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Optimal Controller and Security Parameter for Encrypted Control
Systems Under Least Squares Identification®

Kaoru Teranishi'*? and Kiminao Kogiso'

Abstract— Encrypted control is a framework for the secure
outsourcing of controller computation using homomorphic
encryption that allows to perform arithmetic operations on
encrypted data without decryption. In a previous study, the
security level of encrypted control systems was quantified based
on the difficulty and computation time of system identification.
This study investigates an optimal design of encrypted control
systems when facing an attack attempting to estimate a system
parameter by the least squares method from the perspective of
the security level. This study proposes an optimal H> controller
that maximizes the difficulty of estimation and an equation to
determine the minimum security parameter that guarantee the
security of an encrypted control system as a solution to the
design problem. The proposed controller and security param-
eter are beneficial for reducing the computation costs of an
encrypted control system, while achieving the desired security
level. Furthermore, the proposed design method enables the
systematic design of encrypted control systems.

I. INTRODUCTION

Encrypted control using homomorphic encryption is a
major approach for security enhancement of networked con-
trol systems, as a network eavesdropper and a controller
server cannot learn about the control system [1], [2]. Unlike
traditional public-key encryption, homomorphic encryption
enables arithmetic operations on encrypted data, and there-
fore the server does not require a secret key for decryption.
Hence, encrypted control has been applied to various con-
trols, as in [3]-[7], to realize the secure outsourcing of con-
troller computation to an untrusted server and implemented
to some practical systems [8]-[10]. Moreover, attacks for
encrypted control systems and their countermeasures were
studied in [11]-[13].

Although most existing encrypted controls rely on the
security of used homomorphic encryption, the controls need
other security definitions because, in control systems, the
information to be protected is system parameters rather
than a single sensor or control signal data at a certain
point of time. To solve this problem, recent studies have
explored the security of encrypted control systems. In [14],
the authors examined the provable security of the systems
and analyzed the connection between the security and a
traditional cryptographic security definition. The study [15]
focused on quantifying the security level of encrypted control
systems using the sample complexity and computation time
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of system identification, disclosing the parameters of a target
system. The study also included a design for a controller that
maximizes the sample complexity of the Bayes estimation
for a system matrix of a closed-loop system with an en-
crypted controller. Then, the study determined the minimum
key length required to ensure that the computation time
exceeds the period in which the target system is replaced.
Additionally, for a given security parameter, the study [16]
provided a guideline for choosing cryptosystem parameters
in an encrypted control system.

Here we consider the design of encrypted control systems
under the least squares identification attack for a system
matrix of a closed-loop system. Preventing such attacks is
essential to realizing secure control systems because once the
attack is successful, an attacker can implement undetectable
attacks based on the system model [17]. A major challenge
in designing the systems against the attack is the compu-
tation costs associated with encryption algorithms [1]. The
use of homomorphic encryption can significantly increase
the computational burden on the system, leading to longer
computation times, potentially affecting the real-time perfor-
mance of the system. Furthermore, as the security parameter
increases, the computation costs also increase, which leads
to a trade-off between security level and performance.

This study proposes a systematic method for solving the
security and performance trade-off by designing an optimal
controller and security parameter for encrypted control sys-
tems based on the security definition in [15]. To this end, this
study derives a novel sample complexity of the systems. With
the novel sample complexity, we reveal that the security level
of the system is connected to the controllability Gramian
of the target system. The optimal controller is designed
as an optimal H, controller that minimizes the trace of
the controllability Gramian to maximize the security level
for a given security parameter. Then, the optimal security
parameter is determined as the minimum security parameter
to achieve the desired security level.

The proposed method contributes to the generalization
of the design method in [15]. The previous method chose
the minimum key length for a specific encryption scheme.
In contrast, the proposed method determines the minimum
security parameter rather than the key length. A security
parameter is a common quantity for encryption schemes, and
thus the proposed method can be applied to encrypted control
systems with any homomorphic encryption. Moreover, the
attack based on the least squares method considered in this
study is easier for attackers to perform compared to the
Bayesian estimation in [15] because the method does not

3838



require prior knowledge of a target system. Therefore, a
broader class of encrypted control systems can be protected
by preventing least squares identification attacks.

