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Abstract— This paper proposes a control strategy consisting
of a robust controller and an Echo State Network (ESN)
based control law for stabilizing a class of uncertain nonlinear
discrete-time systems subject to persistent disturbances. Firstly,
the robust controller is designed to ensure that the closed-loop
system is Input-to-State Stable (ISS) with a guaranteed stability
region regardless of the ESN control action and exogenous
disturbances. Then, the ESN-based controller is trained in order
to mitigate the effects of disturbances on the system output. A
numerical example demonstrates the potential of the proposed
control design method.

I. INTRODUCTION

Artificial Intelligence tools have been used to learning and
control of dynamic phenomena that are difficult to model
correctly such as unknown, complex and non-linear systems.
For instance, [1] utilizes a type of recurrent neural network
(RNN) for redundant manipulators motion control in noisy
environments, and [2] employs two recurrent neural networks
for different tasks in a model predictive control approach for
unknown nonlinear dynamical systems. In particular, neural
networks have also been used to replace controllers as in
[3], which considers a discrete-time RNN for learning a
controller based on the inverse model approach applied to
diverse linear and non-linear plants. However, RNNs are
generally hard to train due to problems related to the back-
propagation technique for long term time intervals; see, e.g.,
[4]. Among several types of recurrent neural networks avail-
able in specialized literature, Echo State Networks (ESNs)
seem to be more suitable for real-time implementations
[5], since they employ fast linear regression algorithms for
training [6]. Due to fast learning capabilities, ESNs have
attracted recurrent interest of control practitioners such as the
works [3] and [7] which consider control structures based on
ESNs for different classes of linear and non-linear plants.

A major drawback of applying RNNs for modeling and
controlling dynamics systems is the lack of formal verifica-
tion tools providing safety and performance guarantees [8].
Recently, several works have considered robust control the-
oretic tools for addressing stability issues related to closed-
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loop systems with the addition of learning feedback compo-
nents. For instance, [9] reformulates the feedback system in
terms of a nonlinear differential inclusion in order to obtain
stability certificates, [10] proposed a learning-based robust
model predictive control approach for linear systems with
bounded state-dependent uncertainties, [11] utilized a model
predictive control in combination with online learning of a
non-linear Gaussian Process model scheme with guaranteed
input-to-state stability, and [12] proposed a structure where
robust feasibility and constraint satisfaction are guaranteed
by nominal models, while performance is optimized using
the learned models.

Most of the very recent results applying robust control
tools to derive stability and performance guarantees for feed-
back systems with learning capabilities are based on semi-
definite programming (SDP) approaches; see, e.g., [9], [13],
[14], [15] and [16] to cite a few. However, when considering
ESNs for modeling and control of complex systems, SDP
tools may lead to a prohibitive computational effort, since
ESN dynamic models typically have a large number of states.
In this paper, we propose a different solution to obtain sta-
bility guarantees for closed-loop systems with an embedded
learning control law to avoid large computations when deal-
ing with large-scale feedback systems. In particular, a two-
loop strategy is considered (consisting of a robust controller
with an ESN-based outer loop controller) in order to mitigate
the effects of persistent disturbances for a class of (possibly
open-loop unstable) uncertain nonlinear systems. The robust
controller is firstly designed to guarantee that the closed-
loop system is input-to-state stable (ISS) regardless of the
ESN-based control law and exogenous disturbances, while
minimizing the disturbance effects utilizing SDP tools. Then,
the ESN-based control law is trained in order to improve the
closed-loop performance thanks to the ISS property.

The remainder of this paper is structured as follows.
Section II describes the problem to be addressed in this paper
and Section III introduces some basic results on ISS and
ESNs, which are instrumental to derive the main result of this
paper as established in Section IV. Section V illustrates the
application of the proposed results to a simulation example,
whereas concluding remarks are drawn in Section VI.

