
Adaptive Noise Covariance Estimation under Colored Noise using
Dynamic Expectation Maximization*

Ajith Anil Meera1 and Pablo Lanillos2

Abstract— The accurate estimation of the noise covariance
matrix (NCM) in a dynamic system is critical for state estima-
tion and control, as it has a major influence in their optimality.
Although a large number of NCM estimation methods have
been developed, most of them assume the noises to be white.
However, in many real-world applications, the noises are col-
ored (e.g., they exhibit temporal autocorrelations), resulting in
suboptimal solutions. Here, we introduce a novel brain-inspired
algorithm that accurately and adaptively estimates the NCM
for dynamic systems subjected to colored noise. Particularly,
we extend the Dynamic Expectation Maximization algorithm
to perform both online noise covariance and state estimation
by optimizing the free energy objective. We mathematically
prove that our NCM estimator converges to the global optimum
of this free energy objective. Using randomized numerical
simulations, we show that our estimator outperforms nine
baseline methods with minimal noise covariance estimation
error under colored noise conditions. Notably, we show that
our method outperforms the best baseline (Variational Bayes)
in joint noise and state estimation for high colored noise.
We foresee that the accuracy and the adaptive nature of our
estimator make it suitable for online estimation in real-world
applications.

I. INTRODUCTION

Identifying the noise associated with a process, i.e., esti-
mating the Noise Covariance Matrix (NCM) is crucial for
state estimation and control of a dynamic system [1]. An
incorrect NCM results in suboptimal gains (e.g., Kalman
gain), significantly decreasing the quality of state estimation
and tracking. Hence, accurate NCM estimation has a wide
scope of applications that include robotics, signal processing,
fault detection, optimal controller design, system identifica-
tion, etc. However, most of the NCM estimation algorithms
assume a white noise condition, which may not be true in
practice. In many real-world applications the noise is colored
(e.g., there are temporal autocorrelations). This makes NCM
estimation under colored noise a relevant challenge [2].
Here, we ground on the recent advances in computational
neuroscience and present a novel adaptive NCM estimator
that can handle colored noise and outperforms nine state-of-
the-art estimators.

To this end, we inspire our method on the recently pro-
posed unified theory of the brain called Free Energy Principle
(FEP) [3]. This mathematical foundation is particularly good
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at dealing with colored noise [4], as it attempts to models
brain’s cognitive functions under high noise temporal cor-
relation. This has already attracted a large number of novel
robot solutions based on the FEP—see [5] for a review—,
focused on estimation [6] and control [7]. In this work, we
extend the FEP’s variational inference approach for param-
eter estimation, named Dynamic Expectation Maximization
(DEM) [8], to perform joint online NCM and state estimation
under colored noise, and show that it is highly competitive
when compared to the existing estimators.

A. Contributions

The core contributions of this paper include:
1) the introduction of an online NCM estimator for linear

state space systems with colored noise that converges
to the global optimum of the free energy objective;

2) the extensive evaluation of the algorithm in simulation,
and benchmarking it against nine NCM estimators.

B. Related work

A wide variety of NCM estimation methods have been
proposed within the control community [1]. These meth-
ods can be classified into two categories: i) feedback free
methods where the estimation is done by processing the
entire data sequence offline and ii) feedback methods where
estimation is done online and. The feedback free methods are
of two types: i) the correlation methods that are based on the
analysis of the measurement error sequence, such as Indirect
Correlation (ICM) [9], Input-Output Correlation (IOCM)
[10], Weighted Correlation (WCM) [11], Measurement Av-
erage Correlation (MACM) [12], Direct Correlation (DCM)
[13] and Measurement Difference Correlation (MDCM) [14],
and ii) the Maximum-Likelihood Methods (MLM) [15] that
maximises the likelihood function over the data.

