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Abstract— We develop a switched predictor-feedback law,
which achieves global asymptotic stabilization of linear systems
with input delay and with the plant and actuator states available
only in (almost) quantized form. The control design relies on
a quantized version of the nominal predictor-feedback law
for linear systems, in which quantized measurements of the
plant and actuator states enter the predictor state formula.
A switching strategy is constructed to dynamically adjust the
tunable parameter of the quantizer (in a piecewise constant
manner), in order to initially increase the range and subse-
quently decrease the error of the quantizers. The key element
in the proof of global asymptotic stability in the supremum
norm of the actuator state is derivation of solutions’ estimates
combining a backstepping transformation with small-gain and
input-to-state stability arguments, for addressing the error due
to quantization.

I. INTRODUCTION

Compensation of long input delays for linear systems
can be achieved via predictor-based control design tech-
niques and, in particular, via exact predictor feedbacks, see,
for example, [1], [4], [7], [18]. The baseline, continuous
predictor-based designs are accompanied with certain stabil-
ity (and robustness) guarantees, see, e.g., [4], [5], [14], [18].
However, implementation of predictor feedbacks may be
subject to digital effects, such as, for example, sampling and
quantization, which may deteriorate closed loop performance
of the nominal continuous designs, when these effects are
left uncompensated, see, for example, [14], [20]. Therefore,
addressing issues arising due to digital implementation of
predictor feedbacks is practically and theoretically signifi-
cant, in order to provably preserve the stability guarantees
of the original, continuous designs.

Among the potential digital implementation issues arising
in implementation of predictor feedbacks, sampled mea-
surements and control inputs applied via zero-order hold
have been addressed in [13], [24], [25]; while [2], [27]
address sampling in sequential predictors-based designs and
[8], [10] address sampling in nonlinear systems with state
delay. In particular, [13], [24], [25] introduce design and
analysis approaches for compensating the effect of sampling
in measurements and actuation employing predictor-based
designs; while [9] also addresses quantization effects in
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nonlinear systems with delay on the state. Because our
design also relies on a switched strategy (although it is
assumed that the input is continuously applied and that
continuous measurements are available), results on predictor-
based event-triggered control design may be also viewed
as relevant [12], [20], [21], [22], [26]. Besides [3] that
considers the case of a class of boundary controlled, first-
order hyperbolic PDEs (Partial Differential Equations) sub-
ject to state quantization, not involving an ODE (Ordinary
Differential Equation) part, paper [23] presents a predictor-
feedback design for a particular case of a model of robot
manipulator with quantized input, which, however, neither
addresses a general linear system with a systematic design
and analysis approach nor aims at achieving asymptotic
stability via a dynamic quantizer, while quantization affects
the control input and not the state measurements.

In the present paper, we develop a switched predictor-
feedback control design that achieves compensation of both
input delay and state quantization. The control design re-
lies on two main ingredients–a baseline predictor-feedback
design and a switching strategy that dynamically adjusts the
tunable parameter of the quantizer. In particular, the nominal
predictor state formula is modified such that the plant and
actuator states are replaced by their quantized versions;
while the tunable parameter of the quantizer is dynamically
adjusted (in a piecewise manner), in order to initially increase
the range of the quantizer and to subsequently decreases
its error, as it is done in the case of delay-free systems in
[6], [19]. The transition between the two main modes of
operation of the switching signal takes place at detection of
an event indicating that the infinite-dimensional state of the
system (consisting of the ODE and actuator states) enters
the range of the quantizer, implying that stabilization can be
then achieved decreasing the quantization error.