The rest of this paper is organized as follows. Section II
defines the syntax of homomorphic encryption and encrypted
control. Section III formulates an attack scenario and intro-
duces the security definition of encrypted control systems.
Section IV proposes an optimal controller and security
parameter. Section V shows a numerical example. Section VI
describes conclusions and future work.

II. PRELIMINARIES
A. Notation

The sets of natural numbers, integers, and real numbers are
denoted by N, Z, and R, respectively. A key space, a plaintext
space, and a ciphertext space are denoted by X, M, and C,
respectively. Define the set Z* := {z € Z | 0 < z} and the
bounded set X C R. The sets of n-dimensional vectors and
m-by-n matrices of which elements and entries belonging to
the set A are denoted by A" and A™*", respectively. The
ith element of vector v € A™ and the (4, ) entry of matrix
M e A™*™ are denoted by v; and M,;, respectively. The
Frobenius norm of M € A™*™ is denoted by ||M||r =

e (M TM).

B. Homomorphic encryption

This section describes the syntax and security level of
encryption. In the following, a security parameter is denoted
by A € N. First, homomorphic encryption is defined as
follows [18].

Definition 1: Homomorphic encryption is (KeyGen, Enc,
Dec, Eval) such that:

o (pk,sk) < KeyGen(1*): A key generation algorithm
takes 1* and outputs a key pair (pk, sk) € KC, where 1*
is the unary representation of a security parameter, pk
is a public key, and sk is a secret key.

e ct < Enc(pk,m): An encryption algorithm takes a
public key pk and a plaintext m € M and outputs a
ciphertext ct € C.

o m < Dec(sk, ct): A decryption algorithm takes a secret
key sk and a ciphertext ct € C and outputs a plaintext
m e M.

o ct + Eval(pk,cty,cta): A homomorphic evaluation al-
gorithm takes a public key pk and ciphertexts cty, cty €
C and outputs a ciphertext ct € C.

o Correctness: Dec(sk, Enc(pk,m)) = m holds for any
(pk, sk) < KeyGen(1*) and for any m € M.

o Homomorphism: Dec(sk, Eval(pk, ct1, cta)) = mq emq
holds for any (pk,sk) < KeyGen(1*) and for any
mi,my € M, where ct; < Enc(pk,mi), cto «
Enc(pk,m2), and e is a binary operation on M.

Homomorphic encryption is called as additive, multiplica-
tive, or (leveled) fully homomorphic encryption if the binary
operation is addition (e = +), multiplication (e = X), or
both addition and multiplication, respectively.

Next, we define updatable homomorphic encryption.

Definition 2: Let I1 = (KeyGen, Enc, Dec, Eval) be ho-
momorphic encryption. Updatable homomorphic encryption
is (II, KeyUpd, CtUpd) such that:

o (pkyy1,Skit1,00) < KeyUpd(pk,,sk:): A key update
algorithm takes a key pair (pk,,sk;) € K attime t € Z*
and outputs an updated key pair (pk;, 1, skq41) € K and
an update token o;.

e ctyy1 « CtUpd(cty, 0¢): A ciphertext update algorithm
takes a ciphertext ct; € C and an update token o at time
t € Z* and outputs an updated ciphertext ct;11 € C.

o Correctness: Dec(skq, ct;) = Dec(sks, Enc(pk,,m)) =
m holds for any (pkg,skg) ¢ KeyGen(1*), for any
m € M, and for all t € Z*, where cty < Enc(pkg, m),
(Pkyt1:ske+1,0¢) < KeyUpd(pk,,ske), and ctyp1 <
CtUpd(cty, o).

o Homomorphism: Dec(sk, Eval(pk,,cty ¢, ctay)) =
Dec(ski, Eval(pk,, Enc(pk,, m1), Enc(pk,, m2))) =
m; @ my holds for any (pkg,sko) < KeyGen(1%),
for any m; € M, and for all t € ZT, where ctio +
Enc(pko, mi), (Pkey1,sket1,00) < KeyUpd(pk,, sky),
Cti i1 < CtUpd(C‘ti’t7 O't), and i = 1,2.

Updatable homomorphic encryption is a public-key variant
of updatable encryption [19], [20] with a homomorphic
evaluation algorithm. The following property is assumed for
the updatable homomorphic encryption used in this study.