The feedback methods include Bayesian approaches, such
as the Variational Bayes Method (VBM) [16] and the Co-
variance Matching Methods (CMM) [17]. However, most of
these methods adhere to the white noise assumption, limiting
its practical use where noises can be temporally correlated.
To deal with this problem, the authors of [2] proposed to
solve the linear equations formed from the autocovariance
of the innovations of the colored noise. Alternatively, in
this paper, we take a neuroscience-inspired approach for
NCM estimation grounded on the FEP. The closest work
to our method is [18], which also relies on the white
noise assumption and fails to beat the benchmarks. Another
approach uses an FEP based message passing scheme for
noise estimation in a nonlinear system, but under white noise
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[19]. The advantage of our approach when compared to the
existing approaches is that it can handle noncausal colored
noises. Particularly, we extend and reformulate the offline
DEM algorithm, to introduce an online NCM estimator for
linear systems with colored noise. We provide a quantitative
analysis on the performance of our estimator and show that it
outperforms nine NCM estimators under colored noise with
minimal NCM estimation error. Our proposed online DEM
algorithm uses free energy for online estimation, whereas the
original DEM recursively iterates over the full data using free
energy action as the objective for estimation [8].

II. PROBLEM STATEMENT

Consider a state space system of the form:

ẋ = Ax+Bu+w
y = Cx+ z,

(1)

where x∈Rn is the internal state, u∈Rr is the control action,
y ∈Rm is the output, w is the process noise with covariance
Q, z is the measurement noise with covariance R, and A, B
and C are the matrices defining the system. The components
of the plant and its estimates are denoted with and without
boldface respectively. Here, w and z are non causal colored
noises that are generated by convoluting the white noise with
a Gaussain filter of kernel width s. The goal of this paper is
to jointly estimate R and x, given y, u, A, B, C and Q.

III. MATHEMATICAL BACKGROUND

This section lays out the necessary mathematical founda-
tions for our estimator design: the noise modelling and the
optimization scheme with the free energy objective.

A. Noise color modelling

The colored noise in the plant—synthetically generated
by convoluting the white noise with a Gaussian filter—
presents temporal correlations, which can be captured by
modelling the covariance of the noise derivatives. DEM
provides a framework to seamlessly track these higher order
noise derivatives using the ideas of generalized coordinates
and generalized NCM. This section aims to introduce these
concepts.

1) Generalized coordinates: The key component that en-
ables DEM to gracefully handle colored noise is the use
of generalized coordinates1. It models the evolution of the
trajectory of states, instead of their point estimates. For
example, the generalized states, denoted by x̃ is the vector
collection of the higher order derivatives of x, given by
x̃ = [x x′ x′′...]T . The use of generalized coordinates provide
additional information to DEM, and has proven advantageous
for state estimation [4] and system identification [20] under
colored noise, when compared to the classical estimators,
both in simulation and in real robotics problems [21]. The

1Not to be confused with the definition from multibody dynamics.

temporal correlations in noise (because it is colored) enables
the differentiation of the plant model as:

x′ = Ax+Bu+w

x′′ = Ax′+Bu′+w′

...

y =Cx+ z

y′ =Cx′+ z′

...

(2)

which takes the compact form:

˙̃x = Dxx̃ = Ãx̃+ B̃ũ+ w̃ ỹ = C̃x̃+ z̃ (3)

where Dx =

[0 1
0 1
. .

0 1
0

]
(p+1)×(p+1)

⊗ In×n.

Here, Dx represents the shift matrix that performs the deriva-
tive operation on x̃. p and d represents the embedding order
(number of generalized coordinates used) of states and inputs
respectively. Ã = Ip+1 ⊗A, B̃ = Ip+1 ⊗B, C̃ = Ip+1 ⊗C
represents the generalized system matrices, where I denotes
the identity matrix and ⊗ the Kronecker tensor product.

2) Generalized noise precision: The next key concept to
handle noise color is the modelling of generalized noise pre-
cision (inverse noise covariance) matrix, defined by Π̃= Σ̃−1.
The colored noise is assumed to be generated by the con-
volution of white noise by a Gaussian filter of kernel width
s. The generalized covariance matrix for measurement noise
Π̃z = (Σ̃z)−1 = E[z̃.z̃T ] can be derived as Π̃z = S⊗Πz, where
Πz = R−1, and S is the smoothness matrix parametrized by
s:

S(s) =


1 0 − 1

2s2 ..

0 1
2s2 0 ..

− 1
2s2 0 3

4s4 ..

.. .. .. ..


−1

(p+1)×(p+1)

. (4)

Here, s denotes the noise smoothness level (kernel width
of the Gaussian filter), which can be estimated online [22].
s ≈ 0 represents white noise, and high s represents high
noise smoothness (or color). The combined generalized
noise precision Π̃ is defined as Π̃ = diag(S⊗Πz,S⊗Πw),
where diag(.) represents the block diagonal operation. The
superscript notation is used to refer to the quantity under
consideration and subscript notation is used to represent the
derivative operation.

