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Abstract— We develop a data-driven iterative learning con-
trol design framework for continuous-time systems that does
not require explicit or implicit identification of a system model.
Using Chebyshev polynomial orthogonal bases, we show that
all system trajectories can be characterised from sufficiently
rich input/output data. Using this crucial result we develop a
data-driven version of the model-based norm-optimal iterative
learning control algorithm, and provide a computationally
efficient implementation thereof. We rigorously analyse the
convergence properties of the resulting design and also present
a numerical example to illustrate its effectiveness.

I. INTRODUCTION

Data-driven techniques are currently one of the most active
research areas in control (see e.g. [1]–[5]). Much progress
has recently been made also on data-driven Iterative Learning
Control (ILC) techniques (see e.g. [6]–[10]). However, most
attention in this area has been focused on discrete-time prob-
lems; research about data-driven ILC design for continuous-
time systems has been relatively scarce. Traditional PID type
ILC design (see [11], [12]) uses only previous trial’s data
(without model information) to update the next trial input.
However, it requires a proper tuning of the PID parameters,
and generally has limited performance. Adaptive ILC design
(see e.g. [13]) requires knowledge of the model structure and
an explicit or implicit parameter identification process. More-
over, its convergence performance (e.g., monotonic error
convergence that is desirable in practice) is not guaranteed.
Frequency-domain model-free ILC design (see e.g. [14],
[15]) involves an explicit process to identify the frequency
response of the system (or its inverse) from past data.

In this paper, we develop a data-driven ILC design frame-
work for continuous-time systems that does not require
any (explicit or implicit) model or parameter identification
process, and that has guaranteed convergence performance
(monotonic tracking error norm convergence). To this pur-
pose we use approximation theory concepts (Chebyshev
polynomial orthogonal bases; COPB in the following) and
reference-trajectory tracking as an exemplary ILC problem.

Some features of COPB important for data-driven ILC are:
• Numerically accurate and computationally efficient al-

gorithms are available to compute COPB representa-
tions from samples of continuous-time functions.

• The convergence rate of the series is faster the smoother
the function is. Approximation error bounds are avail-
able for truncated series.

• Differentiation is reformulated as multiplication of the
vector of COPB coefficients and a differentiation matrix.
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• Error bounds for the approximation error of the deriva-
tive computed using a truncated series are computable
directly from the function itself.

Crucial in our approach is the transformation of the
continuous-time input and output trajectories into discrete
sequences of the coefficients of their COPB representations.
The COPB representation of the derivatives of these trajec-
tories can be computed directly via linear algebra operations
from the COPB representation of the trajectories themselves,
and no direct measurement of the derivatives or their numer-
ical approximation based on discretization is needed.

We exploit these advantages to reformulate the classical
model-based continuous-time reference-tracking ILC prob-
lem (see [16], [17]) into arbitrarily accurate, data-driven,
finite-dimensional approximations thereof, amenable to com-
putationally efficient and numerically accurate computer
treatment. We demonstrate the efficacy of COPB in data-
driven continuous-time ILC with numerical simulations.

The paper is structured as follows. In section II we recall
some basic definitions and concepts pertaining to iterative
learning control (subsection II-A), and to COPB (subsection
II-B). Section III contains the statement of a fundamental
result relating COPB representations of “sufficiently rich”
input-output data produced by a continuous-time LTI system,
and the COPB representations of all system trajectories. We
exploit such fundamental result in section IV, where we
reformulate the classical ILC problem into a data-driven
problem defined on a space of coefficient sequences. We
show how to use standard quadratic optimization techniques
to compute a solution and we rigorously analyse the con-
vergence properties of the resulting design. We illustrate our
approach with a numerical example in section V, and we
discuss our contribution and current research in section VI.

