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Abstract— In this paper, we investigate static O’Shea-Zames-
Falb (OZF) multipliers for slope-restricted and idempotent
nonlinearities. For the analysis of nonlinear feedback systems,
the powerful framework of integral quadratic constraint has
been frequently employed, where the core of this framework
is capturing the behavior of nonlinearities by multipliers.
Among them, OZF multipliers are known to be effective for
slope-restricted nonlinearities. However, OZF multipliers only
grasp the rough slope properties of the nonlinearities, and
hence cannot distinguish nonlinearities with the same slope
property. To address this issue, we focus on the fact that some
nonlinearities that are important in control engineering satisfy
idempotence. By actively using the idempotence property, we
first show that we can enlarge (relax) the set of standard OZF
multipliers for slope-restricted nonlinearities. In particular, for
slope-restricted and idempotent nonlinearities with slope [0, 1],
we can provide a clear understanding on how the set of
standard OZF multipliers is enlarged. We finally illustrate the
effectiveness of the newly proposed multipliers by numerical
examples on stability analysis of nonlinear feedback systems.
Keywords: idempotent nonlinearities, static O’Shea-Zames-
Falb multipliers.

I. INTRODUCTION

Recently, it has been recognized that control theoretic
approaches are effective for the analysis of optimization
algorithms [10], stability analysis of dynamic (recurrent)
neural networks (NNs) [14], [4], [5], and performance
analysis of feedback control systems driven by NNs [17],
[15]. Therefore, there is renewed interest in the analysis of
nonlinear feedback systems. In particular, for the analysis of
nonlinear feedback systems involving NNs, we have to deal
with a huge number of various nonlinear activation functions
such as saturation, rectified linear unit (ReLU), hyperbolic
tangent (tanh), sigmoid, etc. This poses new challenges for
the treatment of nonlinear feedback systems.

For the analysis of nonlinear feedback systems, the power-
ful framework of integral quadratic constraint (IQC) [11] has
been frequently employed, where the core of this framework
is capturing the behavior of nonlinearities by multipliers.
Among such multipliers, O’Shea-Zames-Falb (OZF) multi-
pliers [12], [18], [16] are known to be effective for slope-
restricted nonlinearities. The studies on OZF multipliers
have been active, and advanced treatments with convex
optimization can be found, e.g., in [8], [1]. The history on
the study of OZF multipliers and prominent results to this
date are summarized in the tutorial paper [2].
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Even though OZF multipliers are effective for the treat-
ments of slope-restricted nonlinearities, they only grasp the
rough slope properties and hence cannot distinguish nonlin-
earities with the same slope property. To address this issue,
in this paper, we focus on the fact that some nonlinearities
that are important in control engineering satisfy idempotence.
Recall that an operator ϕ : R → R is said to be idempotent if
ϕ = ϕ◦ϕ, where ◦ stands for the composition. For instance,
tanh and a symmetric saturation operator have the same slope
property, but in addition the latter also has the idempotence
property. By actively using the idempotence property within
the framework of OZF multipliers, it is expected that we can
enlarge (relax) the set of the multipliers and hence distinguish
idempotent and non-idempotent nonlinearities. This is the
main issue of this paper, and the novel contributions on OZF
multipliers for slope-restricted and idempotent nonlinearities
are summarized as follows: (i) for slope-restricted and idem-
potent nonlinearities, we derive a sequence of novel sets of
multiplies indexed by N , each of which comprises the set of
standard OZF multipliers for slope-restricted nonlinearities
as a special case indexed by N = 1 (Theorem 1); (ii) in
the sequence of the novel sets of multiplies, we prove that it
suffices to take N = 2 since we cannot enlarge the set even
if we take N ≥ 3 (Theorem 2); (iii) the novel set indexed
by N = 2 for slope-restricted with slope [0, 1], idempotent,
and non-odd (resp. odd) nonlinearities can be interpreted as
a relaxation of the set of the standard OZF multipliers, in
the sense that the restriction of the multiplier variables to
doubly hyper dominant (resp. doubly dominant) matrices has
been relaxed to right hyper dominant (resp. right dominant)
matrices (Theorem 3). These are the main technical results
of this paper. We also illustrate the effectiveness of the newly
proposed multipliers by numerical examples on stability
analysis of nonlinear feedback systems.

