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Abstract— We consider an isothermal flow through two pipes;
at the junction, the flow is modified by some devices, for instance
a valve. We first provide a general mathematical framework to
model the coupling conditions for the flow at both sides of the
junction. A key feature in the modeling is the coherence; it is
related to the chattering, i.e., the rapid switch on and off of a
valve, which in turn is linked to the stability of the numerical
schemes to find the solutions. We discuss the coherence of some
models (for instance, for control valves), we provide numerical
simulations showing the chattering, and finally give a procedure
to eliminate it from a theoretical point of view.

I. INTRODUCTION

In this paper we explore the dynamics of isothermal,
one-dimensional gas flows through a junction connecting
two pipes. The aim is to understand certain mathematical
properties of the coupling conditions required at the junction
to model the flow. For an overview of flow dynamics on
networks, we direct readers to the survey [5].

The essence of coupling conditions lies in their ability to
model the presence of various devices between the pipes,
such as valves and compressors, or to account for simply
different characteristics of the pipes themselves. Coupling
conditions can govern aspects such as the continuity of the
pressure or of the dynamical pressure; they may potentially
determine an increase or a decrease of the pressure; they play
crucial roles in optimizing flow rates, and so on.

Our analysis focuses on the Riemann problems (initial-
value problems characterized by piecewise constant data
that exhibit at most a single jump discontinuity) specifically
modeling a coupling at x = 0. The way such Riemann
problems are solved gives rise to the development of a c-
Riemann solver. It is noteworthy that for most of c-Riemann
solvers, the conservation of momentum is lost, and in these
cases they differ from the standard Lax Riemann solver [37].

We deal with three main issues:
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• Uniqueness of the c-Riemann solver: We delve into
whether a specific coupling condition unambiguously
identifies a single c-Riemann solver. Our findings indi-
cate that numerous models fail to meet this criterion.

• Coherence of the c-Riemann solver: A c-Riemann
solver is coherent if any ordered pair of its adjacent
values is a fixed point. This property is fundamental
both as a test for the validity of the model and for
enhancing the robustness of the numerical schemes
that one can use to find a c-solution. Our analysis
uncovers that coherence fails for some commonly used
c-Riemann solvers.

• Handling supersonic flows: While most papers only
deal with the easier case of subsonic flows, our study
extends the discussion to encompass supersonic flows,
an area less considered in existing literature [26], [40].

The paper provides a comprehensive examination of vari-
ous coupling conditions. A general framework to define and
study c-Riemann solvers is presented in Section II. The main
results in Section III concern a detailed analysis of the con-
tinuity conditions (on pressure, dynamic pressure or specific
enthalpy) for general two-way flows. Section IV specializes
this analysis to the case of one-way flows, allowing however
possibly different pressure laws in the pipes. In Section V we
consider two types of compressors; we show that if we have
a two-way flow then none of the corresponding c-Riemann
solvers is uniquely defined, whereas if the flow is one-way
then both of them are well defined and coherent. Due to lack
of space, we avoid a discussion about the role of supersonic
flows in this modelling; we refer the interested reader to the
recent preprint [15]. In the concluding Section VII, we first
comment on the several valves and related results proved
in [13], [14], [16], [17]; then we show that some other
modelings proposed in the literature either do not lead to
a unique c-Riemann solver or, when this happens, the solver
is incoherent.

II. THE MODEL

The gas flow along a pipe is governed by the Euler
equations {

ρt + qx = 0,
qt + Px = 0,

(1)

where ρ = ρ(t, x) is the density, q = q(t, x) the momentum
at time t > 0 and position x ∈ R, and P (ρ, q)

.
= q2/ρ+p(ρ)

is the dynamic pressure. We focus on the isothermal case and
then we take as pressure

p(ρ) = a2ρ. (2)
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The constant a > 0 is the sound speed. We also define the
velocity v(ρ, q)

.
= q/ρ. A state u

.
= (ρ, q) is subsonic if

|v(u)| < a, sonic if |v(u)| = a and supersonic if |v(u)| > a.
In the phase plane the sonic curves are s±(ρ)

.
= ±a ρ. We

denote Ω
.
=
{

(ρ, q) ∈ R2 : ρ > 0
}

.