Notation

We denote by N, R and C respectively the set of natural,
real and complex numbers. Rn, respectively Cn, denote
the space of n-dimensional vectors with real, respectively
complex, entries. Rn×m denotes the set of n ×m matrices
with real entries; Rn×∞ the set of real matrices with n rows
and an infinite number of columns; and R∞×∞ the set of real
matrices with an infinite number of rows and columns. The
transpose of a matrix M is denoted by M⊤, and its pseu-
doinverse by M†. If A and B are two matrices with the same
number of columns, we define col(A,B) :=

[
A⊤ B⊤]⊤.

The i-th row of a matrix M is denoted by Mi,:, and its
i-th column denoted by M:,i. For matrix A ∈ Rn×m, the
column vector vec(A) is defined by stacking all the columns
of A, i.e., vec(A) :=

[
A⊤

:,1 A⊤
:,2 · · · A⊤

:,n

]⊤
. For a
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linear operator L, its kernel and range are denoted by ker[L]
and R[L] respectively. We denote by L2(I,R) the space of
square-integrable real-valued functions defined on a finite
interval I := [t0, t1] ⊂ R.

II. BACKGROUND

A. Iterative Learning Control
Iterative learning control (ILC) is a control design method

for systems working in a repetitive manner, e.g. a robotic
arm on a car assembly line which performs the same task
repeatedly, with high tracking accuracy requirements. The
idea of ILC is that by learning from previous executions
of the same task, improved tracking performance can be
obtained. We formalize the ILC design problem as follows.

Consider the following nth order linear time-invariant
continuous-time system with m inputs and p outputs

d

dt
xk(t) = Axk(t) +Buk(t)

yk(t) = Cxk(t) +Du(t), x(t0) = x0 , (1)

where xk(t) ∈ Rn, uk(t) ∈ Rm and yk(t) ∈ Rp denote
the state, input and output on kth iteration (or trial) at time
t; A,B,C,D are systems matrices with proper dimensions.
The system output yk is required to track a given reference
signal r defined over a finite interval I := [t0, t1] and in a
repetitive manner, i.e., at time t = t1, the time index is reset
to t = t0, the state is reset to x(t0) = x0, and the system is
required to track r over I again.

In operator form, the system (1) is represented as

yk = Spuk + d ,

where yk ∈ L2(I,Rp), uk ∈ L2(I,Rm), Sp is the convo-
lution operator, and d ∈ L2(I,Rp) represents the effect of
initial condition as given below

yk(t) =

∫ t

t0

CeA(t−τ)Buk(τ)dτ +Du(t) + CeAtx0.

For simplicity we can assume that d = 0 by incorporating it
into the reference – see [16], [17] for more details.

The ILC design task is to find a control-updating law as

uk+1 = f(uk, ek) ,

where ek := r − yk ∈ L2(I,Rp) is the tracking error on
trial k. The objective is to design the updating law so that a
steadily improved tracking performance and ideally perfect
tracking is achieved, i.e.,

lim
k→∞

ek = 0 .

A number of design methods have been proposed in
the literature. Among them, optimisation-based design ones
have attracted significant interests due to their guaranteed
convergence performance. This is the focus of this paper. In
particular, we consider the following so called norm optimal
ILC design (NOILC), which in its simplest form at each trial,
optimizes the following performance index

uk+1 = argminuk+1
{∥ek+1∥2Q + ∥uk+1 − uk∥2R}

s.t. yk+1 = Spuk+1 (2)

where ek+1 = r − yk+1 is the tracking error on trial k + 1,
and the norms are induced by the following inner products
in the output space y, f ∈ L2(I,Rp):

⟨y, f⟩Q :=

∫ t1

t0

y⊤(t)Qf(t)dt ;

and in the input space u, v ∈ L2(I,Rm):

⟨u, v⟩R :=

∫ t1

t0

u⊤(t)Rv(t)dt

where Q ≻ 0 and R ≻ 0 have compatible dimensions.
The above NOILC algorithm has several appealing con-

vergence properties, including guaranteed monotonic conver-
gence of the tracking error norm, and (under mild conditions)
perfect tracking of the reference signal. However, its formu-
lation does require full model information (the convolution
operator Sp) in the NOILC optimisation problem (2). In this
paper, we develop a data-driven NOILC design such that
no model information is needed, using latest developments
from COPB based data-driven control for continuous-time
systems. Before that, we first present some basic material on
Chebyshev polynomial orthogonal bases.

