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Maneuvering Control of Uncertain Nonlinear Systems: An Output
Regulation Viewpoint
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Abstract— Maneuvering control aims to drive the controlled
system to achieve a desired motion along a parameterized path,
where the path variable, a scalar, tunes additional dynamic
tasks. In this paper, we investigate the maneuvering control
problem of uncertain nonlinear systems from the perspec-
tive of output regulation. Initially, we demonstrate that the
maneuvering control problem can be transformed into an
output regulation problem. Then, we design a controller for
maneuvering control based on the internal model principle
and a neural predictor-based dynamic surface control method.
We prove that the resulting closed-loop system is input-to-
state stable. The effectiveness of proposed theoretical results
is verified via a simulation example.

I. INTRODUCTION

Controlling an object is an academic issue that is both
historical and novel [1]-[12]. In particular, tracking is an
important topic, which involves steering a controlled system
along a given trajectory, also known as trajectory tracking.
Trajectory tracking can achieve a desired spatial motion of
the controlled system at the geometric level, but it may be
incapable of handling some special constraints.

In many practical applications, based on the implemen-
tation of trajectory tracking, the controlled system may also
need to meet other conditions during the tracking process [1].
For example, an unmanned surface vehicle can be driven
to move along a predefined trajectory, but it needs to use
different velocities and accelerations in several legs. To
address similar issues, the concept of maneuvering control
was introduced [1], [2]. Maneuvering control includes two
tasks. The first one, called the geometric task, is to drive
the controlled system along a given parameterized path,
which is similar to the main idea of trajectory tracking. The
second one, called the dynamic task, is to drive a manually
defined path variable to achieve some desired performance
specifications via constructing an appropriate timing law. In
some existing results, maneuvering control is also known as
path maneuvering or path following.

Early research primarily focused on the mathematical
principles underpinning maneuvering control, as seen in [1]-
[3]. Subsequently, in recent years, maneuvering control has
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been applied in different fields, such as multi-agent systems
[4]-[6], unmanned surface vehicles [7]-[9], VTOL vehicles
[11], robots [10], and unmanned aerial vehicles [12]. Despite
the variety of communication strategies, formation tasks, and
controlled systems considered in these studies [1]-[12], they
share two common features. First, for the geometric task,
these methods [1]-[12] can implement the desired motion
using control strategies suitable for trajectory tracking, such
as backstepping or LMI-based control. Second, for the dy-
namic task, these existing methods [1]-[12] have designed
various forms of variable update laws to ensure the path and
path variable are smoothly updated.

Like maneuvering control, output regulation is a crucial
method that facilitates the output to converge more effec-
tively to the desired signal [13]-[15]. Output regulation also
enables the achievement of the dynamic task. When the path
updates smoothly, it can be regarded as a desired exogenous
signal generated by an exosystem. In [6], an output-feedback
consensus maneuvering controller is designed for strict-
feedback nonlinear systems, in which the parameterized
path is transformed into a linear dynamics representation.
However the controller in [6] has an LMI-based structure.

In light of the preceding observations, in this paper, we
consider the maneuvering control problem of a class of
uncertain nonlinear systems from an output regulation per-
spective. Distinct from the existing results on maneuvering
control, the main contributions of this paper are twofold.

o We demonstrate that the maneuvering control problem,
as discussed in [1]-[9], can be recast as a specific output
regulation problem. Adopting this perspective allows for
the application of the internal model principle in the
design of maneuvering control strategies. Furthermore,
we propose a general framework for designing such
controllers for uncertain nonlinear systems within the
viewpoint of output regulation.

o Within the proposed control framework, we demonstrate
the design of a nonlinear maneuvering controller using
a neural predictor-based dynamic surface control (DSC)
method and the internal model principle. The complex-
ity of this controller has not significantly increased.

II. NOTATION

A(-) and A(:): minimal and maximal eigenvalues of a
matrix respectively; A > 0: A is a positive definite matrix;
diag{-}: a diagonal matrix; I,,: m by m unitary matrix; O,,:
m by m zero matrix; R™: n-dimensional Euclidean Space;
R*: positive real scalar; f()(.): the Ith-order derivative of
f(-); ||| and [|-||z: Euclidean norm and the Frobenius norm
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respectively; L' f(-): the Ith-order Lie derivative of f(-); ®:
Kronecker product.