We establish global asymptotic stability in the supremum
norm of the actuator state. The proof strategy relies on
combination of backstepping [18] with small-gain and input-
to-state stability (ISS) arguments [16], towards derivation of
estimates on solutions. In particular, the proof consists of
two main steps. In the first, the system operates in open loop,
while the range of the quantizer is increasing. Deriving esti-
mates based on the explicit solution of the open-loop system,
it is shown that there exists some time instant at which the
state enters within the range of the quantizer. In the second
step of the proof, given that the state is within the quantizer’s
range, the tunable parameter of the quantizer is decreasing
in a piecewise constant manner. In particular, within each
interval in which the quantizer’s parameter is constant, we
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show that the norm of the solutions of the closed-loop system
decreases by a factor that is less than unity. To show this
we capitalize on the input-to-state stability properties of
linear predictor feedbacks and of the pure-transport PDE
system, which allow us to obtain, via a small-gain argument,
a condition on the quantizer’s parameters, namely, on its
range and error, which guarantees that asymptotic stability
is achieved. We note that the quantizers considered here
are called “almost” quantizers. The reason is that we use
functions that are locally Lipschitz and not just piecewise
constant functions to avoid issues related to existence and
uniqueness of solutions1. This assumption allows us to study
existence and uniqueness using the results from [16] in
combination with [11], [15], while the stability estimates
derived and the overall proof strategy adopted do not depend
on this property, suggesting that such an assumption can be
removed.

We start in Section II presenting the classes of systems and
quantizers considered, together with the switched predictor-
feedback design. In Section III we establish global asymp-
totic stability of the closed-loop system. In Section IV we
provide concluding remarks and a discussion on our ongoing
research.

Notation: We denote by L∞(A; Ω) the space of measur-
able and bounded functions defined on A and taking values in
Ω. For a given D > 0 and a function u ∈ L∞([0, D];R) we
define ∥u∥∞ = ess supx∈[0,D] |u(x, t)|. For a given h ∈ R
we define its integer part as ⌊h⌋ = max{k ∈ Z : k ≤ h}.
The state space Rn × L∞([0, D];R) is induced with norm
∥(X,u)∥ = |X| + ∥u∥∞. We denote by AC (R+,Rn) , the
set of all absolutely continuous function X : R+ → Rn. Let
I ⊆ R be an interval. A piecewise left-continuous function
f : I → J is a function continuous on each closed interval
subset of I except possibly on a finite number of points
x0 < x1 < · · · < xp such that for all l ∈ {0, · · ·, p − 1}
there exists fl continuous on [xl, xl+1] and fl|(xl,xl+1) =
f |(xl,xl+1). Moreover, at the points x0, · · ·, xp the function
is left continuous. The set of all piecewise left-continuous
functions is denoted by Clpw(I, J) (see also [11], [15]).

II. PROBLEM FORMULATION AND CONTROL DESIGN

A. Linear Systems With Input Delay & State Quantization

We consider the following system

Ẋ(t) = AX(t) +BU(t−D), (1)

where D > 0 is constant input delay, t ≥ 0 is time variable,
X ∈ Rn is state, and U is scalar control input. An alternative
representation of this system is as follows

Ẋ(t) = AX(t) +Bu(0, t), (2)
ut(x, t) = ux(x, t), (3)
u(D, t) = U(t), (4)

by setting u(x, t) = U(t+ x−D), where x ∈ [0, D] and u
is the transport PDE state, with initial conditions u(x, 0) =

1Arising due to the potential non-measurability of composition of an exact
quantizer function with an only continuous PDE state.

u0(x). We proceed from now on with representation (2)–(4)
as it turns out to be more convenient for control design and
analysis. In [18] system (2)–(4) is transformed into

Ẋ(t) = (A+BK)X(t) +Bw(0, t), (5)
wt(x, t) = wx(x, t), (6)
w(D, t) = U(t)− Unom(t), (7)

thanks to the backstepping transformation

w(x, t) = u(x, t)−K

∫ x

0

eA(x−y)Bu(y, t)dy

−KeAxX(t), (8)

where Unom(t) is the nominal predictor feedback defined by

Unom(t) = K

∫ D

0

eA(D−y)Bu(y, t)dy +KeADX(t). (9)

The inverse of this transformation is

u(x, t) = w(x, t) +K

∫ x

0

e(A+BK)(x−y)Bw(y, t)dy (10)

+Ke(A+BK)xX(t).

One has

M2∥(X,u)∥ ≤ ∥(X,w)∥ ≤ M1∥(X,u)∥, (11)

where M1,M2 are

M1 = |K|e|A|D max{1, D|B|}+ 1, (12)

M2 =
1

|K|e|A+BK|D max{1, D|B|}+ 1
. (13)

Although (8)–(13) are well-known facts, we present them
here as the constants M1 and M2 are incorporated in the
control design.