We note that it is effective to employ dynamic OZF
multipliers for nonlinear dynamical system analysis, and
hence studies along this direction have been active [8], [1].
However, static multipliers are also important when dealing
with nonlinear static systems. In particular, in semidefinite-
programming-based reliability verification of feedforward
neural networks [7], [13], [6], the crucial step is capturing
the behavior of nonlinear activation functions by static mul-
tipliers. Therefore, it is preferable to employ enlarged set of
static multipliers to obtain less conservative results.

Notation: The set of natural numbers is denoted by N. The
set of n×m real matrices is denoted by Rn×m. We denote by
In, 0n, 0n,m the n×n identity matrix, the n×n zero matrix,
and the n×m zero matrix, respectively. For a matrix A, we
write A ≥ 0 to denote that A is entrywise nonnegative. We
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denote the set of n× n real symmetric matrices by Sn. For
A ∈ Sn, we write A � 0 (A ≺ 0) to denote that A is positive
(negative) definite. For A ∈ Rn×n, we define |A|d ∈ Rn×n

by |A|d,i,i = Ai,i and |A|d,i,j = −|Ai,j | (i 6= j). For A ∈
Rn×n and B ∈ Rn×m, (∗)TAB is a shorthand notation of
BTAB. For v ∈ Rn, we denote by |v| its standard Euclidean
norm. The induced norm of a (possibly nonlinear) operator

Ψ : Rm → Rn is defined by ‖Ψ‖ := sup
v∈Rm\{0}

|Ψ(v)|
|v|

. For a

matrix M ∈ Rn×m, the norm ‖M‖ means the induced norm
of the linear operator Rm 3 v 7→ Mv ∈ Rn.

Some specific definitions are necessary to describe static
OZF multipliers. A matrix M ∈ Rm×m is said to be Z-matrix
if Mij ≤ 0 for all i 6= j. Moreover, M is said to be doubly
hyperdominant if it is a Z-matrix and M1m ≥ 0, 1T

mM ≥ 0,
where 1m ∈ Rm stands for the all-ones-vector. In addition,
M is said to be doubly dominant if |M |d1m ≥ 0, 1T

m|M |d ≥
0. In this paper we denote by Zm,DHDm,DDm ⊂ Rm×m

the sets of Z-matrices, doubly hyperdominant, and doubly
dominant matrices, respectively. Namely, we define

DHDm :=
{
M ∈ Zm : M1m ≥ 0, 1T

mM ≥ 0
}
,

DDm :=
{
M ∈ Rm×m : |M |d1m ≥ 0, 1T

m|M |d ≥ 0
}
.
(1)

It is obvious that DHDm ⊊ DDm.

II. ANALYSIS OF NONLINEAR FEEDBACK SYSTEMS
USING IQC

Let us consider the feedback system Σ shown in Fig. 1.
Here, G is a linear system described by

G :

{
ẋ(t) = Ax(t) +Bw(t),
z(t) = Cx(t) +Dw(t)

(2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m.
We assume that A is Hurwitz. On the other hand, we have

w(t) = Φ(z(t)) (3)

where Φ : Rm → Rm stands for a static nonlinearity. We
assume that the feedback system Σ is well-posed. The well-
posedness can be assessed according to the property of Φ. If
‖Φ‖ ≤ 1, then we can readily conclude the well-posedness if
‖D‖ < 1, even though this is fairly conservative in general.