III. PROBLEM FORMULATION

In this section, a brief formulation about maneuvering
control is given. Consider an uncertain nonlinear system

Tp = Tpp1 + fro (Tn), k=1,..,n—1
Tp = u+ fn (Tn) (D
Yy=x

where x;, € R™ and x,, € R™ are state variables, k denotes
the index, u € R™ is the control input variable, y € R™
is the output variable, fi(7x) : R¥ — R™ and f,(Z,) :
R™"™ — R™ are unknown nonlinear smooth vector functions
with Zp = [z1, ..., %]t € R*™, 7, = [21, ..., )T € R™™.

In the maneuvering control problem, the controlled system
is designed to steer along a desired parameterized path y,-(6).
In a leader-following setup, y,-(f) can be seen as the virtual
leader. The scalar 6 denotes a path variable.

The control objectives of maneuvering control include
both a geometric task and a dynamic task. The mathematics
are expressed as follows:

o Geometric task is to drive the controlled system to
track the desired parameterized path as far as possible
i - <
Jim Jly— 5. (0)] <<, @
where £, € RT denotes a residual error.
o Dynamic task is to force the path variable 6 to satisfy
the additional objectives:
1. Time objective:
i — <
A [0(8) —ve(t)] < e 3)
where v;(t) € R* denotes a desired time signal and
€; € RT denotes a residual error. Eq. (3) means that
will converge to v, as far as possible.
2. Arbitrary order objective: For t > 0, we have

10F) () — 0o (0(),0(t), ..., 0% V(1) 1) <ea  (4)

where v,(-) € RT denotes a desired tuning performance
and €, € RT denotes a residual error. v,(-) should
be determined by the actual dynamic performance re-
quirements. Eq. (4) means that #*~1) will be forced
to achieve the given performance of path update. For
instance, when k& = 1, the dynamic objective is to tune
the velocity of the path update, and when k = 2, the
dynamic is to tune the accelerate of the path update.

IV. MANEUVERING CONTROL UNDER THE OUTPUT
REGULATION VIEWPOINT

A. Path variable and path update law

Different from tracking control guided by the time-
dependent trajectory y,.(t), in maneuvering control, the path
yr(0) is parameterized by the path variable 6. 6 can be
regarded as an additional control degree of freedom, and
thus a path update law, defined as w, needs to be designed

to achieve the smooth update of §. The dynamics of 6 can
be expressed as

o) = gy(w) (5)

where gp(w) : R — R is a smooth and continuous function.
Since 6 is artificially defined, we can select a suitable
go(w) to ensure that the dynamics of € are linear, because it
is convenient for linear 6 to stabilize and redesign. According
to existing results, the model of # can be represented by the
following common types of linear models
1). First-order dynamics [1]

0 = w. (6)
2). First-order tracking dynamics [2], [4], [5], [7], [8]
0 = v, (04, ) — w. (7

The first-order and first-order tracking dynamics can be
utilized to achieve time and velocity objectives.
3). lth-order dynamics [3], [6]

0 =w, 1=1,2,...m. (8)

The [th-order dynamics can be utilized to achieve the
arbitrary order objective. In general, the order of #-system is
less than the order of the controlled system.

Because the dynamics of 6 is linear, the path update
law w can be designed with ease. To achieve the dy-
namic objective, w is associated with the path variable 6,
the desired objectives v, or (v, vs), and path information
yr(0),9-(0), ... ,yﬁlil)(Q). In some existing results, y,-()
is stored in the controlled system. The path update may also
be influenced by the controlled system in such applications,
allowing the output y of the controlled system to be utilized
in w. The form of w can be expressed as follows

w = Gu(0,04(), 4, 4:(0),9-(0), ...,y (0),t)  (9)

where g¢,,(-) is a smooth and continuous function.

In practical applications, the design of the path update law
is flexible. For instance, in [5], [7], the path update law is
constructed based on the error feedback.

w = —ukyfT(H)sp (10)

where yi;, € R is a gain, s, € R™ is a tracking error.
In [3], the path update law is formulated to reduce the
control effort via calculating the optimization problem.