Assumption 1: A key pair (pkg,skg) provides no infor-
mation about a key pair (pk;,sk;) for any k € Z* and for
any j € Z* \ {k}, where (pkg,sko) < KeyGen(1"), and
(Pkp1,Sket1,0¢) = KeyUpd(pky, sky).

Although one may think that the assumption is signifi-
cantly stronger than a single-key case, updatable homomor-
phic encryption scheme satisfying it can be realized based
on a standard cryptographic assumption [15, Propositions 2
and 3].

Finally, we define the security level of encryption schemes,
which is quantified using the number of bits [21].

Definition 3: An encryption scheme satisfies A bit security
if at least 2* operations are required to break the scheme.

Remark 1: By Definition 3, a security parameter \ repre-
sents the security level of an encryption scheme. The optimal
key length k* of an encryption scheme satisfying A bit
security can be computed as

E* = arg min ey Q(k) st Q(k) > 27, (1)
where (k) is the time complexity of the fastest known
algorithm for breaking the encryption scheme.

C. Encrypted control

Using (updatable) homomorphic encryption, encrypted
control is defined as follows.

Definition 4: Given (updatable) homomorphic encryption
and a controller f : (®,£) + ¢, where ® € X°*8 is a
controller parameter, £ € X'? is a controller input, and ) €
X is a controller output. Let there exist Ecd and Dcd such
that:
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e m < Ecd(x;A): An encoder algorithm takes xz € X
and a scaling factor A € R and outputs a plaintext
m € M.
e x + Dcd(m; A): A decoder algorithm takes a plaintext
m € M and a scaling factor A € R and outputs x € X,
An encrypted controller of f is EC such that:

o cty < EC(pk,cts,cte): An encrypted control algo-
rithm takes a public key pk and ciphertexts cty €
C*B cte € CP and outputs a ciphertext cty, € C®.

o Dcd(Dec(sk, EC(pk, cte,cte)); A) ~ f(P,£) holds for
some A € R, for any (pk,sk) + KeyGen(1?*), for
any ® € X**8, and for any ¢ € X7, where cty
Enc(pk, Ecd(®; A)), cte < Enc(pk, Ecd(§; A)), and
the algorithms perform each element of matrices and
vectors.

Note that the controller parameter of an encrypted con-
troller with additive homomorphic encryption is a plaintext
rather than a ciphertext [3], [5]. In this case, Definition 4 can
be modified by replacing ctg with Ecd(®; A).

Remark 2: Although encoder and decoder algorithms
generally induce a quantization error e(A), ie.,
Dcd(Ecd(z; A); A) = x 4 e(A), this study assumes
that the error is negligible because of the appropriately
chosen scaling factor A [1], [15].

III. ATTACK SCENARIO AND SECURITY DEFINITION
This section formulates an attack scenario considered in

this study and defines the security of encrypted control
systems under the scenario.

A. Attack scenario

Given the control system

Tir1 = Apy + Bpug + wy, (22)

(2b)

Uy = Fl’t,

where t € ZT is a time, z; € R" is a state, u; € R™
is an input, and w; € R™ is a noise. Suppose xy and w;
are independent and identically distributed over the Gaus-
sian distribution with mean 0 and variance o2I. The plant
parameters (A,, B,) are controllable, and F' is a feedback
gain designed such that A, + B,F is stable. If I € X™*",
xy € X", and uy € X™ for all t € Z™, the encrypted control
system of (2) with updatable multiplicative homomorphic
encryption is given as

Tep1 = Apxy + Bpuy + wy,

up < Decd(Dec(sky, ety 1); A),
Cty,t < EC(pky, ctr,y, Ctyt),
cty ¢ < Enc(pk,, Ecd(z; A)),

3)

where (pkg,sko) < KeyGen(1*), ctro < Enc(pkg, Ecd(F;
A)), (Pkygsskirr,00) < KeyUpd(pky,ske), ctpppn <
CtUpd(ctpy, 04), EC is the encrypted controller of (2b)
that outputs a ciphertext matrix ct,; € C™*" of which
(i,7) entry is an output of Eval(pk,,ctr,; ¢,cts; ), and the
decryption algorithm is redefined as Dec := Sum o Dec
using Sum : M™X" — M™ M o~ [Y0 My -

S Myi]T [2]. Then, by Definition 4, the dynamics of
the closed-loop system is given as

Tt41 = Apmt —+ B,,Dcd(Dec(skt, Ctuﬂg); A) + We,
= A.]?t + wy, (4)

where A = A, + B, F. Note that Dcd(Dec(sk, cty, 1); A) =
Fz; holds thanks to the assumption in Remark 2.