3) Parametrization of noise precision: To facilitate an
easier precision learning, we assume a zero noise cross
correlation for R and parameterize Πz = R−1 with a diagonal
form using a hyper-parameter λ = [λ 1 λ 2 ...]T as:

Π
z =


eλ 1

0 . .

0 eλ 2
0 .

0 0 eλ 3
.

. . . . .

 (5)

The exponential parametrization was chosen to ensure that
the precision is always positive definite, Πz ≻ 0.

B. Free energy optimization

The estimation is formulated as an optimization problem
where the agent minimizes its free energy objective, an
information theoretic quantity that bounds surprise [8]. This
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section aims to derive the mathematical form of this objective
to estimate the NCM and the states as defined in Section II.

1) Estimation as Bayesian inference: The core tenet of
FEP is that it describes the agent as a Bayesian machine
that estimates the posterior probability of the parameters
ϑ using the measurements y. Using Bayes rule, the pos-
terior is p(ϑ/y) = p(ϑ ,y)/

∫
p(ϑ ,y)dϑ . Since the denom-

inator contains an intractable integral, variational methods
use a recognition density q(ϑ) that closely approximates
the posterior as q(ϑ) ≈ p(ϑ/y). This involves minimizing
the Kullback-Leibler (KL) divergence of the distributions,
KL(q(ϑ)||p(ϑ/y)) = ⟨lnq(ϑ)⟩q(ϑ)−⟨ln p(ϑ/y)⟩q(ϑ), where
⟨.⟩q(ϑ) represents the expectation over q(ϑ). Rearranging the
terms and using p(ϑ/y) = p(ϑ ,y)/p(y) yields [3]:

ln p(y) = F +KL(q(ϑ)||p(ϑ |y)),
F =⟨ln p(ϑ ,y)⟩q(ϑ)−⟨lnq(ϑ)⟩q(ϑ)

(6)

where F is called the free energy. From Equation 6, the
minimization of KL divergence results in the maximization
of free energy, as ln p(y) is independent of ϑ . This is the
core idea behind using free energy optimization as a proxy
for brain’s inference, thereby minimizing the brain’s sensory
surprisal [3].

2) Free energy objective: To compute the free energy
objective, we make two fundamental assumptions about the
recognition density q(ϑ) = q(x̃,λ ): i) Mean field assumption
[8] that facilitates a conditional independence between the
subdensities, q(ϑ) = q(x̃)q(λ ), and ii) Laplace assumption
[23] that facilitates the use of Gaussian distributions with
mean µ and variance Σ over these subdensities, q(x̃)=N (x̃ :
µ x̃, Σx̃) and q(λ ) = N (λ : µλ , Σλ ). Laplace assumption is
made on the generative model of the plant, which generates
the data as p(ỹ/ϑ) = N (ỹ : C̃x̃,R), p(x̃′/λ ) = N (Dxx̃ :
Ãx̃ + B̃ũ,Q), and the prior distribution of λ as p(λ ) =
N (λ : ηλ ,(Pλ )−1), where ηλ is the prior noise parameter
with prior precision Pλ . Under these assumptions, F from
Equation 6 upon further simplification reduces to the sum
of three terms: i) precision weighted prediction errors, ii)
information entropy, and iii) mean field terms. The full free
energy objective after dropping constants become:

F =U(y,ϑ)+H x̃ +Hλ +W x̃ +W λ . (7)

where H x̃ and Hλ are the entropy terms given by:

H x̃ =
1
2

ln |Σx̃|, Hλ =
1
2

ln |Σλ |, (8)

W x̃ and W λ are the mean field terms given by:

W x̃ =
1
2

tr
[
Σ

x̃U(y,µϑ )x̃x̃
]
, W λ =

1
2

tr
[
Σ

λU(y,µϑ )λλ

]
, (9)

U(y,ϑ) is the internal energy given by:

U(ϑ ,y) =− 1
2

ε
λT Pλ

ε
λ +

1
2

ln |Pλ |− 1
2

ε̃
T

Π̃ε̃ +
1
2

ln |Π̃|
(10)

and ε̃ is the prediction error given by:

ε̃ =

[
ε̃y

ε̃x

]
=

[
ỹ−C̃x̃

Dxx̃− Ãx̃− B̃ũ

]
. (11)

We refer to [8], [20] for an elaborate read on similar
simplifications. The free energy form in Equation 7 will be
used for the estimator design in the next section.