(1)

where F, is an optimization function associated with the
geometric task, F; is an optimization function associated
with the dynamic task, and ¢ € RY is a tuning weight.

In [7], [8], w is implemented with a filter structure.

w = argmin(E, + cEy)

w = —prhy +©
w=—vk(w0+ prhi)
hy = yfT(Q)sp

(12)

where pg, Vi, e € RT are gains, s, € R™ is a tracking
error. Note that these path update laws share a common
characteristic: they enable the smooth updating of the path
variable.
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B. Parameterized path and exosystem

In this subsection, we demonstrate that the path variable
can be smoothly updated using an appropriate path update
law. In the geometric task of maneuvering control, the
parameterized path is determined by employing various path
planning methods, such as best-first searching, A*, Dijkstra,
and RRT. These planning methods are capable of producing
a piecewise continuous path. Consequently, in maneuvering
control, the system can acquire smooth path information.

The dynamics of y,.(f) can be extended along the dynam-
ics of 4, but the order of y,.(#)-system should be less than the

order of #-system. Let Y,. = [yX(6), dygt(e) sy dk;tl,fi(e)}T
and #F~1) = & with &k € N7, the dynamics of Y, is

represented as

Y, = AY, + B [f(0,y.(0)) + v (0)w] (13)
where
On I, O, -+ O
O, O,, I, --- O
A: ) ) Gkaka,
Oy O, O, Om
Om
B: E]:Rk"m,XWL7
Om
I’"L

fr(0,y-(0)) € R™ is a known function with respect to the
(1,...,k — 2)th order derivative of 6 and the (1, ...,k — 1)th
order partial derivative of y,.(#), and y?(f) € R™ denotes the
first-order partial derivative along 6. Because the dynamics
of 6 is linear, a smooth w will make the update of # steadily,
such that the parameterized path information ¥,.(6) and y.(6)
is also steady. When an appropriate w is employed, the
dynamics of Y, satisfies the following form

Y, (0) = Ay Y,(0) "
yr(0) = Cy Y, (0)
where
Cy = [Im O, Onm Om} e Rmka7
O 1, O Om
Onm On I, Om
AY - . . . . c kaka’
Qvo Qvi Qv Qy (k-1

with Qyo, Qy1,Qy2, .., Qy -1y € R™*™ being diagonal
parameter matrices. Ay can be expressed by Ay = A} ®1I,,,
where the form of A}, satisfies

0 1 0 0
Al = 0 0 1 0 -
—qyo —Qqyi1 —QGy2 —4qy (k-1)

with ¢y0,qy1,qy2, - Gy (k—1) € RT being tunning param-
eters. Eq. (14) can be regarded as an exosystem and y,(0)
is the exogenous signal generated by this system.

C. Discussion

According to the analysis of the path variable and the
desired path, it is shown that an exosystem can be estab-
lished with the dynamic objective of maneuvering control.
Therefore, maneuvering control can be investigated under
the output regulation viewpoint. In the dynamic task, we
need to construct an appropriate path update law w to update
6 smoothly, ensuring that the dynamics of the exosystem
(14) remain smooth. Many existing results can achieve this
task with ease. In the geometric task, we need to construct
an internal model with respect to the controlled system (1).
Then, the maneuvering controller can be designed to achieve
the desired geometric task based on the proposed internal
model and other controller design approaches.

V. AN EXAMPLE: NEURAL PREDICTOR-BASED DYNAMIC
SURFACE OUTPUT REGULATION CONTROL STRATEGY FOR
PATH MANEUVERING PROBLEM

In this section, a neural predictor-based dynamic surface
output regulation control strategy is developed for path
maneuvering. To enhance the output regulation perspective,
an internal model approach is used herein.