A. The Riemann problem

For any pair of constant states u`, ur ∈ Ω, the Riemann
problem for system (1) is the initial-value problem with
initial condition

u(0, x) =

{
u` if x < 0,
ur if x > 0.

(3)

Solutions of Riemann problem (1)-(3) are meant in the
weak sense. Any smooth discontinuity curve x = γ(t) of
a piecewise regular weak solution u = (ρ, q) of (1) satisfies
the Rankine-Hugoniot conditions

(ρ+ − ρ−) γ̇ = q+ − q−, (4)

(q+ − q−) γ̇ = P (ρ+, q+)− P (ρ−, q−), (5)

where u±(t)
.
= u(t, γ(t)±) are the traces of u along the

discontinuity. Condition (4) ensures the conservation of the
mass, while (5) is the conservation of momentum.

We denote the standard Riemann solver of (1) by RSp,
see [37]. If we denote

up
.
= (ρp, qp)

.
= RSp[u`, ur], u±p

.
= (ρ±p , q

±
p )

.
= up(0±),

then the function (t, x) 7→ up(x/t) is an entropy solution
of the Riemann problem (1), (3). Recall that RSp[u`, ur] is
well defined for any (u`, ur) ∈ D

.
= Ω×Ω and it is obtained

by juxtaposing the 1-Lax wave from u` to some state ũ ∈ Ω
and the 2-Lax wave from ũ to ur.

B. c-Riemann solvers

For a general coupling at x = 0, the associated c-Riemann
solver defined in Dc ⊆ D takes the form

RSc[u`, ur](ξ)
.
=

{
RSp [u`, u

−
c ] (ξ) if ξ < 0,

RSp [u+c , ur] (ξ) if ξ > 0,
(6)

where (u−c , u
+
c ) = C(u`, ur) for some coupling function

C : Dc → D. The function C is such that RSc[u`, ur](0±) =
u±c , namely RSp [u`, u

−
c ] has only waves with negative

speeds and viceversa for RSp [u+c , ur], see [15]. The traces
of the momentum are equal; this common value is denoted
by q0c . Hence, if we introduce

uc
.
= (ρc, qc)

.
= RSc[u`, ur],

then uc(0±) = u±c and u±c = (ρ±c , q
0
c ) for (u`, ur) ∈ Dc.

The function (t, x) 7→ RSc [u`, ur] (x/t) is an entropy
solution to (1) in x < 0 and x > 0 and satisfies condition
(4) at x = 0. On the contrary, uc may not satisfy condition
(5) at x = 0, hence conservation of momentum may be lost.

An important property of RSc is that it admits at most
four waves, included the stationary discontinuity at ξ = 0;
the maximal number is reached only for supersonic flows.
Indeed, if the flow is subsonic at ξ = 0, then RSc can

involve up to three waves; in this case uc consists of a 1-
wave in ξ < 0 and a 2-wave in ξ > 0.

A c-Riemann solver RSc, defined on a set Dc, is coherent
at (u`, ur) ∈ Dc if the traces u±c satisfy

(u−c , u
+
c ) ∈ Dc and C(u−c , u

+
c ) = (u−c , u

+
c ).

The coherence domain CH of RSc is the set of all pairs
(u`, ur) ∈ Dc where RSc is coherent. The set CH{ .

= Dc \
CH is the incoherence domain. Coherence may be thought
as a stability property: if we apply the c-Riemann solver
to the traces u±c at ξ = 0 of a solution (indeed, to any
ordered pair of adjacent values of a solution), then we obtain
a solution with the same traces at ξ = 0. On the contrary, for
instance if the coupling represents a valve, see Figure 1, the
incoherence of a c-Riemann solver is understood as modeling
the chattering [16, Section 6] and may yield analytical and
numerical instabilities, see Fig. 2.

x0

Fig. 1: Schematic diagram to illustrate the pipeline and valve
configuration.