IV. PROPOSED ADAPTIVE ESTIMATOR

In this section, we introduce our NCM estimator design,
alongside its guarantees for a global free energy optima, to
finally propose a joint state and NCM estimator.

A. Noise covariance matrix (NCM) estimation

According to FEP, the brain’s inference process proceeds
through the gradient ascend on its free energy objective F .
Inspired by this idea, we introduce a novel adaptive NCM
estimator using the first two gradients of F denoted by Fλ

and Fλλ . We use the Gauss-Newton update scheme [24] that
maximises F by making incremental updates to the noise
parameter estimate λ as:

λ (t +∆t) = λ (t)+
[
(eFλλ ∆t − I)(Fλλ )

−1Fλ

]∣∣∣
λ=λ (t)

, (12)

where λ (t) is the noise parameter at time t and ∆t is
the sampling time. The gradient of F can be evaluated by
differentiating Equation 7 with λ , which simplifies as:

Fλ =− 1
2
(ε̃T

Π̃ε̃)λ − ε
λT Pλ + p+1

− 1
2

tr
(
Σ

x(ε̃T
x̃ Π̃ε̃x̃)λ

)
− 1

4
tr
(
Σ

λ (ε̃T
Π̃ε̃)λλλ

). (13)

The exponential parametrization of Πz with respect to λ i in
Equation 5 results in the same higher order gradients (Π̃λ i =
Π̃λ iλ i = Π̃λ iλ iλ i ), which simplifies Fλ iλ i as:

Fλ iλ i =−1
2

ε̃
T

Π̃λ i ε̃ −Pλ iλ i − 1
2

tr
(
Σ

x
ε̃

T
x̃ Π̃λ i ε̃x̃

)
− 1

4
tr
(
Σ

λ
ε̃

T
Π̃λ i ε̃

)
.

(14)

Note that Fλ iλ j = 0 ∀ i ̸= j since Π̃λ iλ j = O ∀ i ̸= j.
Therefore, the Hessian matrix Fλλ is diagonal, aiding a faster
computation. The use of free energy maximization for the
estimator design is motivated by the existence of a unique
maximum for the free energy curve given in Equation 7
with the right choice of ηλ and Pλ , which guarantees the
convergence of the estimator without instability.

Proposition IV.1. Free energy objective F defined by Equa-
tion 7 has a global maximum with respect to the noise
parameter λ (using the exponential parametrization in Equa-
tion 5), for all λi of data, under the choice of prior ηλ

and a diagonal prior precision P that satisfies the condition
λi < ηλ i

+ p+1
Pλ iλ i +1.

Proof. There is a global maximum for F with respect to λ

if we can prove that Fλλ ≺ O ∀ λ where Fλ = 0. Equating
Equation 13 to zero yields the condition satisfied by all λ

with zero gradients (Fλ i = 0) as:

−1
2

ε̃
T

Π̃λ i ε̃ = ε
λT Pλ

ε
λ

λ i − p−1+
1
2

tr
(
Σ

x
ε̃

T
x̃ Π̃λ i ε̃x̃

)
+

1
4

tr
(
Σ

λ
ε̃

T
Π̃λ i ε̃

) (15)
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Substituting it in Equation 14 and enforcing Fλ iλ i < 0 gives
the condition for the existence of a global maximum for
F with respect to λ as ελT Pλ ελ

λ i − p− 1 < 0, which upon
rearranging yields λ i < ηλ i

+ p+1
Pλ iλ i + 1. Assuming that the

maximum of F is close to the real λi of data (λ i ≈ λi,
later shown in simulation), the choice of ηλ and Pλ that
sufficiently ensures the existence of global maximum for F
with respect to λ is given by:

λi < η
λ i
+

p+1
Pλ iλ i +1. (16)

For example, the choice of ηλ = 0 and Pλλ = 1 with p = 6
is sufficient to ensure the existence of a global maximum for
F with respect to λ ∀ λi < 8 of the data. This completes the
proof.