In this paper, we are interested in the analysis of the
feedback system Σ in the framework of IQC with multipliers.
Let us focus on the global asymptotic stability (GAS) [9]
analysis of the system. In the following, we say that the
feedback system Σ is stable if its origin is GAS. The next
proposition forms the basis for the stability analysis in the
framework of IQC [11], [15].

- Φ

�
w

G
z

Fig. 1. Nonlinear feedback system Σ.

Proposition 1 ([11]): Let us define Π⋆ ⊂ S2m by

Π⋆ :=

{
Π ∈ S2m :

[
ζ

Φ(ζ)

]T
Π

[
ζ

Φ(ζ)

]
≥ 0 ∀ζ ∈ Rm

}
. (4)

Then, the system Σ is stable if there exist P � 0 and Π ∈ Π⋆

such that[
PA+ATP PB

BTP 0

]
+

[
C D
0 Im

]T
Π

[
C D
0 Im

]
≺ 0. (5)

In addition to the stability, IQC framework allows us to an-
alyze various performance specifications of feedback systems
with nonlinearities. In IQC-based analysis conditions such as
Proposition 1, it is of prime importance to employ a set of
multipliers Π ⊂ Π⋆ that is numerically tractable in solving
(5) and captures the input-output properties of the underlying
nonlinearities as accurately as possible. This paper addresses
this issue and focuses on static OZF multipliers [12], [18],
[16] for slope-restricted and idempotent nonlinearities.

III. STATIC O’SHEA-ZAMES-FALB MULTIPLIERS FOR
IDEMPOTENT NONLINEARITIES

A. Basic Results

In this section, we follow the arguments of [8] on OZF
multipliers for slope-restricted nonlinearities. For a nonlin-
earity Φ : Rp → Rp, we define diagq(Φ) : Rqp → Rqp by
diagq(Φ) := diag(Φ, · · · , Φ︸ ︷︷ ︸

q

).

Definition 1: Let µ ≤ 0 ≤ ν. Then a nonlinearity ϕ : R →
R is said to be slope-restricted, in short ϕ ∈ slope[µ, ν], if

ϕ(0) = 0 and µ ≤ ϕ(p)− ϕ(q)

p− q
≤ ν for all p, q ∈ R, p 6= q.

Definition 2: For µ ≤ 0 ≤ ν, we define

Φm
µ,ν := {Φ : Φ = diagm(ϕ), ϕ ∈ slope[µ, ν]} . (6)

In addition, we define

Φm
odd := {Φ : Φ = diagm(ϕ), ϕ : R → R is odd} . (7)
Under these definitions, the main result of [8] on static

OZF multipliers for slope-restricted nonlinearities can be
summarized by the next lemma.
Lemma 1: [8] For a given nonlinearity Φ ∈ Φm

µ,ν , we have

(∗)T
[
0m M
MT 0m

]([
νIm −Im
−µIm Im

] [
ζ

Φ(ζ)

])
≥ 0 ∀ζ ∈ Rm

for any M ∈ DHDm. In addition, if Φ ∈ Φm
µ,ν ∩Φm

odd, then
this holds for any M ∈ DDm.
Remark 1: For systems that include repeated scalar nonlin-
earities Φ ∈ Φm

0,1 ∩ Φm
odd in a special fashion, a stability

condition using diagonally dominant positive definite ma-
trices is known [3]. We can prove that this condition is a
special (restricted) one of the IQC-based condition (5) with
standard OZF multipliers in Lemma 1. Details are omitted
due to limited space.
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B. New Results for Idempotent Nonlinearities

In this paper, we are interested in nonlinearities with idem-
potence. Note that a nonlinearity ϕ : R → R is said to be
idempotent if ϕ = ϕ ◦ϕ where ◦ stands for the composition.
The class of idempotent nonlinearities includes asymmetric
saturation nonlinearities with any upper and lower limits (see
Fig. 2), and the ReLU nonlinearity as a special case of them.
These appear very often in control systems and NNs. In fact,
the class of idempotent nonlinearities seems to be broader
than our intuition, and we can confirm that the nonlinear
operator ϕ : R → R represented by

ϕ(ζ) =

{
ζ −b ≤ ζ ≤ a
ϕa,b(ζ) ζ < −b, a < ζ

is idempotent where a, b ≥ 0 and ϕa,b : R → R is any
nonlinear operator satisfying ϕa,b(ζ) ∈ [−b, a] (∀ζ ∈ R).