Notation: Z is the set of integers, Z≥ is the set of non-
negative integers, R is the set of real numbers, R≥ is the
set of non-negative real numbers, Rn×m is the set of n×m
real matrices. For a vector sequence x(k), k = 0, 1, . . . ,∞,
the one-step ahead time-shift operation is denoted by x+ =
x(k+1), where the argument k of x(k) is often omitted, and
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∥x∥∞ := supk∈Z≥
∥x(k)∥, where ∥x(k)∥ :=

√
x(k)Tx(k).

A function α : R≥ → R≥ is a class K-function if it is
continuous, strictly increasing and α(0) = 0, and β : R≥ ×
R≥ → R≥ is a class KL-function if β(s, t) is a class K-
function on s for each fixed t ≥ 0 and β(s, t) is decreasing
in t and β(s, t) → 0 as t → ∞ for each fixed s ≥ 0.

II. PROBLEM STATEMENT

Consider the following class of nonlinear discrete-time
systems:

G :

{
x+ = f(x, θ, u, d)

y = Cx
(1)

where x ∈ X ⊂ Rnx is the state vector, θ ∈ Θ ⊂ Rnθ is
a vector of time invariant uncertain parameters, u ∈ Rnu

is the controlled input, d ∈ D ⊂ Rnd is the disturbance
input, y ∈ Rny is the controlled output, f(·) is a polynomial
vector function of x and linear with respect to (θ, u, d), and
X , Θ and D are compact sets. It is assumed with respect to
system (1) that:
A1) f(0, θ, 0, 0) = 0 for all θ ∈ Θ.
A2) X is a convex set, with 0 ∈ X , which can be represented

in terms of either the convex hull of its nv vertices, i.e.,

X := Co{v1, . . . , vnv
},

or, alternatively, as the intersection of nh half-spaces

X := {x ∈ Rnx : hT
i x ≤ 1, i = 1, . . . , nh}

with vi ∈ Rnx , i = 1, . . . , nv , and hj ∈ Rnx ,
j = 1, . . . , nh, defining respectively the vertices and
faces of X .

A3) Θ is a polytopic set with known vertices.
A4) D is a magnitude bounded domain defined as

D := {d ∈ Rnd : dT d ≤ η2d/2} (2)

with ηd > 0 defining the size of D.
In this paper, we are interested in regulating the controlled

output y (around a desired reference r) while mitigating the
effects of (magnitude bounded) disturbance d considering
that the controlled input u is generated by the combination of
a robust control law u1 and a correction term u2 (determined
by an Echo State Network – ESN) as illustrated in Fig. 1.

Robust
Controller +

Uncertain
Nonlinear System

d

ESN-based
Controller

ur e u1

u2

y

−

Fig. 1. Proposed Control Setup.

The robust control signal u1 is designed to ensure that
the closed-loop system is input-to-state stable regardless the
persistent disturbance d and the control signal u2 (assuming

that both are magnitude bounded with known limits). The
correcting signal u2 ∈ U is computed by means of an ESN
which is designed to mitigate the effects of d on y. It should
be noted that this control scheme guarantees that the closed-
loop system is ISS.

For simplicity of presentation, this paper focuses on the
problem of regulating y around r ≡ 0 and it assumes that:
A5) u2 is constrained to the following set

U := {u2 ∈ Rnu : uT
2 u2 ≤ η2u/2}, (3)

with ηu > 0 defining the size of U .
In addition, we consider that the robust control signal is a

polynomial state feedback control law as given below

u1 = K(x)x, (4)

with K : Rnx → Rnu × Rnx being a polynomial matrix
function to be determined.

In view of the above scenario, the problems to be ad-
dressed in this paper are as follows:

• Robust Control Problem: design K(x) such that the
closed-loop system of (1) with u = u1+u2 is ISS for all
x(0) ∈ R ⊂ X , u2 ∈ U and d ∈ D while minimizing
∥x∥, with R representing an over-bounding estimate of
the reachable set.

• ESN-based Control Problem: for a given stabilizing
robust control law u1, train the ESN such that ∥y∥ is
minimized.