A. Neural Predictor Design

In this part, we use a full-order neural predictor to offset
the adverse effects caused by the unknown dynamics. Note
that many methods can also estimate or inhibit uncertain
nonlinearities. At first, we can use an RBF neural network
with ¢ neurons to construct the uncertain nonlinear function
fi(z;) as follows

fi@) = Wrhe () + e,

where W; € R9%™ represents an output weight matrix, ¢; €
R™ denotes an approximation error, {2; denotes a compact
set, and ¢ (%)) = [¢1(Z1), ..., ¢¢(T1)]T € RY is the regressor
vector with ¢;(-) being a radial basis function. There exist
positive constants W;*, &}, and ¢} such that |W;|lp < W},
ledll < &7, and [lu(@)I| < @5 1161,

Based on a high gain state observer design, a full-order
neural predictor is designed as follows

{ &k = wppr + Ju(@h) — (Fo + Ki) (@ — 2x)
Tp =u+ fn(jn) - (Fn + Kn)(fin - xn)

where k = 1,.,n—1, ]Ek(i'k) = ng‘@k(i’k)’ fn(j7z) =
W;,fgon(:in) K;, € Rm*m « () and K,, € R™*™ = ( are
control gain matrices, Fj, € R™*™ - 0 and F,, € R™*™
0 are tuning gain matrices. Note that the proposed method
is state-feedback, where both x; and Z; are used in the loop.

A gradient descent-based adaptation law is taken as

T, C (15)

(16)

Wi = =T (eu@)l +kw,Wi), I=1,.n (D)

where Z; = &; — x;, I'; € R7%7 > 0 denotes an adaptation
gain matrix, ky, € R?7*9 > 0 is a tuning parameter matrix.
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Define VNVI = Wl — Wi. The stability of the system
consisting of Wl and Z; can be described as follows.

Lemma 1. The system, consisting of states W; and Z; and
inputs W, and ¢, is input-to-state stable.

Proof. This lemma has been proved by some existing
results in [4], [5], [7], and thus the proof is omitted to save
space. Z; can be proved satisfying ||Z;|| < Z; with z; € R
being a residual error.

B. Internal Model Design

In this part, we construct an internal model. At first,
consider the following transformation along (1)

z1(0) = yr(0)

22(0) = 21(0) — f1(z1)

23(0) = 22(0) — fa(z1, 22) (18)
en1(0) = 201(8) = fa1(Zno1)

T(@) = Zn(e) - fn(2n)~

Because f(+) is an unknown nonlinear term, we construct
an estimated structure for zj, using the approximation infor-
mation fi(-) as follows

(19)
fn 1( )
( ) fn(zn)-

The function structures of f;(Z;) and f;(Z;) are same, and
thus we can use the results of the full-order neural predictor

(1,22, ...,2n) to model f;(z;) as follows
{ flz)=wWlo(za) +e, zacQ 20)
fiz) = Wieu(z).
Then, define § := & — 2,(0) and s, := zp — 2, (0).
Wherein, the dynamics of S is written as follows
8 = Sp1 + fk(zk) (Fy + Kg)Zy,
Sn=u—7(0) + f1(Z0) = (Fu + K)n 21
Ys = S1
where fl’(gl) = fl(:E_) f(i) and 2 = [%,..., 4]
with | = 1,..,n, fi(3) = W, i(%). Define ((§) =
[+T(0), LT (9) ., L7171 (0)]T. The system with 7(6) can
be generated by the following observable linear dynamics
¢(6) = As¢(6)
N 22
5o Z o 22
where
OWL?’L Irrm Omn Omn
Omn Omn Im.n O"nn
A0 — i ) ]annqunq7
AO A1 AQ Aq—l
09 = [Imn Omn Omn e Omn} € Rmxmnq,

with Ag, A1, Asg, ..., A;—1 € R"™*™ being diagonal param-
eter matrices. There exists a state transformation for the
augmented system 79 = Py((f) such that

{ N9 = (Gg + Hokg)ne

#0) = romo 23)

where the pair (Gy € R™™*™ Hy ¢ R™IX™) g
controllable with Gy being Hurwitz, kg = CyP, 1 and
Py € R™™*™mnq ig the unique solution of the following
Sylvester equation

The internal model is constructed as follows
£ = (Go+ Horg)E+ g (25)

where ¢ is a tuning term and to be designed later.

C. Controller Design

In this part, we use an improved DSC method to design
the maneuvering controller.