B. Chebyshev polynomial orthogonal bases

In the rest of this paper we denote by I the interval [−1, 1].
This does not entail any loss of generality, as every interval
[t0, t1] can be transformed into I by linear translation and
scaling. Define the weight function w by

w(t) :=
1√

1− t2
, t ∈ I .

The Chebyshev polynomials are defined by C0(t) := 1,
C1(t) := t, and Cn+1(t) = 2tCn(t)−Cn−1(t), n ≥ 1. They
are orthogonal with respect to the inner product defined by

⟨f, g⟩w :=

∫
I
f(t)g(t)w(t)dt ,

and they form a complete basis for L2(I,R), i.e. their linear
span is dense in L2(I,R).

It can be shown, see Section 6 of [18], that if f ∈ L2(I,R),
there exist unique f̃k ∈ R, k ∈ N, such that the sequence{∑n

k=0 f̃kCk

}
k∈N

converges in the mean to f ; if f is

Lipschitz-continuous, then the sequence
{∑n

k=0 f̃kCk

}
k∈N

converges absolutely and uniformly (see Theorem 3.1 p.
17 in [19]). Moreover, f̃k = ⟨f, Ck⟩w and {f̃k}k∈N ∈
ℓ2(N,R). The coefficients f̃k can be computed effectively
and accurately using an interpolation procedure, see [19].

Denote by C the infinite vector of polynomials

C :=
[
C0 C1 . . .

]⊤
, (3)

and by f̃ the infinite vector of coefficients, defined by

f̃ :=
[
f̃0 f̃1 . . .

]
. (4)

With these positions, we write

f =

∞∑
k=0

f̃kCk = f̃C . (5)
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We call the right-hand side of (5) the polynomial transform
of f (see p. 69 of [20]).

For vector functions, we use the following notation.
Denote by fi, i = 1, . . . , n the i-th component of f ∈
L2 (I,Rn), and let fi =

∑∞
k=0 f̃i,kCk be its COPB rep-

resentation; we write

f =

f̃1,0 f̃1,1 . . .
...

... . . .

f̃n,0 f̃n,1 . . .


︸ ︷︷ ︸

=:f̃

C . (6)

If f ∈ L2(I,R) has a COPB representation (5), we call

ΠN (f) :=

N∑
k=0

f̃kCk , (7)

the truncation or projection of the Chebyshev series for f to
degree N . It can be shown that the approximation error

f −ΠN (f) =

∞∑
k=N+1

f̃kCk , (8)

decays with N . For differentiable functions, the ∞-
approximation error is O(N−ν), where ν is the order of
differentiability, see Theorem 7.2 p. 53 of [19] and section
5.4.2 of [20], respectively. For analytic functions, the ∞-
approximation error is O(ρ−N ) for some 0 < ρ < 1, see
Theorem 8.2 p. 57 of [19]. For C∞-functions, the approxi-
mation error goes to zero faster than O(N−k) for every finite
k, see p. 47 of [20]. Similar results can be established for less
regular functions defined in Sobolev spaces (see Appendix
A.11 of [20]), and section 5.5.2 therein.

If f ∈ L2(I,R) is differentiable and d
dtf ∈ L2(I,R), then

the differentiation in the transform space equality holds:

d

dt
f =

∞∑
k=0

f̃k
d

dt
Ck , (9)

see p. 77 of [20]. Since Ck is a polynomial, d
dtCk is also a

polynomial, and there exist dk,j ∈ R such that

d

dt
Ck =

∞∑
j=0

dk,jCj , k ∈ N . (10)

Define (
d

dt
C

)⊤

:=
[
d
dtC0

d
dtC1 . . .