B. Properties of the Quantizer

The state X of the plant and the actuator state u are
available only in quantized form. We consider here dynamic
quantizers with an adjustable parameter of the form (see,
e.g., [6], [19])

qµ(X,u) = (q1µ(X), q2µ(u)) =

(
µq1

(
X

µ

)
, µq2

(
u

µ

))
,

(14)
where µ > 0 can be manipulated and this is called
“zoom” variable. The quantizers q1 : Rn → Rn and
q2 : L∞([0, D];R) → R are locally Lipchitz functions that
satisfy the following properties
P1:If ∥(X,u)∥ ≤ M , then ∥(q1(X)−X, q2(u)− u)∥ ≤ ∆,
P2:If ∥(X,u)∥ > M , then ∥(q1(X), q2(u))∥ > M −∆,
P3:If ∥(X,u)∥ ≤ M̂ , then q1(X) = 0 and q2(u) = 0,
for some positive constants M,M̂ , and ∆, with M > ∆.
When the argument of the employed quantizer is a vector, the
quantizer function is a vector itself, defined componentwise
according to (14), satisfying properties P1–P3. In the present
case, we consider uniform quantizers for each element of
the vector argument, while we discern between the quantizer
function of the measurements of the plant state X and the
function that corresponds to the actuator state measurements
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Fig. 1: An approximate quantizer with ϵ-layer.

u. For simplicity of control design and analysis we assume
a single tunable parameter µ. In fact, this is also practi-
cally reasonable, considering a case where, e.g., a single
computer with a single camera collects measurements. The
quantizers considered here differ from typical piecewise
constant quantizers, taking finitely many values, in that we
assume they are locally Lipschitz functions. Although this
may appear as a restrictive requirement, in practice, it isn’t
as it is also illustrated in Fig. 1, which shows a locally
Lipschitz quantizer that may arbitrarily closely approximate
a quantizer with rectilinear quantization regions. This is a
technical requirement to guarantee existence and uniqueness
of solutions in a straightforward manner. The stability result
obtained and the stability proof do not essentially rely on
this, suggesting that this assumption could be removed.

C. Predictor-Feedback Law Using Almost Quantized Mea-
surements

The hybrid predictor-feedback law can be viewed as a
quantized version of the predictor-feedback controller (9), in
which the dynamic quantizer depends on a suitably chosen
piecewise constant signal µ. It is defined as

U(t) =

{
0, 0 ≤ t ≤ t0
KPµ(t) (X(t), u(·, t)) , t > t0

, (15)

with

Pµ(X,u) = eADq1µ(X) +

∫ D

0

eA(D−y)Bq2µ(u(y))dy,

(16)
and K is a gain vector that makes matrix A+BK Hurwitz.
The tunable parameter µ is selected as2

µ(t) =



M1e
2|A|(j+1)τµ0, (j − 1)τ ≤ t ≤ jτ + τ̄ δj ,

1 ≤ j ≤
⌊
t0
τ

⌋
,

µ (t0) , t ∈ (t0, t0 + T ] ,

Ωµ (t0 + (i− 1)T ) , t ∈ (t0 + (i− 1)T,

t0 + iT ] , i = 2, 3, . . .

,

(17)

2In the particular case where |A| = 0, one could replace |A| by an
arbitrary positive constant; while if m = 0, then the first component of µ
is applied for t ∈ [0, τ̄ ] (with j = 0).

for some fixed, yet arbitrary, τ, µ0 > 0, where t0 = mτ + τ̄ ,
for an m ∈ Z+, τ̄ ∈ [0, τ), and δm = 1, δj = 0, j < m, with
t0 being the first time instant at which the following holds∣∣∣∣µ(t0)q1(X (t0)

µ (t0)

)∣∣∣∣+ ∥∥∥∥µ(t0)q2(u (t0)

µ (t0)

)∥∥∥∥
∞

≤ (MM −∆)µ(t0), (18)

where

M3 = |K|e|A|D(1 + |B|D), (19)

M =
M2

M1(1 +M0)
, (20)

M1 = 1 +D|B|, (21)

Ω =
(1 + λ)(1 +M0)

2∆M3

M2M
, (22)

T = −
ln
(

Ω
1+M0

)
δ

. (23)

The parameters δ, λ and M0 are defined as follows. Constant
δ ∈ (0,min{σ, ν}), for some ν, σ > 0, satisfying∣∣∣e(A+BK)t