The chattering, the rapid opening and closing of valves,
causes loud vibration noises and damages the valve compo-
nents [7], [35], [34], [18]. Addressing its causes and preven-
tion is then essential for system safety and functionality.

The Riemann solver RSp is coherent in D, see [13].
It is possible to give sufficient conditions on the coupling
function C in order that the corresponding c-Riemann solver
is coherent, see [15].

III. CONTINUITY CONDITIONS

We now review some popular coupling conditions and
investigate their coherence; we refer to [15] for details.

A. Continuity of the pressure

The condition

p(ρ+c ) = p(ρ−c ), (7)

expresses the continuity of the pressure at x = 0, see [1,
(15b)], [4, (6)], [6, (A.2)], [12, (4.5)], [20, (8)], [22, (87)],
[23, (11)], [24, (2.4)], [26, (2a)], [28, § 2.4], [30, (4.1)], [31,
(8b)], [32, (C2)], [36, (3)], [38, (18)], [39, (34)], [42, (3.1)].
By (2), condition (7) implies the continuity of the density at
x = 0 and so u−c = u+c . Then, the requirement (7) hides a
smoothness assumption on the flow at x = 0. The resulting
c-Riemann solver RSc coincides with RSp in its domain of
definition Dc

.
= {(u`, ur) ∈ D : ρ+p = ρ−p }, which is strictly

contained in the domain of definition D of RSp. Moreover,
RSc is coherent in Dc because RSp is coherent in D.
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B. Continuity of the dynamic pressure

The coupling condition

P (ρ+c , q
0
c ) = P (ρ−c , q

0
c ), (8)

expresses the continuity of P (uc) at x = 0, where P is
the dynamic pressure. It corresponds to the second Rankine-
Hugoniot condition (5) at x = 0. If the flow is subsonic,
then u−c = u+c and therefore uc ≡ up; as a consequence,
coherence is granted. However, for a general flow, condition
(8) does not select a unique c-Riemann solver, see [15].

In order to overcome the non-uniqueness of the c-Riemann
solver, one can add to condition (8) the coupling inequality

F (ρ+c , q
0
c ) 6 F (ρ−c , q

0
c ), (9)

for F (ρ, q)
.
= q

(
q2

2ρ2 + a2 ln(ρ)
)

being the flow of the
energy density. The c-Riemann solver corresponding to (8),
(9) coincides with RSp; as a consequence, the c-Riemann
solver implicitly defined by (8), (9) is well defined and
coherent in D.

C. Continuity of the specific enthalpy

The coupling condition

E(u+c ) = E(u−c ) for E(u)
.
=
v(u)2

2
+ a2 ln(ρ), (10)

is the continuity of the Bernoulli invariant [43] or of the
specific stagnation enthalpy [21]. As in case B, condition
(10) does not select a unique coupling function C in D.

IV. ONE WAY FLOWS

This section deals with the two couplings introduced in
[2]. We consider one-way flows; moreover, the flow in the
two pipes x < 0 and x > 0 is ruled by the pressure laws
p1(ρ)

.
= a21 ρ and p2(ρ)

.
= a22 ρ, respectively. We denote the

function ũ introduced above and corresponding to the sonic
velocity a = a1 by ũa1 ; an analogous notation is exploited
for other quantities.

The first coupling is obtained by imposing that the flow
along the outgoing pipe is not supersonic and by maximizing
q0c . The resulting c-Riemann solver is unique and coherent.