]
; (11)

from (10), using some tedious calculations, it can be proved
that the coefficients dk,j can be arranged in the infinite matrix

D =



0 0 0 0 0 . . .
1 0 0 0 0 . . .
0 4 0 0 0 . . .
3 0 6 0 0 . . .
0 8 0 8 0 . . .
5 0 10 0 10 . . .
...

...
...

...
...

. . .


. (12)

Note that the entries of D increase linearly with their indices.
We rewrite (10) as d

dtC = DC, and (9) is equivalent with

d

dt
f = f̃

d

dt
C = f̃DC . (13)

In practice, finite truncations of the infinite vectors of coef-
ficients and of the infinite differentiation matrices need to be
used. Denote the coefficients of d

dtf by f̃
(1)
k :

d

dt
f = f̃DC =:

[
f̃
(1)
0 f̃

(1)
1 . . .

]
︸ ︷︷ ︸

=:f̃(1)

C .

Let N be a fixed integer, partition

f̃ =:
[
ΠN (f) f̃ ′

]
and f̃ (1) =:

[
ΠN ( d

dtf) f̃ ′(1)
]
,

(14)
where f̃ ′, f̃ ′(1) ∈ R1×∞; partition D accordingly:

D =:

[
D11 D12

D21 D22

]
.

Note that ΠN ( d
dtf) = ΠN (f)D11 + f̃ ′D21 and that

d
dt (ΠN (f)) = ΠN (f)D11; we call d

dt (ΠN (f))−ΠN

(
d
dtf

)
the derivative approximation error. In the following we
assume that f̃k goes quickly to zero relative to the linear
increase of the entries of D. It follows that a large enough
N exists for which both f̃k and f̃

(1)
k are below machine

precision: then f̃ and f̃ (1) can be considered to have compact
support, and ΠN ( d

dtf) ≃ d
dt (ΠN (f)) = ΠN (f)D11. For

practical purposes the projection of the derivative equals the
derivative of the projection, which is computable with finite-
dimensional linear algebra operations.

III. ALL SYSTEM TRAJECTORIES FROM ONE

Consider an input-state-output representation
d

dt
x = Ax+Bu

y = Cx+Du , (15)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m.
Define

Ok :=


C if k = 0[
Ok−1

CAk

]
if k ≥ 1

;

the system lag is defined by

ℓ := min{k ∈ N | rank Ok = rank Ok−1} . (16)

Evidently ℓ ≤ n; if (C,A) is observable, then ℓ is the
observability index of the pair (C,A).

The following is Definition 1 in [1].
Definition 1: Let I = [−1, 1]. f : I → Rm is persistently

exciting of order k on I if
a) f is (k − 1)-times continuously differentiable in I;
b) For every v :=

[
v0 . . . vk−1

]
∈ R1×km it holds that

v


f(t)

f (1)(t)
...

f (k−1)(t)

 = 0 ∀ t ∈ I =⇒ v0, . . . , vk−1 = 0 . (17)
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Associate to (15) its external behavior, defined by

B =
{
col(u, y) ∈ C∞(I,Rm+p) | ∃ x ∈ C∞(I,Rn)

s.t. col(u, x, y) satisfies (15)} . (18)

Since the system (15) is linear, there is no finite-time escape
to infinity, and consequently all trajectories of B belong to
L2(I,Rm+p) and have a Chebyshev basis representation. We
define Π(B), the projection of B on the space of Chebyshev
coefficient sequences, by

Π(B) :=
{
col(ũ, ỹ) ∈ ℓ2(N,Rm+p) | ∃ col(u, y) ∈ B

s.t. col(ũ, ỹ) = Π(col(u, y))} . (19)

In the following, given the Chebyshev representation f̃ of
f ∈ L2(I,Rr), we denote by WL(f) the Lr ×∞ matrix

WL(f̃) := col
(
f̃Dj

)
j=0,...,L−1

. (20)

The following is the continuous-time analogous of the main
result of [3]. We denote the i-th row of a matrix M by Mi,:.

Theorem 1: Define B by (18), and let col (u, y) ∈ B.
Assume that (A,B) is controllable, and that u is persistently
exciting of order L > ℓ+n. Define WL(ũ), WL(ỹ) by (20).
Then dimR [col(WL(ũ),WL(ỹ))] = Lm+ n =: d.