Remark 1: The proposed methodology can be applied to
systems whose origin is open-loop unstable, thanks to the
robust controller which ensures that the state trajectory is
bounded for given scalars ηd and ηu.

Remark 2: We have adopted echo state networks for their
fast training, however alternative recurrent neural networks
may be considered in the proposed control setup, possibly
Gated Recurrent Units and Encoder-Decoder networks.

III. INSTRUMENTAL RESULTS

In this section, we recall some fundamental results regard-
ing input-to-state stability and echo state networks which will
be instrumental to derive the main result of this paper.

A. Input-to-State Stability

Consider the following discrete-time system

x+ = f(x,w), x(0) = x0, x ∈ X , w ∈ W, (5)

where x ∈ X , w ∈ W , X is a compact set containing the
origin and

W := {w ∈ Rnw : wTw ≤ 1} (6)

Definition 1: (Input-to-State Stability [17], [18]) The ori-
gin of system (5) is said to be ISS if there exist a K-function
α : R≥ → R≥, a KL-function β : R≥ × R≥ → R≥0 and a
positive scalar ϱ such that the following holds:

∥x(k, x0, w)∥ ≤ α(∥w∥) + β(∥x0∥, k) (7)

for all k ∈ Z≥, ∥x0∥ ≤ ϱ and ∥w∥∞ ≤ ϱ.
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The following lemma is a Lyapunov characterization of
input-to-state stability according to Definition 1, which has
been adapted from [18, Lemma 1] to our context.

Lemma 1: (Lyapunov ISS Characterization) The origin
of system (5) is ISS if there exist V : X → R≥ and a scalar
µ ∈ (0, 1) such that the following holds

∆V ≤ µ(wTw − V ), ∆V := V+ − V, (8)

for all x ∈ X and w ∈ W . Moreover, for all x(0) ∈ R and
w ∈ W , the state trajectory x(k) ∈ R for all k ≥ 0, where

R := {x ∈ X : V ≤ 1} (9)

satisfies R ⊂ X .

B. Echo State Networks
Echo State Networks (ESNs) are a type of recurrent

neural networks with fast learning that consist of an input
layer, a recurrent layer with a large number of sparsely
connected neurons (the reservoir), and an output layer [19].
The connecting weights of the input and reservoir layers
are fixed after initialization, and the output weights are
easily trainable by means of linear regression problems [20].
Under some mild assumptions, the internal stability and the
echo state property (i.e., the influence of initial conditions
progressively vanishes with time) are guaranteed. In other
words, the echo state property refers to the ability of an ESN
to maintain a stable internal state, regardless of the input it
receives, allowing the network to continue processing new
inputs without being affected by the previous inputs.

The ESN dynamics can be described in the following
discrete-time state space representation:{

ξ+ = (1− γ)ξ + γfξ
(
WR

R ξ +WR
υ υ +WR

bias

)
σ = Wσ

Rξ
(10)

where ξ ∈ Rn is the ESN state vector which corresponds
to the reservoir neurons, υ ∈ Rnυ is the ESN input, σ ∈
Rnσ is the ESN output, fξ : Rn × Rnυ → Rn is the
activation function – typically element-wise tanh(·), γ ∈
(0, 1) is the leak rate (a low pass filter constant), and WR

R ,
WR

υ and Wσ
R are the reservoir-to-reservoir, input-to-reservoir

and reservoir-to-output weight matrices, respectively, while
WR

bias represents a reservoir bias term.
The connections going to the reservoir are randomly

initialized and remain fixed. An ESN is typically initialized
by the following steps:
1) Matrices W

R

R ∈ Rn×n, WR
υ ∈ Rn×nυ and WR

bias ∈ Rn

are randomly generated according to a normal distribution
N (0, 1).