∣∣∣ ≤ Mσe
−σt, (24)

for some Mσ > 1, λ is selected large enough in such a way
that the following small-gain condition holds

eD(ν+1)

1 + λ

(
Mσ

σ
|B|+ 1

)
< 1, (25)

and M0 is defined such that

M0 = max
{
(1− ϕ)

−1
(1− φ1)

−1
eD(ν+1); (1− φ1)

−1
ϕ

×Mσ (1− ϕ)
−1
}
+max

{
(1− φ1)

−1Mσ; (1− ϕ)
−1

×(1 + ε)(1− φ1)
−1eD(ν+1)Mσ

σ
|B|
}
, (26)

where 0 < ϕ < 1 and 0 < φ1 < 1 with

ϕ =
1 + ε

1 + λ
eD(ν+1) and φ1 = (1 + ε)(1− ϕ)−1ϕ

Mσ

σ
|B|,

(27)

for some ε > 0. The choice of ν, ε guarantees that ϕ <
1, φ1 < 1, which is always possible given (25) (see also the
proof of Lemma 2 in Section III).

We note here few remarks for the control law pre-
sented. Event (18) can be detected using measurements of
q1µ(X), q2µ(u), and µ only, which are available. The tunable
parameter µ is chosen in a piecewise constant manner. In the
first phase (for 0 ≤ t ≤ t0) it is increasing sufficiently fast,
choosing a sufficiently large M1, so that there exists a time
t0 such that (18) holds (see Lemma 1) which depends on the
size of open-loop solutions. In the zooming in phase, µ is
decreasing by a factor of Ω over T time units. To guarantee
convergence of the state to zero, Ω has to be less than one,
which is guaranteed by assumption (see Theorem 1). Time
T has to be chosen large enough, as T time units intervals
correspond to intervals in which the solutions approach the
equilibrium. Condtion (25) is a small-gain condition derived
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when viewing as disturbance the error due to quantized mea-
surements and applying an ISS argument (see Lemma 2).
In particular, when D increases, λ has to increase, which
(via Ω in (22)) imposes stricter conditions on the ratio ∆

M
between error and range of the quantizer.

III. STABILITY OF SWITCHED PREDICTOR-FEEDBACK
CONTROLLER UNDER STATE QUANTIZATION

Theorem 1: Consider the closed-loop system consisting of
the plant (2)–(4) and the switched predictor-feedback law
(15)–(17). Let the pair (A,B) be stabilizable. If ∆ and M
satisfy

∆

M
<

M2

(1 +M0)max{M3(1 + λ)(1 +M0), 2M1}
, (28)

then for all X0 ∈ Rn, u0 ∈ Clpw([0, D],R), there exists a
unique solution such that X(t) ∈ AC (R+,Rn), for each
t ∈ R+ u(·, t) ∈ Clpw([0, D],R), and for each x ∈ [0, D]
u(x, ·) ∈ Clpw (R+,R), which satisfies

|X(t)|+ ∥u(t)∥∞ ≤ γ (|X0|+ ∥u0∥∞)(
2− ln Ω

T
1

|A| ) e
ln Ω
T t,

(29)

where

γ =
M1

M2
max

{
M2M

Ω
e2|A|τµ0,M1

}
max {1,

1

µ0(MM − 2∆)

}(
1

µ0(MM − 2∆)

)(1− ln Ω
T

1
|A| )

. (30)

The proof relies on Lemmas 1 and 2 which are presented
next. In particular, Lemma 1 establishes a bound on the
solutions during the zooming out (open-loop) phase, which
in turn is utilized to prove the existence of a time instant
at which the solutions get within the range of the quantizer
(ie., they satisfy (18)). Subsequently, Lemma 2 establishes
a bound on closed-loop solutions, via employing a small-
gain based ISS argument, for time intervals of constant µ.
This bound implies that the solutions’ magnitude decays by
a factor of Ω every T time units.

Lemma 1: Let ∆ and M satisfy (28), there exists a time
t0 satisfying

t0 ⩽
1

|A|
ln

(
1
µ0

(|X0|+ ∥u0∥∞)

(MM − 2∆)

)
, (31)

such that (18) holds, and thus, the following also holds

|X(t0)|+ ∥u(t0)∥∞ ≤ MMµ(t0). (32)
Proof: We refer to [17] for the proof of this Lemma.