Let Vu ∈ RLm×d and Vy ∈ RLp×d be such that
col(Vu, Vy) is a basis matrix for R [col(WL(ũ),WL(ỹ))].
Define Π(B) by (19). The following are equivalent:

1) col (ũ′, ỹ′) ∈ Π(B);
2) There exists G ∈ Rd×∞ such that[

W(ũ′)
W(ỹ′)

]
=

[
Vu

Vy

]
G , (21)

3) There exists G ∈ Rd×∞ such that

(VuG)1,: = ũ′

(VyG)1,: = ỹ′

(VuG)1,:Di − (VuG)i+1,: = 0

(VyG)1,:Di − (VyG)i+1,: = 0 , (22)

i = 1, . . . , L− 1.
Proof: See Theorem 4 p. 13 of [2].

Theorem 1 shows how to use Chebyshev representations
of a sufficiently informative trajectory to compute the Cheby-
shev representation of all possible system trajectories.

IV. A COPB BASED NOILC DESIGN FOR
CONTINUOUS-TIME SYSTEMS

In this section we reformulate the NOILC design prob-
lem (2) without using any analytical model, only using
‘sufficiently rich’ input-output data.

A. Algorithm description and convergence properties

We first give a data-based characterization of all solutions
of (2).

Proposition 1: Let col(u, y) be an input-output trajectory
of (1). Assume that (A,B) is controllable, and that u is
persistently exciting of order L > ℓ + n. Define Vu and Vy

as in Theorem 1, and denote the number of their columns
by d = Lm+ n.

uk+1 solves the NOILC design problem (2) on trial k+1
if and only if there exists Gk+1 ∈ Rd×∞ that solves the
following optimisation problem

min
Gk+1

{
∥r − (VyGk+1)1,:C∥2Q + ∥(VuGk+1)1,:C− uk∥2R

}
s.t. (VuGk+1)1,:Di − (VuGk+1)i+1,: = 0

(VyGk+1)1,:Di − (VyGk+1)i+1,: = 0 , (23)
i = 1, . . . , L− 1.

(VyGk+1)1,:DiC(−1) = 0, i = 0, . . . , q − 1 .

Moreover, the optimal input uk+1 on trial k + 1 is

uk+1 = (VuGk+1)1,:C .
Proof: We first reformulate the NOILC optimization

problem (2) on the (k+ 1)th trial substituting the definition
of tracking error ek+1:

argminuk+1

{
∥r − yk+1∥2Q + ∥uk+1 − uk∥2R

}
s.t.

[
−Sp I

] [uk+1

yk+1

]
= 0 (24)

The constraint appearing in (24) is equivalent to requiring
that col(uk+1, yk+1) is an input-output trajectory of (1).
Using Theorem 1 and the assumption of persistent excitation
of u, col(uk+1, yk+1) is a system trajectory if and only
if it satisfies (22). To complete the proof, recall that the
system output is required to satisfy the zero initial condition,
equivalently the last q constraints in (23).
Proposition 1 shows that solving the NOILC optimisation
problem (2) for the input signal uk+1 in the original space
L2(I,Rm) (using a system model) is equivalent to finding
a solution of the transformed optimisation problem (23)
using the input signal COPB representation computed from
existing informative data as in Theorem 1. The resulting
algorithm naturally inherits all the convergence properties of
the model based NOILC algorithm, as shown in the following
proposition (see [16], [17] for the proof).

Proposition 2: Denote by S∗
p the the Hilbert adjoint oper-

ator of the plant convolution operator Sp. The COPB based
NOILC algorithm (23) has the following properties:

1) The tracking error norm converges monotonically

∥ek+1∥Q ≤ ∥ek∥Q, ∀ k ≥ 0.

2) The tracking error sequence converges as follows

lim
k→∞

ek = Pker[S∗
p ]
(e0)

where Pker[S∗
p ]
(e0) is the orthogonal projection of the

initial tracking error e0 onto the subspace ker[S∗
p ].

