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Abstract—1In this paper, we describe an undesirable weak
practical super-martingale hallucination phenomenon that can
emerge in the Bayesian quickest detection and identification
problem. We establish that when measurements are insuffi-
ciently informative, a situation described by a relative entropy
condition on measurement densities, the Bayesian quickest
detection and identification solution can (undesirably) become
increasingly confident that a change has occurred, even when
it has not. Finally, we illustrate the phenomenon in simulation
studies and the vision-based aircraft detection application which
illustrates the optimal rule can be unsuitable in the sense of
hallucinating a change that has not occurred.

I. INTRODUCTION

The problem of quickly detecting a change in the statistical
proprieties of a sequentially observed signal is considered
in a diverse range of applications, including fault detection
[1], cyber-security [2], vision-based aircraft detection [3]—[5]
and more [6]. Quickest change detection and identification
(QCDI) is an important sequential decision problem involv-
ing quickly detecting and also identifying a possible change
as one of several possible anomalous conditions [5], [7], [8].
The QCDI problem is commonly posed in a Bayesian setting
as minimising a trade-off between detection delay, proba-
bility of false alarm and probability of misidentification. In
this paper, we investigate the properties of Bayesian QCDI
problems in weak measurement environments (in the sense
of being insufficiently informative).

Optimal detection and identification rules for Bayesian
QCDI have been established in [5], [8] as the first entry
of the change posterior into a union of convex sets. Whilst
calculation of the change posterior is relatively easy, deter-
mination of these convex stopping regions is computationally
challenging. Several numerical techniques for calculating
these stopping regions have been proposed [8], including
approximation via linear segments [9], or greedy stopping
rules [5]. Further, [7] also established that in the absence of a
misidentification penalty, the problem simplifies significantly
and the optimal detection rule collapses to a simple threshold
test on the no change posterior.

Central to this work, [10] established conditions for QCD
without identification in which measurements were insuffi-

1 J. Ford is with the School of Electrical Engineering and Robotics,
Queensland University of Technology, Brisbane QLD, 4000 Australia.
j2.ford@qut .edu.au. JF’s work was supported by the Queensland
University of Technology’s Centre for Robotics. 2J. James is with the School
of Mechanical and Mining Engineering, University of Queensland, St Lucia,
QLD 4072, jasmin.martin@uq.edu.au. 3 T. Molloy is with the
School of Engineering, Australian National University (ANU), Acton, ACT
2601, Australia tim.molloy@anu.edu.au.

979-8-3503-1632-2/24/$31.00 ©2024 IEEE

and and Timothy L. Molloy?

ciently informative to overcome the change time’s geometric
prior and the no change posterior becomes a weak practical
super-martingale hallucination. More recently, this undesir-
able hallucination phenomenon has also been established in
Bayesian QCD for Markov chains [11].

The key contribution of this paper is to extend these works
to identify and characterise conditions under which the weak
practical super-martingale phenomenon can emerge in the
Bayesian QCDI problem; and the QCDI solution undesirably
becomes increasingly confident that a change has occurred,
even when it has not. Specific contributions of this paper are:

1) Establishing an upper bound on the no change posterior
update step based on relative entropy conditions on
measurement densities, providing a condition where an
undesirable phenomenon can emerge.

ii) Illustrating the undesirable weak practical super-
martingale hallucination phenomenon in both simulation
and an aircraft detection application.

The rest of this paper is organized as follows: In Section
IT we revisit the Bayesian QCDI problem and present an
optimal detection and identification rule. In Section III we
investigate sufficient conditions for insufficiently informative
measurements and the emergence of the weak practical
super-martingale hallucination phenomenon. In Section IV
we illustrate the phenomenon in both simulations and an im-
portant application. Finally, some conclusions are presented
in Section V.

II. QUICKEST CHANGE DETECTION AND IDENTIFICATION
PROBLEM FORMULATION

In this section we revisit the Bayesian QCDI problem and
optimal solution [5], [7], [8] and introduce a hidden Markov
model representation that is useful for investigating the weak
practical super-martingale phenomenon.