For the ease of description, let us define

Φm
id := {Φ : Φ = diagm(ϕ), ϕ is idempotent} . (8)

For a given N ∈ N, we further define

J [N ]
m =

[
J
[N ]
m,11 J

[N ]
m,12

0Nm,m J
[N ]
m,22

]
∈ R2Nm×2m,

J
[N ]
m,11 =

[
0(N−1)m,m

Im

]
∈ RNm×m,

J
[N ]
m,12 =

[
1N−1 ⊗ Im

0m

]
∈ RNm×m, J

[N ]
m,22 = 1N ⊗ Im ∈ RNm×m

(9)

where ⊗ stands for the Kronecker product. Note that for
N = 1 we have J [1]

m = I2m. We are now ready to state the
first main result of this paper.
Theorem 1: For given nonlinearity Φ ∈ Φm

µ,ν ∩ Φm
id and

N ∈ N, we have

(∗)T
[
0Nm M
MT 0Nm

]([
νINm −INm

−µINm INm

]
J
[N ]
m

[
ζ

Φ(ζ)

])
≥ 0 ∀ζ ∈ Rm

for any M ∈ DHDNm. In addition, if Φ ∈ Φm
µ,ν∩Φ

m
id∩Φ

m
odd,

then this holds for any M ∈ DDNm.
Proof of Theorem 1: We note that

J [N ]
m

[
ζ

Φ(ζ)

]
=

[
ζ [N ]

diagN (Φ)(ζ [N ])

]
, ζ [N ] :=


Φ(ζ)

...
Φ(ζ)
ζ


N − 1

∈ RNm

where we used the fact that Φ ∈ Φm
id and hence Φ ◦

Φ(ζ) = Φ(ζ) holds. Since diagN (Φ) ∈ ΦNm
µ,ν , the results

in Theorem 1 readily follow from Lemma 1.

Fig. 2. Input-output plots of asymmetric saturation ϕsat (left) and
hyperbolic tangent ϕtanh (right). We see ϕsat ∈ Φ0,1 and ϕtanh ∈ Φ0,1

but ϕsat also satisfies idempotence.

Again, if we let N = 1, then we have J [1]
m = I2m,

and hence in this case Theorem 1 reduces to Lemma 1.
Therefore, our main interest is whether we can enlarge the
set of multipliers by letting N ≥ 2 in Theorem 1. Here, the
fact that Theorem 1 holds for any N ∈ N is related to the
fact that Φ = Φ ◦ · · · ◦ Φ︸ ︷︷ ︸

N

holds for any N ∈ N (details on

this interpretation is omitted due to limited space). However,
since the essential point of the idempotence is Φ = Φ ◦Φ, it
is deduced that we cannot enlarge the set of multipliers by
Theorem 1 even if we take N ≥ 3. To clarify these points,
let us define the following sets of multipliers that are readily
obtained from Theorem 1:

Π
[N ]
m,DHD :=

{
Π ∈ S2m : Π = (∗)T

[
0Nm M
MT 0Nm

]
([

νINm −INm

−µINm INm

]
J [N ]
m

)
, M ∈ DHDNm

}
,

(10)

Π
[N ]
m,DD :=

{
Π ∈ S2m : Π = (∗)T

[
0Nm M
MT 0Nm

]
([

νINm −INm

−µINm INm

]
J [N ]
m

)
, M ∈ DDNm

}
.