3) Consequently, if r ∈ R[Sp], or ker[S∗
p ] = 0, then

perfect tracking of the reference trajectory is achieved:

lim
k→∞

ek = 0.

4) Suppose that r ∈ R[S∗
p ]. The input sequence {uk}k∈N

converges to the solution of the optimisation problem

lim
k→∞

uk = argmin
u

{
∥u− u0∥2R : r = Spu

}
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B. Implementation Procedure

To illustrate a procedure to compute the optimal input, we
need to state some preliminary results.

Lemma 1: Let Cm(·), Cn(·) be two elements of the
Chebyshev basis. Then∫ 1

−1

Cm(t)Cn(t)dt =

{
0, if m+ n is odd

1
1−(m−n)2 + 1

1−(m+n)2 , otherwise.
Proof: This is equality 7.341.2 of [21].

Lemma 2: Define H ∈ R∞×∞ by

Hm,n :=

∫ 1

−1

Cm(t)Cn(t)dt , m, n ∈ N . (25)

Any finite principal submatrix of H is positive-definite.
Proof: Let N ∈ N, and denote the (N + 1)× (N + 1)

principal submatrix of H by HN . HN is the Gramian of the
set {Ci(·)}i=0,...,N with respect to the standard L2(I,R)-
inner product. Consequently, HN ⪰ 0. Moreover, since the
elements of {Ci(·)}i=0,...,N are linearly independent, such
Gramian is positive-definite.

Lemma 3: Let R = R⊤ ∈ Rm×m, and define H by (25).
Denote by HN the (N + 1) × (N + 1) principal submatrix
of H . If R ≻ 0, then H ⊗R ≻ 0.

Proof: Follows from the fact that the Kronecker product
of two positive-definite matrices is also positive-definite.

We can now transform the optimization problem (23) in
an equivalent version, easier to work with.

Proposition 3: Let Gk+1 ∈ Rd×∞. Denote by ũk ∈
Rm×∞ the infinite vector of Chebyshev coefficients of
uk, and by r̃ ∈ Rp×∞ the infinite vector of Chebyshev
coefficients of the reference trajectory r. Define

f(Gk+1) := vec((VuGk+1)1:)
⊤ (H ⊗R) vec((VuGk+1)1,:)

+ vec((VyGk+1)1,:)
⊤ (H ⊗Q) vec((VyGk+1)1,:)

− 2vec(ũk)
⊤ (H ⊗R) vec((VuGk+1)1,:)

− 2vec(r̃)⊤ (H ⊗Q) vec((VyGk+1)1,:) .
(26)

The CPOB based NOILC optimisation problem (23) is
equivalent to the following quadratic optimization problem
with linear equality constraints:

min
Gk+1∈Rd×∞

f(Gk+1) (27)

s.t. (VuGk+1)1,:Di − (VuGk+1)i+1,: = 0

(VyGk+1)1,:Di − (VyGk+1)i+1,: = 0 ,

i = 1, . . . , L− 1,

(VyGk+1)1,:DiC(−1) = 0 ,

i = 0, . . . , q − 1 .

Proof: The claim is proved if we show that the
performance index (26) is equivalent to (23). To show this,
we expand the norm in (23); consider the second term in the

performance index of (23):

∥(VuGk+1)1,:C− uk∥2R
= ⟨(VuGk+1)1,:C− uk, (VuGk+1)1,:C− uk⟩R
= ⟨(VuGk+1)1,:C, (VuGk+1)1,:C⟩R + 2⟨(VuGk+1)1,:C, uk⟩R

+ ⟨uk, uk⟩R
The first term in the above equation is∫ 1

−1

((VuGK+1)1,:C)
⊤R (VuGK+1)1,:Cdt

=

∞∑
k=0

∞∑
j=0

∫ 1

−1

Ck(t)(VuGk+1)
⊤
1,kR(VuGk+1)1,jCj(t)dt

=

∞∑
k=0

∞∑
j=0

(VuGk+1)
⊤
1,kR(VuGk+1)1,j

∫ 1

−1

Ck(t)Cj(t)dt

=

∞∑
k=0

∞∑
j=0

(VuGk+1)
⊤
1,kR(VuGk+1)1,jHk,j

= vec((VuGk+1)1,:)
⊤

RH0,0 RH0,1 RH0,2 . . .
RH1,0 RH1,1 RH1,2 . . .