A. Bayesian signal change model

For k > 0, let y, € Y be an independent and identically
distributed (i.i.d.) sequence of random variables taking values
in the set ) C RM, Initially, when in the no change state, the
random variables y; have a pre-change (marginal) probability
density b'(-) before, at some random change time v > 1,
switching to having a post-change (marginal) probability
density b%(-) for some post-change state d € {2,..., N},
with N > 2. We assume that b'(.) < @ for some finite
Q<o forie{l,...,N}

We will assume densities are absolutely continuous
with respect to each other so we can define rela-
tive entropy between densities as D (b'(yx)|[b/ (yx)) =
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Sy b og () dy for all i, j € {1,..., N}. Recall

that D ( | |) > 0 are non-negative and note that our bounded
density assumption gives that these relative entropies are
bounded. We will also assume unique densities in the sense
that D (b*(yx)| |’ (yx)) > O for i # j.

As in [7], [8], we assume the random change time v > 1
has a geometric prior of m, 2 (1 — p)*~1p (with 7, 2 0,
k < 1), where p € (0,1) corresponds to the probability of a
change at each time step given no change has yet occurred,
and we assume that change is equally likely to one of the
d € {2,...,N} post-change states.

Let us now introduce some probability measure spaces. Let
Fi = 0(yp,x)) denote the filtration generated by y; 1. We
will assume the existence of probability spaces, for change
at v > 1 to post-change state d € {2,...,N}, (Q, F, P4)
where € is a sample space of sequences ¥ ], o-algebra
F = UZ Fj, with the convention that Fy = {0, 2}, and P?
is the probability measure constructed using Kolmogorov’s
extension on the joint probability density function of the
observations pff(y;l}k]) = 10" (y)TTE_ 0% (y,,) where
we define IT5_ b%(y;) = 1 when k < v. We will let EY
denote expectation under P¢ and use the probability measure
P, and expectation E,, to denote the special case when
there is no change event.

Under our geometric change prior assumption, we
can construct a new averaged measure Pr(G)
v S S M PAG) for all G € F and we let By
denote the corresponding expectation operation.

Similar to [8], we will represent the change time and pre-
change or post-change state at each time through a process
Xy, for k > 0, taking values in space Sy where Sx £
{e1,...,en} with e; € RN being indicator vectors with 1
as the ith element and 0 elsewhere. A change at time v > 0
to post-change state d € {2,..., N} would be represented
by the process with Xy = e; for k < v and Xy = e4 for
k > v. Here e; indicates being in the pre-change (no change)
state.

It will be useful to note that under the assumption of a
geometric prior for the change time v, the change process
X, corresponds to a first-order time-homogeneous Markov
chain, with initial condition Xy = e;, and a transition
probability matrix A € RV*N with 4, jth elements A%/ 2
P(Xpt1 =€l Xy =e;) for all 4,5 € {1,...,N}, where
Abt =1 —p, AW = p/(N —1) for all i € {2,...,N},
A% =1 forall i € {2,...,N} and A% = 0 elsewhere.
That is, at each time step before the change event, p/(N —1)
is the probability of transitioning from e; into any e;, © €
{2,...,N} and (1—p) is the probability of remaining in e;.
Once the change occurs, the change process stays in this eg
for all future time.

Finally, let II AN e RN 1'A = 1,0 < XN <
1 forall i € {1,...,N}} denote a probability simplex, and

note that Sx C II, where 1 € RY is the vector of all ones,
and / denotes the transpose operation.
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B. Quickest change detection and identification problem

The Bayesian QCDI problem’s goal is the quickest detec-
tion and identification of a change event. For this purpose,
we seek to design a stopping time 7 > 0 with respect to
the Fj filtration and a {2,..., N} valued F,-measurable
random variable identification decision d € {2,..., N} that
minimises the following detection and identification cost
criterion

Here the continuing and stopping costs, for any X € II, are
given by

T—1

D C(Xk) + 84(X7)

k=0

J(r,d) £ E, (1)

C(X)=e X,
SL(X) = CgXl + 03(1 — Xl)

2
3)

where ¢; € RN (@ =0, =¢; >0fori € {2,...,N})
denotes the delay penalty, c; > 0 denotes the false alarm
penalty and c3 denotes the misidentification penalty.