On the other hand, assume the continuity of the pressure
at ξ = 0, i.e., (7), and, among all the c-Riemann solvers
satisfying such condition, assume that RSc maximizes the
flow across ξ = 0. Also this coupling provides a unique
c-Riemann solver, but it is not coherent for some choices
of a1 and a2, see Fig. 2. There, the parameters a1 = 1,
a2 = 2, q` = 0, ur = (10, 24) and ρ` ≈ 13.47 are chosen
so that the pair (u`, ur) is an incoherent Riemann datum.
For the numerical scheme, we use the Glimm scheme [9],
[46], applied to c-Riemann solvers and described in [14],
where the validation was performed by comparisons with
available exact solutions and has shown that the scheme is
of order one in space. In Fig. 2, the two pictures above show
the correct solution, corresponding to RSc[u`, ur], which is
obtained when the traces u±c are computed once and for
all at the initial time. The two pictures below present the
case where the traces are updated at each time step. The

procedure of updating u±c at each time step, which is usual
in numerical schemes for general initial-value problems, has
the serious drawback of introducing nearby incoherent states.
The solution obtained in this way substantially differs from
the right one: a small rarefaction wave in ξ < 0 and the
jump at ξ = 0 are substituted by a large rarefaction wave,
and the plateau in ξ > 0 is higher, longer and contains
oscillations, that appear independently of the values of the
discretization parameters. This demonstrates the instability
of the scheme in this case, caused by the incoherence of
RSc. On the contrary, the scheme shows no oscillations for
coherent Riemann data. Moreover, computing once and for
all the traces or at each time step leads to the same solutions.
This is illustrated in Fig. 3, where the coherent initial datum
has the same values as before except for ρ` = 13.5.
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Fig. 2: Numerical illustration of the incoherence of the
second c-Riemann solver considered in Section IV. The
profiles are computed at time t = 0.2. Above: traces u±c
are computed once and for all at the initial time. Below: the
traces are updated at each time step.
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Fig. 3: Numerical illustration of the second c-Riemann solver
considered in Section IV with coherent initial datum. The
profiles are computed at time t = 0.2. The solution computed
with updating the traces at each time step and the one
computed only once and for all, coincide.

V. COMPRESSORS
In the previous sections we investigated the well-

posedness and coherence of several couplings at the intersec-
tion of two pipes. Such couplings are rather general, but they
are understood to model “free” flows through the junction.
From now on, we focus on couplings where external forces,
modeling the action of some device or friction effects, take
place. We begin with compressors.
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A compressor is powered by the gas flowing through it;
however, the gas consumption is usually neglected in the
modeling. The purpose of a compressor is twofold. On the
one hand, it increases the pressure and then the density of the
gas, i.e., p(ρ−c ) < p(ρ+c ) and ρ−c < ρ+c . On the other hand,
it reduces the outlet velocity, i.e., v(ρ−c ) > v(ρ+c ), because
u−c and u+c have the same flow q0c but ρ−c < ρ+c .

We consider below both two-way and one-way flows; the
compressor is located at x = 0. In both two-way cases, we
show that the coupling conditions do not select a unique
coupling function C. On the contrary, in the one-way cases,
we prove the uniqueness of C and the coherence of the
corresponding c-Riemann solver.

A. Two-way flows

A first modeling assumes that the ratio between the incom-
ing and outgoing pressures is constant. If the compressor is
switched on, then this ratio is greater than one if the flow
at x = 0 is positive, otherwise it is less than one; if the
compressor is switched off then this ratio equals one. The
corresponding coupling condition can be written as

p(ρ+c ) =
(
1 +Kp(q

0
c )
)
p(ρ−c ). (11)

Here, if the compressor is switched on then either Kp(q
0
c ) >

0 in the case q0c > 0 or Kp(q
0
c ) ∈ (−1, 0) otherwise; if

the compressor is switched off then Kp(q
0
c ) = 0, see [20].

Observe that if Kp(q
0
c ) = 0 then condition (11) reduces

to (7), which has already been considered. Then, below we
assume Kp(q

0
c ) 6= 0.

In general Kp depends on time; we assume Kp to be piece-
wise constant since we are interested in the corresponding
c-Riemann solver. More precisely, we focus on

Kp(q
0
c ) =

{
K−
p if q0c 6 0,

K+
p if q0c > 0,

− 1 < K−
p < 0 < K+

p .