Lemma 2: Choose K such that A + BK is Hurwitz
and let σ,Mσ > 0 be such that (24) holds. Select
λ large enough in such a way that the small-gain
condition (25) holds. Then the solutions to the target
system (5)–(7) with the quantized controller (15),
resulting in w(D, t) = KeADµ(t)

(
q1

(
X(t)
µ(t)

)
− X(t)

µ(t)

)
+

K
∫D

0
eA(D−y)Bµ(t)

(
q2

(
u(y,t)
µ(t)

)
− u(y,t)

µ(t)

)
dy, with u

given in terms of (X,w) by the inverse backstepping
transformation (10), which verify, for fixed µ,

|X(t0)|+ ∥w(t0)∥∞ ≤ M2

1 +M0
Mµ, (33)

they satisfy for t0 < t ≤ t0 + T

|X(t)|+ ∥w(t)∥∞ ⩽ max
{
M0e

−δ(t−t0) (|X(t0)|

+ ∥w(t0)∥∞) , Ω
M2

1 +M0
Mµ

}
. (34)

In particular, the following holds

|X(t0 + T )|+ ∥w(t0 + T )∥∞ ≤ Ω
M2

1 +M0
Mµ. (35)

Proof: Let ε > 0, using the fading memory lemma [16,
Lemma 7.1], one can prove the existence of δ, ν > 0 s.t

|X|[t0,t] ⩽ Mσ|X(t0)|+ (1 + ε)
Mσ

σ
|B|∥w∥[t0,t], (36)

and

∥w∥[t0,t] ≤ eD(ν+1) ∥w(t0)∥∞ (37)

+ eD(ν+1)(1 + ε) sup
t0⩽s⩽t

(
|d(s)|eδ(s−t0)

)
, (38)

with d(t) = U(t) − Unom(t), ∥w∥[t0,t] :=

sup
t0≤s≤t

(
∥w(s)∥∞eδ(s−t0)

)
and |X|[t0,t] :=

sup
t0⩽s⩽t

|X(s)|eδ(s−t0).

Let us next estimate the term sup
t0⩽s⩽t

(
|d(s)|eδ(s−t0)

)
. For

t0 < t ≤ t0 + T

|d| ≤ M3µ

∥∥∥∥q1(X

µ

)
− X

µ
, q2

(
u

µ

)
− u

µ

∥∥∥∥ , (39)

with M3 defined in (19) and u given in terms of (X,w) by
the inverse backstepping transformation (10). Provided that

Ω
M2

(1 +M0)2
Mµ ≤ |X|+ ∥w∥∞ ⩽ M2Mµ, (40)

thanks to the property P1 of the quantizer, the left-hand side
of bound (11), and the definition (22), we obtain

|d| ≤ M3∆µ ⩽
1

1 + λ
(|X|+ ∥w∥∞) . (41)

Therefore, as long as the solutions satisfy (40) we get

sup
t0⩽s⩽t

(
|d(s)|eδ(s−t0)

)
⩽

1

1 + λ
∥w∥[t0,t] +

1

1 + λ
|X|[t0,t].

(42)
Combining estimate (36) with (38) and (42) we obtain the
following estimate using the small-gain condition (25)

|X(t)|+ ∥w(t)∥∞ ⩽ M0e
−δ(t−t0) (|X(t0)|+ ∥w(t0)∥∞) ,

(43)
with M0 given in (26). For t0 < t ≤ t0 + T , using relation
(33), the fact that e−δ(t−t0) ≤ 1, and M0

1+M0
< 1 one has that

|X(t)|+ ∥w(t)∥∞ ≤ M2Mµ, (44)

which makes estimate (43) legitimate. Moreover, at the time
instant t0 + T , thanks to the relation (33) and the definition
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(23) of T, one obtains (34) from (43). Note that relations
(35) and (43) are established provided that Ω M2