C. Optimal change detection and identification solution

Let the pre-change and post-change posterior probabili-
ties be denoted X}C 2 P(X, = eilyr,...,yp) for i €
{1,...,N}, and define the change posterior vector X, £
[X},...,X}N]" € IL Solutions to the QCDI problem de-
scribed by (1) are given in [5], [8]. Proposition 11 of [§]
and Theorem 1 of [5] give that optimal quickest decision for
our QCDI problem is given by (7%, d*) with

™ 2 inf{k: X} € Rs}

where the optimal stopping region Rg £ Uie{z,...,
the union of N — 1 convex regions R% containing e;, and
the optimal identification decision is given by

d* & argmin, (S;(X,-)). %)
As studied in [7], when there is no penalty on misiden-
tification c¢3 = 0, the optimal stopping region becomes

one connected region Rg, and the stopping rule becomes
a threshold test on the (pre- or) no change posterior X L (see
a N = 3 example in left of Figure 1).

We highlight that including a misidentification penalty, i.e.
c3 > 0, significantly changes the nature of the problem. As
shown in [5], [8], solutions to the QCDI problem containing
a penalty on misidentification should not expect to have an
individually connecting stopping region (see R% and R?, in
a N = 3 example in right of Figure 1).

D. Hidden Markov Model Filter for X

We now present the hidden Markov model (HMM) filter
for efficiently calculating X}, used in the detection (4) and
identification rule (5).

At time k > 0, we let B(yx) = diag(b(yx), ..., b (yx))
denote the diagonal matrix of output probability densities.
We can now calculate X, r via the HMM filter [12]

Xy = Ni.B(yr) AX 1, (6)



Fig. 1. An example of the stopping regions when there is no penalty on
misidentification (left) and when there is a penalty (right).

with initial condition XO and where N are scalar normali-
sation factors defined by

NV A& (L Bye) AXi). %

We highlight that we can write the (pre- or) no change
posterior as X! = Nj(1 — p)b' (yx)X._,. This no change
posterior form will be used in the following section to
establish some important properties.

III. CONDITIONS FOR THE SUPER MARTINGALE
HALLUCINATION PHENOMENON

This section begins by defining the concepts of a weak
practical super-martingale and a weak post-change density
bound. We then establish that when there is a weak post-
change density bound and the corresponding post-change
posterior is close enough to 1, then the (pre- or) no change
posterior trends downwards in a conditional expectation
sense. That is, the no change posterior may become increas-
ingly confident that a change has occurred even if it has not.

In this paper, we are concerned with the following phe-
nomenon.

Definition 1. (Weak practical super-martingale) The no
change posterior probability log(X 1) is called a weak practi-
cal super-martingale, if for any arbitrarily small 4, > O there
exists am € {2,...,N} and a hy € (0,1) such that when
XJ* > 1 — hy then

P (for all n > k, Ex[log(X}, )X, < log(f(,ll))
>1-6,. (8)

This weak practical super-martingale phenomenon was
recently established to occur in weak measurement envi-
ronments in the Bayesian QCD problems, see [10] (QCD
without identification) and [11] (QCD for Markov chains).

We next define the concept of a weak post-change density
bound which facilitates analysis of this super-martingale
phenomenon in Bayesian QCDI. This concept is sufficient
for analysis but expected to be stronger than needed for the
super-martingale hallucination phenomenon to emerge.

Definition 2. (Weak post-change density bound) If there is
some m € {2,...,N}, such that D (b'(yx)|[b™(yx)) <
D (b'(yk)|[b" (yx)) holds for all i > 1, then we term b™(-)
a weak post-change density bound.
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Definition 2 is related to the weak stochastic bounded-
ness concepts arising in minimax robust QCD, see [13,
Def. 4.1] which is a generalisation of the §-Pythagorean
concept of [14, Def. 3.1] (when post-change models can
be parametrized) and is a relaxation of the joint stochastic
boundedness concepts of [15, Def. 1].