(12)
For this modeling, one can show that conditions (11) and
(12) do not select a unique c-Riemann solver. Moreover, it
is possible to construct a counterexample which avoids null
flows at x = 0 (which makes the modeling not completely
meaningful) and only involves subsonic flows.

A different modeling considers the coupling condition

|q0c |
((
p(ρ+c )/p(ρ−c )

)sign(q0c )κ − 1
)

= K, (13)

at x = 0, where κ ∈ [2/7, 2/5] is a parameter that depends
on the gas under consideration and K > 0 is the compressor
power [23]. Also in this case, for fixed K > 0, condition
(13) does not select a unique c-Riemann solver.

B. One-way flows

Consider the coupling condition (11), (12), and assume
the flow is one-way, say q > 0. Then the coupling condition
is

p(ρ+c ) = (1 +K+
p ) p(ρ−c ), (14)

for a constant K+
p > 0, see [29], [38]. Then the coupling

condition (14) selects a unique coupling function C. More-
over, the c-Riemann solver RSc corresponding to (14) is
coherent.

Now, consider the coupling condition (13) and assume
K > 0. Then the corresponding coupling condition is

q0c
((
p(ρ+c )/p(ρ−c )

)κ − 1
)

= K, (15)

see [8], [19], [25], [27], [31], [32], [44], [45]. In [19] and
[25] the authors let κ vary in [2/7, 2/5] and [1/3, 3/5],
respectively. By the assumptions we have

ρ+c > ρ−c , q0c > 0. (16)

Therefore (15) is equivalent to

p(ρ+c ) =

(
1 +

K

q0c

)1/κ

p(ρ−c ).

In this case the coupling condition (15) selects a unique
coupling function and the corresponding c-Riemann solver
is coherent.

VI. VALVES

As well as compressors, valves are an important ingredient
in gas networks. In this section, we first briefly recall some
recent results concerning their coherence and its physical
meaning. Then we show that some simplified models usually
exploited for flow optimizations in networks are not coherent.

A. Coherence and chattering

Pressure-relief valves are considered in [13]. A detailed
study is conducted on a valve, which is closed if the jump
of absolute value of the pressure at x = 0 does not exceed a
threshold value M > 0; otherwise, it is open. The velocities
of the flows are general: no assumption of subsonicity is
done. In such a case, the c-Riemann solver is not coherent
and its coherence domain is explicitly provided. The lack of
coherence has been interpreted in that paper as modeling the
phenomenon of chattering, the rapid and repeated opening
and closing of the valve; see [13], [14], [16], [17] and
references therein for more information on this phenomenon.

The case of one-way valves is discussed in [16]. As
an example of the general framework treated there, it was
considered the case of a valve that aims at keeping a fixed
outgoing flow q∗ > 0; when this is not possible, then the
valve shuts. Such valves are known as pressure independent
characterized control valves. The main results are an explicit
characterization of the coherence domain of the c-Riemann
solver, and a discussion of the invariant domains. Also the
case of a valve with a non-zero reaction time τ > 0 is
considered and an explicit example is constructed to show
how the incoherence of a c-Riemann solver leads to a
chattering behaviour, i.e., a rapid switch on and off, of the
corresponding valve, see Fig. 4. In that figure we use a wave-
front tracking scheme where each continuous rarefaction
wave is approximated by three jump waves; we refer to [16,
§6] for details. Furthermore, it is considered the following
control problem: for any given Ω` ⊆ Ω, determine the values
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of the control parameter q∗ such that the restriction of the
corresponding c-Riemann solver to Ω` × Ω is coherent.

x

t

q(t, 0±)q` q∗

t

τ

T

T + τ

T + 2 τ

2T + τ

2(T + τ)

2T + 3 τ

3T + 2 τ

Fig. 4: Left: the approximate solution (t, x) 7→ u(t, x) for
t ∈ [0, 3T + 2τ ] and x < 0. Right: the flow through the
valve.