Step 1. At first, we define the first error surface é; :=
§1 — s14 With s14 := 0. The dynamics of é; is

él:Sz+f{(§1)*(F1+K1)531*51d (26)

To stabilize é1, a virtual control law is constructed as

ag = —Kier — f1(%1) + $14 (27)
where e; = s1 — s14 and K7 € R™*™ = ( is a control
gain matrix. In the DSC design, the virtual control law
ao is passed through a first-order low-pass filter or other
differentiators to obtain its first-order derivative. For instance,
a second-order nonlinear tracking differentiator can be used

as follows [17]

: d

S =S

jld 2d2 1 94\ 2
894 = 3 {51(82d —ag)? + Bz(g)?’}

where 72 € R denotes the time constant, 81,32 € R are
tuning parameters. Ref. [17] proved ||s2q — az|| and ||s3,; —
dia]| can converge to a small neighborhood of the origin.

Step i(i=2,3...,n-1). Define an error surface é; := §; — S;q
for the ith-order closed loop. The dynamics of é; is

(28)

éi = sit1 + fl(Z) — (Fi + Ki)&; — 5. (29)
A virtual control law is constructed to stablize é; as
aip1 = —Kie; — fl(%) + $ia — ei (30)

where e; = s; — s;4 and K; € R™*™ » () is a control gain
matrix. Similar to Step 1, we can use the following second-
order nonlinear tracking differentiator

S(i+1)d = 5?i+1)d
‘é((ii+1)d = _’71'24-1 /81(3(1'+1) az+1) + 52( :J;ll)d)
€2V

where ;11 € RT denotes the time constant.
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Step n. Define a regulation error ¥ := ¢ —ny — Hé,, and
the last error surface é,, := §,, — Snq. The dynamics of ¥ is

= (Go+ Hprg)é+g(en)

We design g = —HyK,,é, — (Go + Hyprg)Hpé,,, and then
the internal model (25) is transformed into

—(Go+ Hyrg)ng — Hé,,. (32)

€ = (Go + Hykg)& — HoK &, — (Go + Horig) Hpéy. (33)
The maneuvering control law is designed as follows

u = *Knen - f{(gl) + H9€ - HOHGén - énd (34)

where e, = s, — Spa, K, € R™*™ = 0 is a control gain.

D. Stability Analysis

Theorem 1. Consider the uncertain nonlinear system (1).
When the maneuvering controller is chosen as the internal
model (25), the neural predictor (16), (17) and (20), n — 1
virtual control laws (27) and (30), and the control law (34),
the resulting closed-loop system is input-to-state stable.

Proof. Consider a Lyapunov function candidate as follows

Z érer + \IJTP\I,\I/ (35)

l\D\H

where Py is the solution of the following Lyapunov equation
GiPy + PyGy = —2kg with kg € R* being a to-be-
designed parameter. Then, V' satisfies

n—1
V< - e Kpéer — é; Fra, + éj L
Sitma- S annsSdn o
- kg\I!T\I! + et m,xp
Where 1y = Sq — oy with [ = 1,...,n — 1. D;ﬁne
E = [eT, el ..enT v = [T,F,..,/07, and X =
[T, 23, ..., 2F]T. It follows that
V<= MEE” + Bl + AP B X] 37)
— kUt + VYHF, &, + ¢ k¥
where (; = sgq — o with [ = 1,...n — 1, K =
diag{ K1, ..., K, }, F = diag{F1, ..., F,,}. Using the follow-
ing Young’s inequality
. 1. Alro) 1 ( 0)
T < Slenl + 22w < JB) + 20 w2
It follows that
~ Lz (ko)
V<~ (K~ DI — (ks — 52 |
- RPN ; 38
BN ell + NP H) 21X | 9
< — col| Xo|1* + do|| Xol[|Us
where Xo = [|E|, W], Us = [Iell, IXI]T, co =
mln{)\( ) — 0.5,kg — 0.5)\(,‘69)}, dg = 1+ )\(F) +
A(F)A(Ho).
Since || Xp|| > 2dg||Xg||/co makes V < —0.5¢q]| Xq]|%

the closed loop system is input-to-state stable. For all ¢ >

to, there exist a class L function 3(-) and two class K
functions g,(-) and g (-), and || Xp|| satisfies