Similar to those works, a weak post-change density bound
need not exist; however, a sufficient condition that ensures
existence is that the post-change densities have smaller rela-
tive entropies between themselves than with the pre-change
densities in the sense max;z ;1 D (b'(yr)||V () <
ming; D (b (yx)|[b' (yx)); which does not seem an overly
restrictive condition. Due to the next proposition result,
it can be useful to check if the post-change density
b™(+) closest to the pre-change density b'(-) in the (for-
ward) relative entropy sense that D (b'(yx)|[b™ (yr)) <
mingz1,m D (b (yk)||bi(yk)) also meets the (reverse) rela-
tive entropy conditions of Definition 2.

For the following investigation, let us define the no-change
posterior ratio M 12 ¥ ,% / X ;_1, and note that we can write
the posterior update as log(X}) = log(M}) + log(X}_,).
Hence the sign of log(M}!) describes the direction of update.

Proposition 1. (X ™ dependent bound on log(M})) Assume
there is a m € {2,..., N} such that b™(-) is a weak post-
change density bound (as Definition 2). For any § > 0, there
is a hs € (0,1) such that X; | > 1 — hs and we have

E, [log(Mé)‘kal} <log(1—p)+D (0" (yk)||0™ (y)) +0.

Proof. This proof follows a similar strategy to Lemma 2 of
[10]. For the m € {2,..., N} selected in the proposition
statement, let us defined 7§ £ log(b™ (yx)) —log(N, ') and
note we can write log(Ny) = —log(b™ (yx)) +;". We then
write

Ex [1Og(Nk)‘kal}
=—FE, [log(bm(yk)) ‘qu} + E, [W?‘Xk—l} G

It then follows from the definition of M é, and recalling we
can write X! = Ny (1 — p)b*(yx)X{_,, that

Ex[log(M;)|Xy1]

= 10g(1 = p)+Ex log(Ni)| X1 | +Ex log(b" (3)) [ X1

—log(1 = p) + Ex [log(b" (y)) | Xi-1]
— Bx [log (4" (3)) | K] + Bn [

~ (1 5 o (1)

fic]

Xp—1

e[ i)
(10)



Note that we can write, letting p £ (1 — p),

N
Nt =bi(yr)pXjoy + Zbi(yk:)[ﬁXéq + X 4]
i=2
= by (yr)p Xy + Z i) [PX 1 + XG4
i=2,#m
+ b (1) X5y + X724
N
= b1 (yw)pXji_y + Z bi(yi) [pXik—1 + Xi_1]
i=2,#m
+ by () + b (yr) (X 4y + X7y — 1)
A~ N A .
= b (Yk) + b () (X3 = ) + > ilyn) X7,
i#Em

for some c;(-) that are finite as we assumed b(.) < @ for
some finite @ < oo for all 7 € {1,..., N}. Then note that
for a hs > 0 such that for any X}, > 1 — hs, we also
have X}, , < hs for i # m. Hence, noting log is monotonic
increasing and the definition of ;" gives that for any § > 0
there is a hs > 0 so we have E; %T‘qu} < 6. Therefore
(10) gives that

Ex[log(M;)| X1

bl
<log(l1—p)+ E; {log <

Tty )’Xk 1}+5 (11)

Then using the law of total probability we note that
Pr(yr| X—1)
N

= pr(Xk = ei| Xp_1) Pr (Y| X = €5, X_1). (12)
i=1

As a shorthand, let us write X}:l L2 P(X) = ei\f(k_l) for

i € {1,..., N}. The definition of the expectation operation
and noting P, (yi| Xy = e;, Xx_1) = b*(yx) then gives
b* (yx) ) > ]
E, |lo X
{ & (bm(yk) o
> b* (yk)
=, [ 0 tos d
=y b™ (yr)
N
5 ; b (yx)
+>y Xt /bz(yk)log( dyx  (13)
; My b (k)
Define A} £ Zf\]%ﬁm X,Zfl fy (yx) log (bm((y ))) dyp,

and we note from the definition of relative entropy, and
algebraic manipulation of log properties that