B. Joint state and noise covariance observer design

This section aims to introduce a novel observer design
for the joint state and noise covariance estimation for linear
systems with colored noise. We use our previously proposed
DEM based state observer given by [4]:

˙̃x = A1x̃+B1

[
ỹ
ũ

]
(17)

where A1 = [Dx−kxC̃T Π̃zC̃−kx(Dx− Ã)T Π̃w(Dx− Ã)], B1 =
kx
[
C̃T Π̃z (Dx − Ã)T Π̃wB̃

]
, and kx is the learning rate. We

combine this estimator with our noise covariance estimator
from the previous section to jointly estimate x̃ and λ .
Since Equation 17 is a linear differential equation, the exact
discretization of the observer is:

x̃(t +dt) = eA1dt x̃(t)+A−1
1 (eA1dt − I)B1

[
ỹ(t)
ũ(t)

]
. (18)

Equations 12 and 18 together completes the joint observer
design. Since the update rule in Equation 12 is nonlinear
in λ , the stability proof for the joint estimator is non trivial,
and is left for future work. Importantly, there is a closed-form
solution for the conditional covariance of the joint estimator
(given in Proposition IV.2) that facilitates the potential use
of our estimator for uncertainty based decision making and
planning.

Proposition IV.2. The free energy optimization based joint
state and noise covariance estimation scheme introduced in
Section IV-B has a conditional covariance for λ and x̃ given
by Σλ = E[λ .λ T ] = (Pλ + 1

2 (ε
T Πε)λλ )

−1 and Σx̃ = ε̃T
x̃ Π̃ε̃x̃

respectively.

Proof. The free energy optimization based estimator design
tracks the maximum of free energy for estimation. The
gradient of F along the conditional covariance of λ is zero
at the peaks of F , F

Σλ = 0. Differentiating Equation 7 with
respect to Σλ gives:

∂F
∂Σλ

=
1
2

∂

∂Σλ
(ln|Σλ |+ tr(ΣλU(y,µϑ )λλ )), (19)

which when equated to zero yields the optimal conditional
precision as:

(Σλ )−1 =−U(y,µϑ )λλ = Pλ +
1
2
(εT

Πε)λλ . (20)

Similarly, Σx̃ can be evaluated by setting FΣx̃ = 0, giving the
optimal conditional covariance of x̃ as (Σx̃)−1 =−U(y,µϑ )x̃x̃,
which upon simplification using Equation 10 yields:

Σ
x̃ = (ε̃T

x̃ Π̃ε̃x̃)
−1. (21)

Note that the mean field assumption that separated the
recognition densities q(ϑ) = q(x̃)q(λ ), directly results in
Σx̃λ = O. This completes the proof.

V. BENCHMARKING

Using randomized simulation experiments, we compare
our proposed online DEM against nine state-of-the-art esti-
mators (See Sec. I-B): VBM, ICM, IOCM, WCM, MACM,
MLM, DCM, MDCM and CMM.

A. Numerical simulations settings

The following simulation settings are used throughout the
paper, unless mentioned otherwise. The system in Equation 1
with a randomly sampled stable A matrix with n = 2 is used.
B = O2×1 and C = I2×2 with noise covariance Q = e−5I2×2,
R = diag(e−4,e−3). This particular system was chosen so
that all the benchmarks could be used for the comparison.
The data was generated with dt = 0.1s, initial state x0 = [ 1

−1 ],
s = 0.5 until T = 32s. An uninformative prior of ηλ i

= 0.001
with Pλ = e−1I2×2 was placed on the noise parameter λ i.
The embedding order of p = 6 and d = 2 were used for data
generation and the estimator. The MATLAB code from [1]
was adapted to simulate the benchmarks. The correspond-
ing simulation settings are given in Appendix VI-A. Code
available at https://github.com/ajitham123/DEM NCM.

B. Noise covariance estimator

We benchmarked our NCM estimator for white noise and
colored noise in highly randomized experimental simula-
tions.

Fig. 1. Noise covariance estimation under colored noise. While most
methods provide unstable solutions, our online DEM consistently produces
a stable solution (in pink), which outperforms all other stable benchmarks
under colored noise - VBM (in red), CMM (in blue) and MLM (in cyan).
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Figure 1 shows the results of 100 randomized trials with
colored noise (s = 0.5) case with the same setup as that of
Section V-A. While most of the benchmarks provided an
unstable (exploding) solution except for VBM (in red), MLM
(in cyan) and CMM (in blue), online DEM (in pink) provided
a consistently stable solution with high accuracy.