...
...

. . . . . .


︸ ︷︷ ︸

=H⊗R

×vec((VuG)1,:) .

Other terms in the performance index can be derived in a
similar way. Also note that ⟨uk, uk⟩R and ⟨r, r⟩Q do not
depend on the decision variable and thus can be neglected.
This concludes the proof.

Standard computational tools can be used to solve the
above quadratic optimization problem with linear constraints.

V. NUMERICAL EXAMPLE

To illustrate the design approach, consider the following
simple dynamical system (from [1])

d

dt
x = −x+ u , y = x .

The system is operating over the time interval I = [−1, 1]
with initial condition x(−1) = 0, and is required to track
the reference trajectory r(t) = sin(π(t + 1)/2) repeatedly.
To solve the ILC design problem, we use the data-driven
algorithm developed in this paper. The system has a lag
of ℓ = 1 and order n = 1. It is easy to verify that the
input signal u(t) = −3e−4t − 2e−3t − e−2t is persistently
exciting of order L = 3 > ℓ + n and consequently using
the fundamental lemma described in Section III, all system
trajectories can be obtained from col(ũ, ỹ) where the output
is y(t) = e−4t + e−3t + e−2t + e−t.

It can be shown that a basis of R [col(WL(ũ),WL(ỹ))]
(as defined in Theorem 1) is given by

[
Vu

Vy

]
=


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0


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Using this basis we can characterise all system trajectories,
see (21).

To illustrate the performance of the developed COPB
based NOILC algorithm, we simulate it with different
choices of weighting parameters. The weighting matrices are
chosen as Q = I,R = 0.1, 0.05, 0.025, 0.0125, 0.00625 and
the initial input is chosen as u0 = 0. The tracking error
norms during the first 10 trials are given in Figure 1 to
illustrate the performance of the algorithm and the effect of
R. From the figure, it can be clearly seen that as predicted
by Proposition 2, the tracking error norm does converge
monotonically. Furthermore, decreasing R leads to faster
error convergence as larger input change is allowed between
trials. We have also simulated the algorithm over 1000 trials
to show the long term performance. Inspection on the results
on the 1000th trial suggests that very good (almost perfect)
tracking has been achieved, and the output signals are not
distinguishable from the reference (figures are omitted here
for space reasons).

1 2 3 4 5 6 7 8 9 10
10

-3

10
-2

10
-1

10
0

R=0.1

R=0.05

R=0.025

R=0.0125

R=0.00625

Fig. 1. Tracking error norm over 10 trials with different R

VI. CONCLUSIONS AND OPEN PROBLEMS

We have developed a data-driven NOILC algorithm
for continuous-time systems. Using Chebyshev polynomial
bases, we can represent all system trajectories from one
sufficiently rich trajectory. Using this representation, we
eliminated the need for an explicit model in norm optimal
iterative learning control design and gave a truly data-driven
solution to the NOILC problem. We first stated an optimisa-
tion problem in a space of the Chebyshev coefficients of the
underlying input and output signals. We then showed how to
use standard quadratic optimization techniques to compute a
solution and we rigorously analysed the convergence prop-
erties of the resulting design. Numerical simulations were
presented to illustrate the performance of the design.

We presented only some of our preliminary results on data-
driven ILC design for continuous-time systems: a number of
other research topics are being pursued, including the in-
corporation of system constraints, consideration of nonlinear
systems as well as noise and disturbances, extension to other

ILC design problems (e.g. point-to-point tracking), and the
use of other basis functions. These results will be reported
elsewhere.
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