(11)

Regarding these sets of multipliers, we can obtain the next
theorem that validates the intuition stated above.
Theorem 2: For Π

[N ]
m,DHD ⊂ S2m and Π

[N ]
m,DD ⊂ S2m given

(10) and (11), respectively, we have

Π
[1]
m,DHD ⊊ Π

[2]
m,DHD, Π

[2]
m,DHD = Π

[N ]
m,DHD (N ≥ 3), (12)

Π
[1]
m,DD ⊊ Π

[2]
m,DD, Π

[2]
m,DD = Π

[N ]
m,DD (N ≥ 3). (13)

For the proof of this theorem, we need the next two
lemmas. The proofs of these lemmas are omitted due to
limited space.
Lemma 2: For given m,N ∈ N with N ≥ 2, let us define

E[N ]
m :=

[
e1 ⊗ Im
INm

]
∈ R(N+1)m×Nm (14)

where e1 ∈ R1×N stands for the first row of IN . Then, for
J [N ]
m ∈ R2Nm×2m defined by (9), we have

(I2 ⊗ E[N ]
m )J [N ]

m = J [N+1]
m . (15)

Lemma 3: For given m,N ∈ N with N ≥ 2, let us define

DHDNm
:=

{
M ∈ RNm×Nm :

M = E[N ]T
m ME[N ]

m , M ∈ DHD(N+1)m
}
,

(16)

DDNm
:=

{
M ∈ RNm×Nm :

M = E[N ]T
m ME[N ]

m , M ∈ DD(N+1)m
}
.

(17)

Then, we have DHDNm
= DHDNm and DDNm

= DDNm.

Proof of Theorem 2: We first prove Π
[1]
m,DHD ⊊ Π

[2]
m,DHD

in (12). The proof for Π
[1]
m,DD ⊊ Π

[2]
m,DD in (13) follows in
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the same way. To this end, by focusing on (10), let us define
Π

[2]
m,DHD,sub ⊊ Π

[2]
m,DHD by

Π
[2]
m,DHD,sub :=

{
Π ∈ S2m : Π = (∗)T

[
02m M
MT 02m

]
([

νI2m −I2m
−µI2m I2m

]
J [2]
m

)
, M =

[
0m 0m
0mM0

]
, M0 ∈ DHDm

}
.

Then, for the proof of Π
[1]
m,DHD ⊊ Π

[2]
m,DHD, it suffices to

show that Π[1]
m,DHD = Π

[2]
m,DHD,sub. Since

[
02m M
MT 02m

]
=


0m 0m
Im 0m
0m 0m
0m Im

[
0m M0

MT
0 0m

]
0m 0m
Im 0m
0m 0m
0m Im


T

holds for M =

[
0m 0m
0m M0

]
, and since


0m 0m
Im 0m
0m 0m
0m Im


T [

νI2m −I2m
−µI2m I2m

]
J [2]
m

=

[
0m νIm 0m −Im
0m −µIm 0m Im

]
0m Im
Im 0m
0m Im
0m Im

 =

[
νIm −Im
−µIm Im

]

holds, we see that Π[2]
m,DHD,sub can be characterized equiva-

lently as

Π
[2]
m,DHD,sub :=

{
Π ∈ S2m : Π = (∗)T

[
0m M0

MT
0 0m

]
[
νIm −Im
−µIm Im

]
, M0 ∈ DHDm

}
.

This clearly shows that Π[1]
m,DHD = Π

[2]
m,DHD,sub holds.

We next prove Π
[2]
m,DHD = Π

[N ]
m,DHD (N ≥ 3) in (12). The

proof for Π
[2]
m,DD = Π

[N ]
m,DD (N ≥ 3) in (13) follows in the

same way. For N ≥ 2, recall from (10) that

Π
[N+1]
m,DHD =

{
Π ∈ S2m : Π = (∗)T

[
0(N+1)m M
MT 0(N+1)m

]
([

νI(N+1)m −I(N+1)m

−µI(N+1)m I(N+1)m

]
J [N+1]
m

)
, M ∈ DHD(N+1)m

}
.