[ Xo (@) < BUIXo (o)l = to) + g.(llell) + g (1XTD-
(39)
Lemma 1 has shown that the system (Z;, ;) is input-to-
state stable. Based on the cascade system analysis, Eq. (39)
can be further put into

M
IXo()l < B(IXa(to)ll,t = to) + g.(llel) +D_ g (1)
i=1

< B(IIXe(to)H t —to) + g.([lell)
—i—Zg

where gw, (-) and g, (-) are two class o, functions.
Remark 1. Theorem 1 gives a brief proof to demonstrate
the input-to-state stability of the closed-loop system in re-
lation to the geometric task. It is shown by this theorem
that the output regulation-based maneuvering controller has
similar stability results to those of existing results in [4]-[9].

)+ ge: (lleill)

(40)

VI. SIMULATION RESULTS

In this part, we will use the proposed strategy to design a
controller to achieve the parameterized path-guided maneu-
vering control. Consider the following uncertain system

. 2
1,1 = T2,1 + 2%‘171 + T2
T1,2 = Xo,2 + cos(x1,1 + x1,2)

Zo1 =ui + Sin(xil +x91) + cos(z%z) 41)
:.UQ,Q = ug + COS(2£C1’2 + x2,1 + 1'2’2)
y=xa

where [z11,712]" = x1 and [z21,722]T = x5 are states,
[u1,u2)T = wu is the control input, and y denotes the
output. The uncertain nonlinear system is driven to track
the parameterized path y,.(8) = [sin(6), cos(9)]T with v, =
0.45. In this simulation, we use the path update law (42) in
[4] for convenience. The simulation parameters are chosen
as K; = diag{6,6}, Ko = diag{15,15}, 1 = 20, I'; =
Iy = diag{5000, 5000}, Ky, = Kw, = diag{5x1075,5x
1075}, Fy = diag{204,204}, and F, = diag{485,485}.

Define ((0) = [+7(9), L7 (0)]T € R*. The system with
7(0) can be generated by the following linear system

1n(0) = Agn(0)
! 42
{ﬂm:@mm (42
where
0 0 1 0
0 0 0 1
do=1_17 0o _—32 o
0 —17 0 —32
Let
0 0 1 0 0 0
0 0 0 1 0 0
Go=1_15 o —15 o |"Ho=11 of
0 -15 0 —15 0 1
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Fig. 1: Maneuvering control performance: (a) Output of the controlled
system y; (b) Maneuvering error in two dimensions ej.
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Fig. 2: Control efforts: (a) Control input of the system wu; (b) Evolution of
the path variable 6.

Py can be calculated as

0.1416 0 0.0044 0
P 0 0.1416 0 0.0044
9= 1-0.0755 0 —0.0005 0

0 —0.0755 0 —0.0005

The internal model is designed as

O 0 1 0 1 0

: o 0 o0 1 0o 1.

§=117 0 —32 o |St|io o @
0 —17 0 —32 0 10

The initial values of state variables in the controller are:
xl(O) = i‘l(O) = Szd(O) = [O5,O5]T, 582(0) = 93‘2(0) =
s2,(0) = [0,0]T, £(0) = [0,0,0,0].

It is shown in Fig. 1(a) that the output y can track the
given parameterized path using the proposed controller. In
Fig. 1(b), we can observe that the maneuvering error can
converge to a residual error near the origin. Therefore, the
geometric task of maneuvering control can be achieved. Fig.
2(a) depicts the evolution of the control input u. Fig. 2(b)
shows the smooth update of the path variable 6, satisfying
the dynamic task of the maneuvering control.

VII. CONCLUSION

In this paper, we attempted to investigate the maneuvering
control problem of a class of uncertain nonlinear systems
from the perspective of output regulation. We demonstrated
that a path update law satisfying dynamic objectives of ma-
neuvering control can transform the dynamics of the desired
path into those of a smooth and continuous exosystem, where

the parameterized path can serve as an exogenous signal.
Based on this issue, we designed a neural predictor-based
DSC output regulation control strategy as an example. The
closed-loop system in relation to the geometric task was
proven to be input-to-state stable, and a numerical simulation
example was provided to show the effectiveness of the
proposed theoretical results. In the future, we will further
refine this perspective and apply it to solve cooperative
maneuvering control problems.
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