2) The matrix WR
R is obtained by re-scaling W

R

R such that
its spectral radius is smaller than 1 (to ensure the internal
stability). That is:

WR
R =

ρR
λmax

W
R

R, (11)

where ρR ∈ (0, 1) is the desired spectral radius and λmax

is the largest singular value of W
R

R.
3) WR

υ and WR
bias are multiplied by scaling factors ρυ and

ρbias.

These scaling parameters, ρR, ρυ and ρbias are key to the
learning performance of the network, having an impact on
the nonlinear representation and memory capacity of the
reservoir. Also, low values for the leak rate γ grant higher
memory capacity in reservoirs, while high values favor
quickly varying inputs and outputs.

From a sufficiently large sequence of inputs and outputs
(collected from the system), the reservoir-to-output weight
Wσ

R is trained by solving a least-squares problem. To train
an ESN, the input data υ[k] is arranged in a matrix Υ and
the desired output σ[k] in a vector Σ over a simulation time
period, where each row υT of Υ corresponds to a sample
time k and its columns are related to the input units. For
the sake of simplicity, we assume that there are multiple
inputs and only one output. The rows of Υ are input into the
network reservoir according to each sample time, inducing
a state matrix Ξ with the resulting sequence of states in
its rows. According with Ridge Regression, the reservoir-
to-output weight Wσ

R is a vector obtained by solving the
following linear system:

(ΞTΞ− λI)Wσ
R = ΞTΣ (12)

where λ is the Tikhonov regularization parameter, which
serves to penalize the weight magnitude, avoiding overfitting.
In case of multiple outputs, the weight vector Wσi

R for each
output σi is computed by solving the same equation (12),
however using the vector Σi with the desired outputs.

IV. CONTROL DESIGN

The main results of this paper are introduced in this
section. Firstly, a semi-definite programming approach is
devised for designing a stabilizing state-feedback robust
controller. Then, the ESN-based controller is designed con-
sidering the inverse dynamic control strategy.

A. Robust Control Design

The system G in (1) can be cast without loss of generality
as follows

G :

{
x+ = A(x, θ)x+Bu(θ)(u1 + u2) +Bd(θ)d

y = Cx
(13)

from the fact that f(x, θ, u, d) is polynomial w.r.t. (with
respect to) x and linear w.r.t. (θ, u, d), where A(·) ∈ Rnx×nx

is a polynomial matrix function of x and affine w.r.t. θ, and
Bu(·) ∈ Rnx×nu and Bd(·) ∈ Rnx×nd are affine matrix
functions of θ.

Remark 3: For simplicity of presentation, the input ma-
trices Bu and Bd of system G are constrained to be state
independent. However, we can easily handle state dependent
matrices considering the following matrix decompositions

Bu(x, θ) = Bu0(θ) + Π(x)TBu1

Bd(x, θ) = Bd0(θ) + Π(x)TBd1

with the matrices Bu0, Bu1, Bd0 and Bd1 being affine
functions of θ having appropriate dimensions.
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In order to derive a convex solution to the robust control
problem, let q be the largest degree of the polynomial entries
of A(x, θ) and the following definitions:

Bw(θ) =
[
ηuBu(θ) ηdBd(θ)

]
, w =

[
u2/ηu
d/ηd

]
,

nw = nu + nd (14)

A(x, θ) = A0(θ) + Π(x)TA1(θ), (15)

where A0(θ) ∈ Rnx×nx and A1(θ) ∈ Rqnx×nx are affine
matrix functions of θ, and

Π(x) =
[
m(1)(x)⊗ Inx

· · · m(q)(x)⊗ Inx

]T
, (16)

with m(l)(x) ∈ Rnl , l = 1, . . . , q, representing a vector
which entries are all the monomials of degree l.

Notice in view of (15) and (16) that there exist affine
matrix functions Ω0(x) ∈ Rnmnx×nx and Ω1(x) ∈
Rnmnx×nmnx such that the following hold:

Ω0(x) + Ω1(x)Π(x) = 0nmnx×nx
(17)

det{Ω1(x)} = c, c ̸= 0, ∀ x ∈ Rnx (18)

with c being a constant real scalar and

nm = n1 + · · ·+ nq (19)

In addition, the control gain K(x) of (4) is defined as:

K(x) = K0 +K1Π(x) (20)

where Π(x) is as in (16), and K0 ∈ RnU×nx and K1 ∈
Rnu×nmnx are matrices to be determined.