(1+M0)2
Mµ ≤

|X| + ∥w∥∞. If there exists a time t∗0 such that t0 ≤ t∗0 ≤
t0 + T, at which the solutions satisfy

|X (t∗0)|+ ∥w (t∗0)∥∞ ⩽ Ω
M2

(1 +M0)2
Mµ, (45)

then they also satisfy for t∗0 ≤ t ≤ t0 + T

|X(t)|+ ∥w(t)∥∞ ⩽ Ω
M2

1 +M0
Mµ, (46)

and therefore, combining this estimate with (43) we obtain
the bound (34). To see this, note that once the solutions may
enter again the region where (40) holds (if this happens)
then the previous analysis becomes legitimate. In particular,
estimate (43) is activated, which implies that the solutions
remain in the region where (46) holds.
We note here that the proof strategy of Lemma 2 relies on
the objective to establish an ultimate boundedness property
for the target system. Although, in [3], [19], a Lyapunov-like
analysis is employed during the zooming-in stage, facilitating
the attainment of an ultimate boundedness property (through
the invariance of considered regions), our approach here
relies on a small-gain ISS argument. Therefore, to establish
an ultimate bound estimate, our analysis relies on a choice
of the zooming in parameter Ω and the dwell-time T (where
T denotes the time instant at which solutions enter a desired
region), both dependent on the overshoot M0.

We are now ready to prove Theorem 1.
Proof of Theorem 1: The inequality |X(t0)|+∥u(t0)∥∞ ≤

MMµ in Lemma 1 holds with constant µ = µ (t0) .
Therefore, using (11) and the definition (20) of M , the
inequality (33) holds. Then applying Lemma 2 where µ is
updated according to (17) the inequality (35) holds with
µ = µ(t) = µ(t0 + T ). Thus, relation (35) implies that
(33) holds but with t0 → t0 + T and µ = µ(t0 + 2T ) =
Ωµ(t0 + T ) = Ωµ(t0). Then by applying again Lemma 2,
we have for t0 + T < t ≤ t0 + 2T and µ = µ(t0 + 2T )

|X(t0 + 2T )|+ ∥w(t0 + 2T )∥∞ ≤ Ω2 M2

1 +M0
Mµ(t0).

(47)

Using the estimate (34) in Lemma 2, we have for
t0 + T < t ≤ t0 + 2T

|X(t)|+ ∥w(t)∥∞ ⩽ max
{
M0e

−δ(t−t0−T ) (|X(t0 + T )|

+ ∥w(t0 + T )∥∞) ,Ω
M2

1 +M0
Mµ(t)

}
.

(48)

Therefore, since in (17) for t0 + T < t ≤ t0 + 2T , µ(t) =
Ωµ(t0), using (35) we obtain for t0 + T < t ≤ t0 + 2T

|X(t)|+ ∥w(t)∥∞ ⩽ ΩM2Mµ(t0). (49)

Repeating this procedure, we arrive at

|X(t)|+ ∥w(t)∥∞ ⩽ Ωi−1M2Mµ(t0), (50)

for all t0 + (i− 1)T < t ≤ t0 + iT. Therefore for t0 + (i−
1)T < t ≤ t0 + iT , i = 1, 2, . . . , we get

|X(t)|+ ∥w(t)∥∞ ≤ Ω(
t−t0
T )M2M

Ω
µ(t0). (51)

From the definition of µ in (17) one has

µ(t0) ≤ M1e
2|A|τe2|A|t0µ0, (52)

thus, for t ≥ t0 it follows from (51) that

|X(t)|+ ∥w(t)∥∞ ≤ µ0M1
M2M

Ω
e2|A|τe2|A|t0e(t−t0)

ln Ω
T .

(53)

Using the method of characteristics and the variation of
constants formula it is straight to prove that for 0 ≤ t ≤ t0

|X(t)|+ ∥u(t)∥∞ ⩽ M1e
|A|t (|X0|+ ∥u0∥∞) . (54)

Therefore, thanks to the inequality (11) we obtain

|X(t)|+ ∥w(t)∥∞ ⩽ M1M1e
|A|t (|X0|+ ∥u0∥∞) , (55)

for 0 ⩽ t ⩽ t0. Combining these two last estimates and the
inequality (11) we get for all t ≥ 0

|X(t)|+ ∥u(t)∥∞ ⩽ max
{
e|A|t0 , |X0|+ ∥u0∥∞

}
M2

× e|A|t0e−
ln Ω
T t0e

ln Ω
T t, (56)

where

M2 =
M1

M2
max

{
M2M

Ω
e2|A|τµ0,M1

}
. (57)