The paper [17] deals with flux-maximizing valves. More-
over, the flow is imposed to occur within prescribed bounds
of pressure and flow; this requirement clearly corresponds to
the existence of invariant domains. Within this framework,
three kinds of valves are described, which differ for their
action; two of them lead to a coherent solver, the third one
does not.

How to “remove” the chattering of valve? A theoretical
answer to this issue is given in [14]: one can modify the c-
Riemann solver in the incoherent domain CH{ in order that
it becomes coherent in the whole of its domain Dc and the
new c-Riemann solver differs from the old one only for the
states that led the old solver to lose coherence. An example
of this procedure is shown in [14] for the (incoherent) c-
Riemann solver considered in [16]. Moreover, for incoherent
initial data, the new solver selects the unique solution that
maximizes the flow through the valve among all c-Riemann
solvers. Several numerical simulations are also provided.

A partial conclusion of the results of the above papers
is that the mechanism that leads to the loss of coherence,
and then possibly triggers chattering, is hard to understand.
Indeed, such a behavior strongly depends on the type of valve
under consideration and establishing general criteria is not
yet clear.

B. Control valves in optimization

An important issue in gas networks concerns the optimiza-
tion of flows, depending on the presence of compressors,
valves and other devices in the network [28], [45]. The
complexity of the problem essentially requires that the flows
are constant in each pipe and variations only occur at the
junctions. In this subsection we briefly comment on how
valves are modeled in such a framework and show that such
oversimplified modelings are not coherent.

A control valve can be modeled by the coupling conditions

p(ρ+c ) = p(ρ−c )−∆ if the valve is active,
p(ρ+c ) = p(ρ−c ) if the valve is in bypass mode,

q0c = 0 if the valve is closed,

where ∆ > 0 is a fixed parameter. In general the pressure
difference ∆ depends on time; we assume that it is constant.

In the case the control valve is in bypass mode, then
RSc ≡ RSp. If the valve is always active, then the situation
is more delicate. Indeed, the coupling condition

p(ρ+c ) = p(ρ−c )−∆ (17)

does not select a unique c-Riemann solver.
A simple way to fix the above drawback consists in

imposing a maximization property of the flow across the
coupling: among all the c-Riemann solvers satisfying (17),
we choose the one that maximizes the flow across x = 0.
Such a c-Riemann solver is unique, but it is not coherent.

In [45] the authors consider a control valve without remote
access. Such a valve is designed to keep the outgoing
pressure below a given threshold, p(ρ+c ) 6 pset. The valve
is in bypass mode if p(ρ−c ) 6 pset, it automatically closes
when p(ρ−c ) > pset+∆, where ∆ is a constant; otherwise the
control valve is active, reducing the pressure by some amount
δ = δ(u`, ur) ∈ (0,∆] so that p(ρ+c ) = p(ρ−c ) − δ = pset.
As a result we have

p(ρ+c ) = p(ρ−c ) if p(ρ−c ) 6 pset, (18a)

p(ρ+c ) = pset if pset < p(ρ−c ) 6 pset + ∆, (18b)

q0c = 0 if p(ρ−c ) > pset + ∆. (18c)

The c-Riemann solver corresponding to a control valve
without remote access corresponding to (18) is uniquely
determined but it is not coherent.

VII. CONCLUSIONS

We proposed a general framework for the mathematical
modeling of isothermal fluid flows through a junction. We
showed that several models occurring in the applied lit-
erature have serious drawbacks: lack of well-posedness of
the Riemann problem, non-uniqueness of the solver and
incoherence. The latter condition, in particular, leads to
instabilities in numerical simulations and, if a valve is present
at the junction, is responsible for the chattering of the valve.
We also propose a theoretical way to modify a valve to
eliminate the chattering. We provide numerical simulations
that confirm our results. This research paves to way to several
related problems: the modeling in the isentropic case or for
the full Euler system, the study of chattering in networks,
and the analysis of the control of the flows.
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