Hence, taking (13), (14) and (15) into account, the closed-
loop dynamics reads as follows

x+=

(
A0(θ)+Π(x)TA1(θ)+Bu(θ)

(
K0+K1Π(x)

))
x

+Bw(θ)w (21)

The following result proposes sufficient conditions for
designing K0 and K1 such that the above system is ISS
for all w ∈ W in terms of a finite set of LMI constraints.

Theorem 1: Consider the system defined in (1) satisfying
(A1)-(A4), its closed-loop dynamics in (21), with Π(x)
satisfying (17) and (18). Let µ ∈ (0, 1) be a given real
scalar. Suppose there exist Q = QT , G, M0, M1 and L
be real matrices, with appropriate dimensions, satisfying the
following LMIs:[

1 hT
i Q

Qhi Q

]
> 0, i = 1, . . . , nh (22)


(1−µ)

(
Q−G−GT

)
⋆ ⋆ ⋆ ⋆

0 0 ⋆ ⋆ ⋆
0 0 −µInw

⋆ ⋆
A0(θ)G+Bu(θ)M0 Bu(θ)M1 Bw(θ) −Q ⋆

A1(θ)G 0 0 0 0


+ LΩ(x) + Ω(x)TLT < 0, ∀ (x, θ) ∈ V{X ×Θ} (23)

where V{X ×Θ} stands for the set of all vertices of X ×Θ
and

Ω(x) =

[
Ω0(x) Ω1(x) 0 0 0

0 0 0 Ω0(x) Ω1(x)

]
.

Then, the closed system in (21) with

K0=M0G
−1, K1=M1G

−1
a , Ga=diag{G, . . . , G}, (24)

is locally ISS stable. Moreover, for all x(0) ∈ R and w(k) ∈
W , the state trajectory x(k) remains in R, ∀ k > 0, with

R = {x ∈ Rnx : xTQ−1x ≤ 1}. (25)

The proof of Theorem 1 is omitted for brevity, but a
detailed proof is available at [21].

The robust control law u1 = K(x)x can be synthesized
in order to minimize the effects of w(k) ∈ W on x(k) by
considering the following optimization problem

min
λ,Q,...,L,µ

λ :

{
λInx −Q ≥ 0,

(22) and (23),
(26)

which minimizes the largest eigenvalue of Q. Notice that the
above optimization problem implies that ∥x∥∞ ≤

√
λ.

B. ESN Learning and Testing

Several standard control algorithms use prior knowledge
about a system to accomplish the desired behavior, such
as the robust controller presented above. However, complex
nonlinear systems may not be fully known or modeled
correctly, prompting the application of a learning approach
such as neural networks.

Here, we consider a learning control based on the inverse
model of the plant, which takes the desired output of a system
and calculates the input that is needed to achieve that output.
In other words, it “inverts” the relationship between inputs
and outputs in the system.

An ESN is proposed as the inverse model for its desirable
features [22]. Being a type of recurrent neural network, the
ESN has an internal memory that allows it to maintain a
context or state across time steps, enabling it to better handle
temporal dependencies. ESNs are also easy and fast to train.

To learn the inverse model of the plant, this work considers
the set-up shown in Fig. 2. The ESN input υ = (ỹ, ũ1, ũ2)
collects past plant outputs y[·], and control signals u1[·] and
u2[·], spaced in time according to a delay parameter δ ∈ N.
Namely, ỹ = (y[k], y[k − δ], ..., y[k − mδ]) consists of the
current and past system outputs, ũ1 = (u1[k− δ], ..., u1[k−
mδ]) and ũ2 = (u2[k− 2δ], ..., u2[k− (m+ 1)δ]) collect m
previous control inputs. Given the network input υ[k] at time
k, the goal of the inverse model is to learn the plant control
input u2[k − δ], at time k − δ, that drove the system to the
current output y[k]. The number of past outputs m and the
delay δ are hyper-parameters to be properly tuned.