Figure 2 shows the simulation results of 100 randomized
trials with the setup given in Section V-A for the white
noise case with s = 10−10 and Pλ = e0I2×2. While most
benchmarks provide an unbiased estimate of R (true value
at the centre of the dashed cross), online DEM (in pink)
provides a biased estimate with acceptable levels of accuracy.

Fig. 2. The covariance R, estimated by the benchmarks for 100 randomized
trials with white noise. The A matrix was randomly selected. While most
benchmarks provide an unbiased estimate, online DEM (in pink) provides a
biased estimate (because of priors), but with acceptable levels of accuracy.

TABLE I
ERROR IN NOISE COVARIANCE MATRIX ESTIMATION (SSE)

White noise Colored noise

VBM (27.42 ± 31.44) ×10−5 (2.303 ± 2.724) ×10−3

ICM (5 ± 6.14) ×10−5 Inf
IOCM (1.25 ± 1.07) ×10−5 (2.644 ± 0.095) ×10−3

WCM (5 ± 6.14) ×10−5 Inf
MACM (7.03 ± 8.3) ×10−5 Inf
MLM (2.12 ± 2.47) ×10−5 (2.772 ± 0.039) ×10−3

DCM (4.99 ± 6.14) ×10−5 Inf
MDCM (6.16 ± 8.05) ×10−5 Inf
CMM 62.01 ± 140.7 6.501 ± 10.81
DEM (38.65 ± 9.11) ×10−5 (9.344 ± 9.892) ×10−5

Table I reports the average error in NCM estimation (sum
of squared error) for all the benchmarks, for both white
noise and colored noise case. Our proposed online DEM
outperforms other methods by 2 orders of magnitude for the
colored noise case with minimal estimation error. Table II
reports the percentage of stable solutions provided by all
benchmarks, highlighting the result that DEM consistently
provides a stable solution. In summary, DEM outperforms
the benchmarks in NCM estimation under colored noise.

C. The influence of noise color on estimation

This section aims to analyze the performance of DEM with
increasing levels of noise color and, to compare it against the
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Fig. 3. The influence of noise color on the stability of benchmarks. With an
increasing noise smoothness s, all methods become unstable (after around
s= 0.06), except for DEM, VBM, CMM and MLM. DEM (in pink) remains
closest to the true R value (in dashed black).

TABLE II
PERCENTAGE OF STABLE SOLUTIONS

White noise Colored noise

VBM 100% 100%
ICM 100% 0%

IOCM 19% 2%
WCM 100% 0%

MACM 100% 0%
MLM 100% 100%
DCM 100% 0%

MDCM 100% 0%
CMM 12 % 59%
DEM 100% 100%

benchmarks. The same simulation setup from Section V-A
with a randomly sampled matrix, A = [ 0.0484 0.7535

−0.7617 −0.2187 ] was
used for increasing levels of noise smoothness s from 0 to
0.2, with Pλ = e0I2×2. Figure 3 shows the high sensitivity
of all benchmarks with increasing s (around s = 0.06), while
DEM (in pink) shows consistent performance by remaining
close to the true R (in dashed black). This concludes that
DEM can seamlessly handle noise color, while most of the
benchmark demonstrates a high sensitivity.
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Fig. 4. The performance of estimators for different noise levels λ , under
white noise condition. All methods except CMM provides a solution that
is close to the real λ (colored points are close to the black line). DEM
provides a biased solution.
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Fig. 5. Under colored noise (s = 0.5), DEM outperforms all benchmarks
with an accurate estimate of λ (pink points are the closest to the black line)
for all ranges of λ . Under colored noise, VBM (in red) is DEM’s main
competitor.

D. The influence of noise levels on estimation

The previous sections focused on demonstrating the effec-
tiveness of online DEM in estimating noise CM for a fixed
R. This section aims to analyse the performance of DEM for
varying R. 50 randomised trials with the setup from Section
V-A was used by varying λ from -5 to 8, and the results are
shown in Figure 4 and 5 for white noise and colored noise
respectively. The best method is expected to remain as close
as possible to the black line. Online DEM remains close to
the black line for varying R, both for white noise and colored
noise, while most benchmarks show an inaccurate estimation
for colored noise case. It can be concluded from Figure 5
that the best competitor for online DEM for colored noise
case is VBM (in red).
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Fig. 6. The SSE for state estimation for 100 randomized trials each for
different noise smoothness s. Online DEM (in red) outperforms VBM (in
blue) for high colored noise (s > 0.3) with a lower SSE for state estimation.