Then, since J [N+1]
m = (I2⊗E[N ]

m )J [N ]
m holds from Lemma 2,

and since[
νI(N+1)m −I(N+1)m

−µI(N+1)m I(N+1)m

]
(I2 ⊗ E[N ]

m )

= (I2 ⊗ E[N ]
m )

[
νINm −INm

−µINm INm

]
holds, we see

Π
[N+1]
m,DHD =

{
Π ∈ S2m : Π = (∗)T

[
0Nm E

[N ]T
m ME

[N ]
m

∗ 0Nm

]
([

νINm −INm

−µINm INm

]
J [N ]
m

)
, M ∈ DHD(N+1)m

}
.

Then, by using (16), this can be rewritten equivalently as

Π
[N+1]
m,DHD =

{
Π ∈ S2m : Π = (∗)T

[
0Nm M
MT 0Nm

]
([

νINm −INm

−µINm INm

]
J [N ]
m

)
, M ∈ DHDNm

}
.

From Lemma 3, this clearly shows that Π
[N ]
m,DHD =

Π
[N+1]
m,DHD (N ≥ 2). This completes the proof.

IV. INTERPRETATION ON THE ENLARGEMENT OF
THE SET OF MULTIPLIERS

In the preceding section, we have clarified that for Φ ∈
Φm

µ,ν ∩ Φm
id we can employ the novel set of multiplier

Π
[2]
m,DHD defined by (10), and for Φ ∈ Φm

µ,ν∩Φm
id∩Φm

odd we
can employ Π

[2]
m,DD defined by (11). As proved, the novel set

of multiplier Π[2]
m,DHD comprises the known set of multipliers

Π
[1]
m,DHD in the way that

Π
[1]
m,DHD = Π

[2]
m,DHD,sub ⊊ Π

[2]
m,DHD. (18)

Similarly, we can show that

Π
[1]
m,DD = Π

[2]
m,DD,sub ⊊ Π

[2]
m,DD (19)

holds where

Π
[2]
m,DD,sub :=

{
Π ∈ S2m : Π = (∗)T

[
02m M
MT 02m

]
([

νI2m −I2m
−µI2m I2m

]
J [2]
m

)
, M =

[
0m 0m
0m M0

]
, M0 ∈ DDm

}
.

The inclusion relationship (18) (resp. (19)) shows how the
set of the multipliers has been enlarged by Π

[2]
m,DHD over

Π
[1]
m,DHD (resp. Π[2]

m,DD over Π
[1]
m,DD). For general µ, ν such

that µ ≤ 0 ≤ ν, further interpretation of this enlargement
seems hardly available. However, for µ = 0 and ν = 1,
we can obtain much clearer interpretation as shown below.
Even under the restriction to µ = 0 and ν = 1, we note that
Φm

0,1 ∩ Φm
id and Φm

0,1 ∩ Φm
id ∩ Φm

odd still include important
nonlinearities such as asymmetric saturation nonlinearities
with any upper and lower limits and symmetric saturation
nonlinearities, respectively.

To clarify this interpretation, let us define the sets of right
hyperdominant matrices and right dominant matrices by

RHDm := {M ∈ Zm : M1m ≥ 0} ,
RDm :=

{
M ∈ Rm×m : |M |d1m ≥ 0

}
.