¥t (G ) dy = D (] 7 )
-D (bi(yk)Hbl(yk)) <0

(yx)
yk)

where negative follows because b () is a weak post-change
density bound (as Definition 2), and hence A}* < 0 as
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Xt >0forallie{1,...,

. n (00) )

bm(yk

= Xlii_l ||bm Yr))
+X,Tf1/ b™ (yx) log

Y
< X3 2 DO (ye) 6™ (i)
— X D™ )b ()

<D (bl(yk)Hbm(yk)>

where in the 2nd last line we have used the definition of
relative entropy and A}* < 0, and the last line has used that

X}t < 1 and X™% > 0. Substitution of (14) into (11)
gives the proposition result. O

N}. Therefore we can write

(yr)
)

bl
bm

> dyr, +Am

(14)

The importance of Proposition 1 is if there is a weak post-
change density bound (as Definition 2), and it is too close to
the pre-change density in the sense D (b (yx)||b™ (yx)) <
log(1/(1— p)), then there can exist an interval trap X" | >
1—hs where E,
tion, the no change posterior may become increasingly con-
fident that a change has occurred even if it has not (recalling
log(M}!) is the direction of the no change posterior update).
This leads to concerns about the use of the QCDI detection
rule (4) when measurements are insufficiently informative.
This weak post-change density bound is sufficient for anal-
ysis but the super-martingale hallucination phenomenon is
expected to also emerge in other situations.

Note that Proposition 1 does not establish, by itself, that
XT’L” will remain in the internal X;" > 1—hs for n >
k. Future work is the formal establishment of the weak
practical super-martingale phenomenon, such as Definition
1, similar to that established for QCD without identification
n [10] or for QCD in Markov chains [11]. Conversely,
the phenomenon can occur in the absence of a weak post-
change density bound which was assumed in Proposition 1
to facilitate analysis. We next investigate the hallucination
phenomenon in simulation and experimental studies.

[log(M,%)’Xk_l} is negative. In this situa-

IV. EXPERIMENTAL INVESTIGATION OF THE
HALLUCINATION PHENOMENON

In this section, we will examine the undesirable super-
martingale phenomenon suggested by Proposition 1, and
illustrate that the QCDI detector can become increasingly
confident that a change has occurred, even when it has
not. The potential for this behaviour is an important design
consideration in some situations.

In this section, we first examine the behaviour of the
no change posterior X Lin a N = 4 QCDI problem with
insufficiently informative measurements. Then we illustrate
the emergence of the undesirable phenomenon in a practical
setting.



A. Ilustrative Simulation Example

We simulated a N = 4 signal X}, which could switch from
a pre-change state e; to one of three post-change states es,
e3 and e4 according to the transition probability matrix

1—p 0 0 0

lp/3 100

A=103 01 0 (15)
p/3 0 0 1

with p 0.05. The observation measurements yj are
assumed i.i.d. with marginal probability densities b'(y) =
Py — L), 0*(y) = ¢y — L?) , b°(y) = ¢(y — L°) and
b (y) = ¢¥(y — L3) where L £ [L', L2, L3 [*] € R*is a
vector of the different means for pre-change and post-change
densities and () is zero-mean Gaussian probability density
function with variance o = 1. For simplicity of presentation,
we assume the means L° are increasing in the sense that
LY > L fori e {1,...,3}.

Note for this class of models, the post-change density b?(-)
will be closest to the pre-change density b'(-) in a relative
entropy sense and b?(+) will also be a weak post-change den-
sity bound (due to properties of relative entropies between
Gaussians). Then note Proposition 5 of [10] can be used to
establish that D (b" (yx)|[6%(yx)) < log(1/(1—p)) whenever
L? — L' < 0.32 (that is, when less than /21og(1/(1 — p)))

We consider an illustrative example with L
[1.0,1.1,1.5,2] which should exhibit the phenomenon, as
L? - L'=0.1<0.32

We generated an example 5000 time step measurement
sequence in which no change occurs, which was processed
via (6) to compute the change posterior vector. We compare
the calculated no change and post-change posteriors in
Figure 2 illustrating the undesirable phenomenon in which
no change posterior X ! becomes increasingly confident a
change has occurred (with a corresponding increasing post-
change posterior X 2) even though no change has occurred.