E. State observer

This section aims to analyse the performance of our joint
state and noise CM estimator for colored noise, in com-
parison with the best competing benchmark (VBM). Figure
6 shows the SSE for state estimation under varying noise
color for online DEM and VBM, under 100 randomized
trials as per Section V-A with varying s from 0.1 to 0.9.
For higher noise color (s > 0.3), online DEM outperforms
VBM with minimal error in state estimation. For lower noise

color, the state estimation of DEM is influenced by the
higher noise derivatives and underperforms VBM. Figure 7
shows the results of 100 randomized trials with s = 0.5 from
Figure 6. Since most points lie above the red line, DEM
is highly reliable for higher noise color when compared to
VBM. In summary, our proposed online DEM beats the best
benchmark for the state estimation under higher noise color.

Fig. 7. The comparison of joint state and NCM estimation of DEM and
VBM. Since most of the points lie above the red line, DEM is highly reliable
for online state estimation under high colored noise.

F. Transient noise covariance

This section aims to analyze the performance of DEM and
VBM under transient noise CM. The setup from Section V-A
with A = [ 0.0484 0.7535

−0.7617 −0.2187 ] was used with a varying λ , and the
results are plotted in Figure 8. It can be observed that DEM
(in red) tracks the true λ (in dotted black) with respect to
time, when compared to VBM (in blue). In summary, DEM
outperforms VBM for online noise CM estimation under
colored noise condition.
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Fig. 8. The quality of online estimation of λ . DEM (in red) closely
approximates the real λ (in black), when compared to VBM (in blue).

G. Influence of the mean field terms on estimator

The mean field terms (W in Equation 7) are often ne-
glected in practice during estimation and control [5]. This
section aims to draw attention to the influence of such an
approximation on the quality of NCM estimation. Figure 9
shows the results of 100 randomized trials for online NCM
estimation, with (in red) and without (in blue) using the mean
field terms during estimation. The red curve is closer to the
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Fig. 9. The influence of mean field terms on the noise estimation. The
average of 100 randomised trials with (in red) and without (in blue) using
mean field terms is plotted. Using the mean field terms improves the noise
estimation (red curve is closer to the black curve than the blue curve).

black curve than the blue curve, indicating that the use of
mean field term improves the quality of NCM estimation.

VI. CONCLUSION
A novel and adaptive joint state and NCM estimator

(online DEM) for linear systems with colored noise was
introduced, grounding on the neuroscientific theory of FEP.
Our NCM estimator was proven to converge to the global
optimum of the free energy objective. Under randomized nu-
merical simulations, online DEM was shown to outperform
nine NCM estimators with minimal estimation error under
colored noise. While most estimators displayed instability
under colored noise, online DEM provided a consistently
superior performance. The main drawback of our method
is its higher computational complexity due to the use of
generalized coordinates. Future work will focus on applying
the online DEM on robotic system with transient noise char-
acteristics (e.g., delivery drone flying in wind). Furthermore,
the mathematical framework introduced in this paper can be
extended to estimate Q online.

APPENDIX
A. Simulation setup for benchmarks

This section provides the simulation conditions used by
the benchmarks. The constants have the same definition as in
[1]. All the benchmarks were provided with the correct initial
condition of x0 = [ 1

−1 ]. A stable filter gain of K = 0.8I2×2
was used for ICM, WCM and DCM. The weight matrices
for MACM were chosen as W1 = I4×4 and W2 = I6×6. MLM
used a maximum number of EM steps of 50, with an initial
Ra = [ 2.47 −0.58

−0.58 3.37 ]. CMM used an initial estimate of R as R0 =
I2×2, and the initial time instant for matrix estimation as T/2.
VBM used the parameters for the inverse Gamma distribution
as α = [0;0] and β = [1;1]. The number of filtering iterations
was selected as 2. The behavior of the precision factor was
chosen as ρ(nt) = 1−min(50/nt ,0.1). IOCM used an initial
condition for estimating B as B0 = [0,0,0,0].
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