(20)

It is clear that RHDm ⊊ RDm. In addition, in comparison
with DHDm and DDm given by (1), we emphasize that
DHDm ⊊ RHDm and DDm ⊊ RDm hold. By using these
sets of matrices, we can characterize the sets of multipliers
Π

[2]
m,DHD and Π

[2]
m,DD for µ = 0 and ν = 1 concisely as

summarized in the next theorem.
Theorem 3: Let us consider the sets of multipliers Π[2]

m,DHD
and Π

[2]
m,DD given by (10) and (11), respectively. Suppose
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µ = 0 and ν = 1. Then, these sets of multipliers are
equivalently characterized as

Π
[2]
m,DHD = Π

[1]
m,RHD,

Π
[1]
m,RHD :={
Π ∈ S2m : Π = (∗)T

[
0m M
MT 0m

] [
Im −Im
0m Im

]
, M ∈ RHDm

}
,

(21)

Π
[2]
m,DD = Π

[1]
m,RD,

Π
[1]
m,RD :={
Π ∈ S2m : Π = (∗)T

[
0m M
MT 0m

] [
Im −Im
0m Im

]
, M ∈ RDm

}
.

(22)

Remark 2: This theorem shows that, when dealing with a
nonlinearity Φ ∈ Φm

0,1∩Φm
id (resp. Φ ∈ Φm

0,1∩Φm
id ∩Φm

odd),
the restriction M ∈ DHDm (resp. M ∈ DDm) in the known
set of OZF multiplies Π

[1]
m,DHD (resp. Π[1]

m,DD) is relaxed to
M ∈ RHDm (resp. M ∈ RDm).
Remark 3: When dealing with a nonlinearity Φ ∈ Φm

0,1 ∩
Φm

id (resp. Φ ∈ Φm
0,1∩Φ

m
id∩Φ

m
odd) with the novel set of OZF

multipliers Π[2]
m,DHD (resp. Π[2]

m,DD) directly in Theorem 2, we
have to employ the matrix variable M ∈ DHD2m (resp. M ∈
DD2m) whose size is 2m. However, Theorem 3 shows that
it suffices in fact to employ M ∈ RHDm (resp. M ∈ RDm)
whose size is m. Namely, by Theorem 3, we can achieve
considerable reduction of the computational complexity.
Remark 4: We note that the proof of Theorem 3 given
below strongly relies on the matrix structure[

νIm −Im
−µIm Im

]
=

[
Im −Im
0m Im

]
(23)

that holds for µ = 0 and ν = 1.
For the proof of Theorem 3, the next lemma plays an

important role. The proof of this lemma is omitted due to
limited space.
Lemma 4: Let us define

RHDm
:=

{
M =

[
0m
Im

]T
M

[
Im
Im

]
: M ∈ DHD2m

}
,(24)

RDm
:=

{
M =

[
0m
Im

]T
M

[
Im
Im

]
: M ∈ DD2m

}
. (25)

Then, we have RHDm
= RHDm and RDm

= RDm.
Proof of Theorem 3: To prove (21), we write down
explicitly Π

[2]
m,DHD by (10) as

Π
[2]
m,DHD

=

Π ∈ S2m : Π = (∗)T
[
02m M

M
T −M −M

T

]
0m Im
Im 0m
0m Im
0m Im

 ,

M ∈ DHD2m
}

=

{
Π ∈ S2m : Π = (∗)T

[
0m M
MT 0m

] [
Im−Im
0m Im

]
,

M =

[
0m
Im

]T
M

[
Im
Im

]
, M ∈ DHD2m

}
(26)

where (23) enables us to arrive at this concise expression.
Then, from Lemma 4, we see that Π

[2]
m,DHD = Π

[1]
m,RHD

holds. The proof for (22) follows in the same way. Indeed,
from (11), we see that Π

[2]
m,DD can be rewritten as (26)

with DHD2m being replaced by DD2m. Therefore, from
Lemma 4, we see that Π[2]

m,DD = Π
[1]
m,RD holds.

V. NUMERICAL EXAMPLES

Let us consider the case where the coefficient matrices of
the system G given by (2) are

A =

[
0.16 0.49

−0.41 −0.56

]
, B =

[
a −0.13 0.28 0.43

−0.32 b −0.42 0.28

]
,

C =


−0.09 0.06
−0.39 0.06
−0.33 1.92
−1.17 1.77

 , D = 04,4.