B. Study of the weak post-change density bound

Next, we examined the nature of the phenomenon via a
study of the impact of variation of the mean of the closest
post-change density b%(-). We conducted a Monte Carlo
study with 1000 trials of 5000 time steps with no change
event, and varied the closest post-change mean L? between
1.23 and 1.47. Figure 3 shows the average value of Xslooo
(no change posterior after 5000 steps), and when the closest
post-change mean L? < 1.3 illustrates the emergence of the
hallucination phenomenon of incorrect confidence a change
has occurred, consistent with Proposition 1.

C. Application: Vision-based aircraft detection

We now investigate a real-world application that highlights
design considerations caused by the phenomenon in a practi-
cal setting. As described in [3]-[5], [16] the important vision-
based aircraft detection application aims to quickly detect,
with low false alarms, an aircraft on a near collision course
after it visually emerges, at ranges > 2km. Figure 4 gives an
illustration of the weak nature of the signal environment at
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behaviour in N = 4 QCDI. The 4 sub-figures are the calculated no change
and post-change posterior on a_ 5000-point sequence having no change
event. The no change posterior X é (top sub-figure) has become increasing
confidence a change has occurred, even though no change has occurred.
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Fig. 3. Monte Carlo study of variation in the mean of the closest post-
change density. The mean of X 51000 against variation in L? the mean of
closest post-change density b (-).

the desired detection ranges. We will investigate the QCDI
no change posterior on a data sequence, Case T1, captured
during the flight tests described in [16].

Similar to [4], [5], for £ > 0, we let each pixel in the
image correspond to a possible change location where the
aircraft could emerge and we introduce an extra state to
denote when the aircraft is not visually apparent anywhere
in the image frame (a no change state). Hence for an image
of size M 1024 x 768 pixels, our Markov chain is
X, € {e1,...,en}, where N = M + 1. We construct
our state transition probabilities A such that state transitions
from edge pixels that would cross the image boundary self-
transition. The no aircraft state has a probability of self-
transition of 1 — p = 0.9 (i.e. p = 0.1) and is equally likely



Fig. 4. Example: weak measurement in the vision-based aircraft detection.

to transition to any of the image pixels.

For £k > 0, y, are noise corrupted morphologically
processed greyscale images of above horizon scene poten-
tially containing an aircraft (raw images are pre-processed
by the bottom-hat morphological operation as described
in [3], [17]). Similarly to the current state-of-the-art, we
use (unnormalised) observation densities b!(yz) = 1 and
bi(yk) = 1+yi fori € {2,..., N} (see [3], [17] for detailed
explanation and justification of this observation model). As
reported in [4], [16], an aircraft was successfully detected in
this Case T1 sequence at ranges exceeding 2km. Importantly,
in [5] an intermittent signal technique is shown to offer
performance improvement over state-of-the-art detection by
introducing a misidentification cost.

Here we examine the performance of the QCDI technique
for the same purpose. Figure 5 shows the QCDI no change
posterior X L evolution from the start of the Case T1 data
sequence (during a period that no aircraft is present). The
QCDI's no change posterior exhibits the weak practical
super-martingale and the post-change posteriors collected at
the pixel states corresponding to the edges of the image.

The observed no change posterior X 1 behaviour is consis-
tent with Proposition 1 and consistent with previous observa-
tions about the challenging nature of the vision-based aircraft
detection problem [3], [17], and highlights that Bayesian
QCDI might be unsuitable for this detection application and
other weak signal environments. Furthermore, these obser-
vations explain the practical importance of the intermittent
signal QCDI problems posed in [5].

V. CONCLUSION

This paper established that a previously unreported unde-
sirable phenomenon can occur in Bayesian QCDI. The po-
tential phenomenon arises when a post-change density is too
close to the pre-change density in a relative entropy sense.
That this undesirable hallucination phenomenon can occur
in insufficiently informative environments is an important
design consideration in some practical settings.
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Fig. 5. The no change posterior X ,% exhibits the hallucination phenomenon
even though no change has occurred (i.e. aircraft not appeared).
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