By simulating the plant with u1 being the signal from the
robust controller and u2 being a random signal within the
stability bounds, we obtain a matrix Ξ with the trajectory
of reservoir states and a vector Σ with the desired outputs.
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Then ridge regression is applied to train the inverse model
using Eq. (12), obtaining the reservoir-to-output matrix Wσ

R.

ESN g(ū2)

y[k−δ], . . . , y[k−mδ]

ū2[k−δ] u2[k−δ]
y[k]

ū2[k−δ] u2[k−δ]
u1[k−δ], . . . , u1[k−mδ]

ū2[k−δ] u2[k−δ]

u2[k−2δ], . . . , u2[k−(m+1)δ]

ū2[k−δ] u2[k−δ]

Fig. 2. General set-up for learning the inverse model.

Once the matrix Wσ
R is learned for the inverse model, the

resulting ESN can be used to generate the control signal u2

that improves performance. This is achieved by time shifting
δ steps in all signals of the learning set-up of Fig. 2, which
leads to the set-up for control with the inverse model as
shown in Fig. 3. At time k, by setting y[k + δ] equal to the
desired reference at time k+ δ (i.e., r[k+ δ]1), the ESN will
output the control signal u2[k] that should be input at the
current time to drive the plant to the desired reference.

ESN g(ū2)

y[k], . . . , y[k−(m−1)δ]

ū2[k] u2[k]
y[k+δ] = r[k+δ]

ū2[k] u2[k]
u1[k], . . . , u1[k−(m−1)δ]

ū2[k] u2[k]

u2[k−δ], . . . , u2[k−mδ]

ū2[k] u2[k]

Fig. 3. General set-up for inverse model control.

Before feeding the ESN control law to the control system,
ū2 is activated by the function g(ū2) =

√
1/2 ηu tanh (u2),

ensuring that u2 ∈ U .

V. ILLUSTRATIVE EXAMPLE

Consider the following system which consists of the Van
der Pol equation with the addition of an integrator:

ẋ1(t)= x2(t)

ẋ2(t)= −x1(t)+θ
(
1−x1(t)

2
)
x2(t)+u(t)+d(t)

ẋ3(t)= x1(t)

y(t)= x1(t)

(27)

where x :=
[
x1 x2 x3

]T ∈ X is the state vector, θ ∈
Θ ⊂ R is an uncertain parameter, u ∈ R is the control input,
d ∈ D ⊂ R is an exogenous disturbance, and y ∈ R is the
controlled output.

The control objective is to regulate y(t) around zero
considering the following sampled control law:

u(t) = u[kTs], ∀ t ∈ [kTs, (k+1)Ts), k ≥ 0, (28)

1Recall that in this paper, we are only considering the regulation problem
around y = 0 and thus r[k + δ] = 0.

where Ts is a sufficiently small sampling period. In addition,
the discrete-time control signal u[kTs] = u[k] = u will
be determined utilizing the control strategy described in
Section IV. To this end, by applying the Euler’s forward
approximation, the quasi-linear discrete-time representation
of (27) as given in (13) is defined by the following matrices:

A(x, θ) =

 1 Ts 0

−Ts 1−Tsθ
(
x2
1−1

)
0

Ts 0 1

,
Bu(θ)=Bu =

 0
Ts

0

 and Bw(θ)=Bw =

 0 0
Ts Ts

0 0

 .

In this example, it will be assumed that:
• X = {x ∈ R3 : |x1| ≤ 1};
• Θ = {θ ∈ R : 0.5 ≤ θ ≤ 0.9};
• D = {d ∈ R : |d| ≤ 0.5}; and
• U = {u2 ∈ R : |u2| ≤ 0.5}.