From (31) we have

t0 ⩽
1

|A|
ln
[
M3 (|X0|+ ∥u0∥∞)

]
, (58)

with
M3 =

1

µ0(MM − 2∆)
. (59)

Thus,
e|A|t0 ≤ M3 (|X0|+ ∥u0∥∞) . (60)

Moreover,

− lnΩ

T
t0 ⩽ − lnΩ

T

1

|A|
ln
[
M3 (X0 + ∥u0∥∞)

]
, (61)

and thus,

e−
ln Ω
T t0 ⩽ elnM3(|X0|+∥u0∥∞)

− ln Ω
T

× 1
|A|

⩽ M
− ln Ω

T × 1
|A|

3 ( |X0|+ ∥u0∥∞)
− ln Ω

T × 1
|A| . (62)

From (60) and (62) one obtains

max
{
e|A|t0 , |X0|+ ∥u0∥∞

}
≤ (|X0|+ ∥u0∥∞)

×max
{
M3, 1

}
, (63)

e|A|t0e−
ln Ω
T t0 ≤ M

(1− ln Ω
T × 1

|A| )
3

× (|X0|+ ∥u0∥∞)(
1− ln Ω

T |A| ) .
(64)
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Therefore, from (63) and (64) we arrive at

|X(t)|+ ∥u(t)∥∞ ≤ max
{
M3, 1

}
M2M

(1− ln Ω
T

1
|A| )

3

× (|X0|+ ∥u0∥∞)(
2− ln Ω

T
1

|A| ) e
ln Ω
T t,

(65)

which gives (29).
We now prove well-posedness. In the interval [0, t0], where

there is no control, the system described by (2)–(4) with
U(t) = 0. The existence and uniqueness of solutions within
this interval are ensured by the explicit solution to the ODE
subsystem (2) and the transport subsystem (3), thanks to the
variation of constants formula and the characteristics method,
respectively. These solutions depend only on X0 ∈ Rn and
u0 ∈ Clpw([0, D],R) and one has X(t) ∈ AC ([0, t0],Rn)
and u ∈ Clpw([0, D] × [0, t0]),R). For t > t0, the system
described by (2)–(4), along with the quantized controller U ,
defined in (15), satisfies the assumptions outlined in [16, The-
orem 8.1], with F (X,u) = AX +Bu(0) and φ(µ, u,X) =
U(µ, u,X). In particular, U defined in (15), (16) is locally
Lipschitz in (X,u), given the local Lipschitzness assumption
of q1 and q2. Therefore, the initial conditions for each
interval Ii = [t0 + (i− 1)T, t0 + iT ] , where i = 1, 2 . . . ,
satisfy X (t0 + (i− 1)T ) ∈ Rn, u (x, t0 + (i− 1)T ) ∈
Clpw([0, D],R), and they are bounded due to (32) for i = 1
and (34) for i ⩾ 2, respectively. Then, the system (2)–(4)
with (15), given the initial conditions X (t0 + (i− 1)T ) and
u(·, t0 + (i − 1)T ) ∈ Clpw([0, D],R), where i = 1, 2, · · · ,
admits a unique solution such that X(t) ∈ AC (Ii+1,Rn)
and for each t, u(·, t) ∈ Clpw([0, D],R), while for each x,
u(x, ·) ∈ Clpw(Ii+1,R). (This regularity of the solution is
also obtained in [11], [15] in the context of transport PDE
systems subject to sampling-data and quantization.) There-
fore, using a proof by induction, we obtain the existence
and uniqueness of a solution such that X(t) is absolutely
continuous in [0,+∞), while u(·, t) ∈ Clpw([0, D],R) and
u(x, ·) ∈ Clpw(R+,R) for each t and x, respectively.

IV. CONCLUSIONS AND CURRENT WORK

Global asymptotic stability of linear systems with input
delay and subject to state quantization has been established,
thanks to a switched predictor-feedback control law that
we introduced. The proof strategy utilized the backstepping
method along with small-gain and input-to-state stability ar-
guments. Currently, our efforts are directed towards extention
to input quantization and on removing the Lipschitzness
assumption on the quantizers.
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