(27)

For the cases Φ ∈ Φm
0,1 ∩Φm

id and Φ ∈ Φm
0,1 ∩Φm

id ∩Φm
odd

where m = 4, we examined the stability of the feedback
system Σ with respect to the variation of the parameters a
and b over a ∈ [−1.5, 4.5] and b ∈ [−2.5, 2.5].

Even though this example is an academic and small-size
one, the problem setup is chosen to simulate the typical situa-
tion of the stability analysis of RNNs and NN-driven control
systems. When we employ an RNN as a model of a complex
dynamical system, we typically incorporate a large number
of activation functions to imitate the complex behavior. In
addition, for a plant subject to unknown nonlinearities, we
often employ a dynamical NN as a controller again with
a large number of activation functions to approximate the
unknown nonlinearities. In such cases, the system of interest
will be described by (2) and (3) where m > n as in (27) (in
this case, n = 2 and m = 4). In addition, in the learning
phase of an RNN as a model of a complex dynamical
system or a dynamical NN controller, the weights of NNs are
updated along decent directions with respect to predefined
objective functions. In such cases, it is preferable to see
beforehand how far we can shift the current weights along
the decent direction while maintaining the stability. Such
weights appear as the elements of the coefficient matrices
of the system G in (2). With these in mind, the problem
setup here has been chosen.

Assuming Φ ∈ Φm
0,1 ∩ Φm

id that includes asymmetric
saturation nonlinearities as special cases, we tested the LMI
(5) with the set of known OZF multipliers Π

[1]
m,DHD ⊂ Π⋆

given by (10) and newly proposed Π
[1]
m,RHD ⊂ Π⋆ given

by (21), where Π
[1]
m,DHD ⊊ Π

[1]
m,RHD holds. The results are

shown in Fig. 3. Both LMIs with Π
[1]
m,DHD and Π

[1]
m,RHD

turned out to be feasible for (a, b) in the green region,
whereas only the LMI with Π

[1]
m,RHD turned out to be feasible

for (a, b) in the magenta region. By employing the novel set
of multipliers Π

[1]
m,RHD, we can confirm that the region with

stability certificate has been enlarged.
Next, assuming Φ ∈ Φm

0,1∩Φid∩Φodd that includes sym-
metric saturation nonlinearities as typical cases, we tested the
LMI (5) with the set of known OZF multipliers Π[1]

m,DD ⊂ Π⋆
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given by (11) and newly proposed Π
[1]
m,RD ⊂ Π⋆ given by

(22), where Π
[1]
m,DD ⊊ Π

[1]
m,RD holds. The results are shown

in Fig. 4. Similarly to Fig. 3, both LMIs with Π
[1]
m,DD and

Π
[1]
m,RD turned out to be feasible for (a, b) in the green region,

whereas only the LMI with Π
[1]
m,RD turned out to be feasible

for (a, b) in the magenta region. By employing the novel set
of multipliers Π

[1]
m,RD, we can confirm that the region with

stability certificate has been drastically enlarged.

VI. CONCLUSION

We investigated static OZF multipliers for slope-restricted
and idempotent nonlinearities. By actively using the idem-
potence property, we first showed that we can enlarge the
set of the standard OZF multipliers for slope-restricted
nonlinearities. In particular, for slope-restricted and idem-
potent nonlinearities with slope [0, 1], we provided a clear
understanding on how the set of the standard OZF multipliers
is enlarged. We finally illustrated the effectiveness of the
newly proposed multipliers by numerical examples.

In this paper, we dealt with static OZF multipliers that
are valid in dealing with both continuous- and discrete-
time nonlinear feedback systems. Future topics include the
extension of the current results to dynamic OZF multipliers.
In such extension, existing studies suggest that it might
be necessary to distinguish the treatments for continuous-
and discrete-time nonlinear feedback systems. This topic is
currently under investigation.
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