Notice that, in this example, X is only bounded on the x1

direction, since A(x, θ) is only a function of x1 and θ.
In order to design the robust controller, the system matrix

is cast as follows{
A(x, θ) = A0(θ) + Π(x)TA1(θ)

06×3 = Ω0(x) + Ω1(x)Π(x)

where

A0(θ) =

 1 Ts 0
−Ts Tsθ + 1 0
Ts 0 1

 , A1(θ) =


0 0 0
0 0 0
0 0 0
0 0 0
0 −Tsθ 0
0 0 0


Π(x) =

[
x1 ⊗ I3
x2
1 ⊗ I3

]
, Ω0(x) =

[
x1I3
03

]
and

Ω1(x) =

[
−I3 03
x1I3 −I3

]
.

Hence, by considering Ts = 0.1 s and θ = 0.75, the
optimization problem (26) is solved by applying a line search
over µ ∈ (0, 1) leading to the robust control law

u = (K0 +K1Π(x))x = K(x)x

for an optimal µ = 0.315, where

K(x)T =

−0.0643x2
1 + 2.18 · 10−5x1 − 72.5

0.693x2
1 − 0.00163x1 − 17.0

−0.146x2
1 + 0.000386x1 − 101.0

 ,

and the following reachable set estimate R = {x ∈ R3 :
0.606x2

1+0.0998x1x2+2.09x1x3+0.00786x2
2+0.158x2x3+

2.53x2
3 ≤ 10−3}.

Then, for training the ESN-based controller, a data-set
with 4994 samples was constructed based on simulations
of the closed-loop system (i.e., with u[k] = u1[k]) by
considering that d and u2 were filtered white noises with
cutoff frequencies defined to take into account typical low
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frequency disturbances. In addition, the following was as-
sumed for the ESN hyper-parameters: (i) a spectral radius
ρ = 0.414; (ii) reservoir size N = 161; (iii) leak rate
γ = 0.365; (iv) reservoir density of 0.638; (v) number of
past outputs (m = 1); and (vi) the sample delay (δ = 3).
These parameters were tuned based on the root mean square
(RMS) value of the system output y when adding the ESN
control action (i.e., u = u1+u2) relative to the robust control
action only (i.e., u = u1).

The performance of the proposed control strategy is
evaluated in the sequel by means of numerical simulations
considering the plant continuous-time model and the sampled
control law as defined in (27) and (28), respectively. In
particular, Fig. 4 shows the disturbance attenuation properties
of the proposed controller (i.e., u = u1 + u2) compared to
the robust control action only (i.e., u = u1). The results
show that the combination of robust control actions and ESN
outperformed the robust controller by an improvement factor
of 75.98%, which was calculated based on the RMS value
of system output y when adding the ESN control action to
the robust control law relative to the robust controller only
(which was the same metric utilized to determine δ and m
hyper-parameters for training the ESN-based controller).
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Fig. 4. System closed-loop response (at the top of figure) considering
u = u1 (red dashed line) and u = u1 + u2 (black solid line) for xT

0 =
[−0.001 0.001 0], θ = 0.75 and the disturbance signal (depicted at the
bottom of the figure) defined as d(t) = 0.25(1+ sin (1.25t) sin (0.25t)).

VI. CONCLUDING REMARKS

This paper has proposed a robust control strategy with
learning capabilities (based on ESNs) for stabilizing a class
of uncertain polynomial discrete-time systems subject to un-
known magnitude bounded disturbances. Firstly, a nonlinear
state feedback is designed to ensure that the state trajectory
driven by nonzero initial conditions and persistent distur-
bances is bounded to a positively invariant set regardless of
the ESN control law (assuming a bounded action). Secondly,
the ESN-based controller is trained to mitigate the effects
of disturbances on the system output. A numerical example
demonstrates the effectiveness of the proposed control tech-
nique. Future research will be concentrated on devising a
robust controller with online learning capabilities.
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