≤ λRmax(k)|ϵL(k)|2,

where λRmin(k) and λRmax(k) is the minimum and maxi-
mum eigenvalue of R−1(k), respectively. Hence, |E(k)| ≤
r||ϵL(k)||∞, where r ∈ R+ is a constant. Following the
properties of linear discrete systems and taking into account
(29), the definition of B(k), the boundedness of ϑ̃(k),
ϖi(k), and ϵL(k), we prove the boundedness of Ω(k).
Therefore, following the result of Lemma 3, we have:
ε(k), z(k), x(k), u(k) ∈ L∞. Since the magnitude of ϵL(k)
can be decreased by decreasing the value max

j=1,2,...,n
{σ0j}, the

norms ||E(k)||∞ and ||ε||∞ are reduced by this value as well.
This completes the proof of Property P1.1 and Objective O2
and the inequality (9).

If the conditions of Objective O1 are satisfied, then
according to Corollary 2 ϵ̄z(k) → 0 exponentially fast as
k → ∞. As a result, |ϑ̂(k)| ≤ ϑ∗, σθ0 = 0, and σ̄(k) → 0
exponentially fast as k → ∞. In this case, from (41) it
follows that

∆V ≤ − 1

2γ
E⊤(k)R−1(k)E(k) +

2

2− γ
ϵ⊤L (k)R

−1(k)ϵL(k).

It follows from the later that E⊤(k)R−1(k)E(k) ∈ L2 and
E(k) → 0 as k → ∞ [27], [29]. As a result, ε(k) → 0 as
k → ∞ according to Objective O1 and the equality (8). This
completes the proof of Property P1.2.

The proofs of Properties P1.3 and P1.4 for the case of
Objective O1 can be found in [23] in the framework of
analysis of the error model

ϑ̃(k + 1) = ϑ̃(k)− γR−1(k)Ω(k)E(k)

or [25, Chapter 3] (for continuous-time case).
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Fig. 1. Transients in the system closed-loop by the adaptive backstepping
controller

VI. SIMULATION RESULTS

Consider the third order unstable plant (2)-(4)

x1(k + 1) = ψ1(k)x1(k) + x2(k),

x2(k + 1) = ψ2(k)x2(k) + x3(k),

x3(k + 1) = ψ3(k)x3(k) + u(k),

y(k) = x1(k)

with the initial condition x(0) = [−5, 0, 0]⊤ and the TV
parameters ψ1(k) = 0.1 sin(2kT + 1) + 1.2, ψ2(k) =
0.2 sin(3kT +2)+0.4, and ψ3(k) = 0.3 sin(4kT +3)+0.5
with a priori unknown amplitudes, phases, frequencies, and
the biases. The sample time T is set to 0.5s.

Problem is to design a control that drives the plant output
to the reference ym(k) = 3.0 + 1.0 sin(0.5kT ) with all the
closed-loop signals bounded.

To design the observers of the TV parameters ψ1(k),
ψ2(k), and ψ3(k), we select m1 = m2 = m3 = 3,

G1 = G2 = G3 =

0 1 0
0 0 1
0 0 0

 , l1 = l2 = l3 =

00
1

.
The initial conditions for the TV parameters observers (13)–
(18) are set to zero, while their design parameters are given
by x01 = x02 = x03 = 0.001, σ01 = σ02 = σ03 = 0.001.

For the backstepping procedure implemented in three
steps, in (23) we choose c1 = −0.1, c2 = c3 = 0.2.

For the robust adaptation algorithm with MRE (35)-(37),
we use: the first order filter L(z) = 1−d0

z+d0
with d0 = 0.7;

adaptation gain γ = 0.5; parameter ρ = 0.1; leakage factor
σθ0 = 0.01; threshold ϑ∗ = 10. The initial conditions ϑ̂(0)
of the algorithm are set to zero.

As shown by Fig.1, despite the instability of the plant and
the influence of uncertain sinusoidal parameters, the adaptive
controller provides the boundedness of y(k), u(k), ϑ̂(k) and
the convergence of the tracking error to zero.
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