Given the above settings and updatable homomorphic
encryption satisfying Assumption 1, this study considers the
following attack scenario.

Definition 5: The attacker follows the procedure below.

1) The attacker eavesdrops the ciphertexts ct,; of (3)
within ¢ € [t,,tf], where 0 <ty <t < 0.

2) The attacker deciphers the ciphertexts to obtain the
original data {x;_,--- , 2, }.

3) The attacker estimates A of (4) by the least squares
method,

A = arg min gepnn | X — AX |} = XX, (5)

where Xy = AX,+W,, X; = [, 41 - 24,), Xp =
[Il'ts Z'tf_l], W, = [U}tS U)tf_l], and X; is
the pseudo inverse matrix of X,,. We assume that X,
is full row rank throughout this paper. Note that the
assumption is met for a sufficiently large sample size
N =1ty —t5+ 1 in practice.

Additionally, we define the estimation error as

(N, F) = (1/n)[|A = Al|. (6)

It should be noted that the estimation error implicitly depends
on I of (2b) because A of (4) can be tuned by designing F'.
This fact is relevant later in the controller design.

Remark 3: With typical multiplicative or (leveled) fully
homomorphic encryption [22], [23], the encrypted control
system of (2) is given as (3), replacing (pk,,sk;) and ctp,
with (pk,sk) = (pkg,sko) and ctp = ctpg, respectively. In
addition, ctp is modified to Ecd(F; A) when using typical
additive homomorphic encryption [24], [25]. The attack in
Definition 5 can be applied even to such encrypted control
systems because the closed-loop dynamics of the systems are
represented by (4).

Remark 4: The required computation time to perform the
second step in Definition 5 is determined by a security
parameter, which will be formulated in Definition 7 to define
the security of encrypted control systems.

B. Security of encrypted control system

This study employs the security definition in [15] for
encrypted control systems under the attack in Definition 5.
Roughly speaking, in the definition, an encrypted control
system is said to be secure if an attacker cannot estimate
the parameters of a target system with a certain accuracy
within a given period. The security is formulated based on
two quantities, sample identifying complexity and sample
deciphering time, defined below.

Definition 6: Let N be a sample size. A sample identify-
ing complexity of (4) under the attack in Definition 5 is a
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function ~ satisfying v(N, F') < E[e(N, F)], where F' and €
are defined in (2b) and (6), respectively.

Definition 7: A sample deciphering time is a computation
time 7 required for breaking N ciphertexts of an updatable
homomorphic encryption scheme that satisfies A bit security
and Assumption 1 by a computer of T floating point number
operations per second (FLOPS), that is,

7(N,\) = 22NT~ 1. (7)

Note that the sample deciphering time for typical homomor-
phic encryption is given as 7(1, \) because the same key pair
is used for encrypting all data.

By these definitions, the sample identifying complexity
and deciphering time quantify the difficulty of estimating
A in (4) using data of sample size N and the required
computation time for recovering the data from ciphertexts,
respectively. Now we introduce two constants, acceptable
estimation error 7. and defense period 7., to represent an
estimation error acceptable by a defender who is the designer
of an encrypted control system and a period in which the
system is desired to be protected. Combining with ~, T,
ve, and 7., the security of encrypted control systems can
be defined as follows.

Definition 8: Let 7. be an acceptable estimation error and
let 7. be a defense period. The encrypted control system (3)
is secure if there does not exist a sample size N such that
v(N, F) <. and 7(N, A) < 7, where v and 7 are defined
in Definition 6 and Definition 7, respectively. Otherwise, (3)
is unsecure.

A larger 7. and longer 7, imply a more secure encrypted
control system as long as the system is secure. In other
words, a pair (., 7.) represents the security level of a secure
encrypted control system. The constants are later used as
design parameters for the optimal security parameter.

Remark 5: Let § > 0. |A;; — AU\ > § holds for all
i,j = 1,...,n only if ¢(N,F) > 62, where A, A, and
e are defined in (4), (5), and (6), respectively. This fact
suggests that v, = 62 is one of the reasonable choices
for an acceptable estimation error. Note that J should be
tailored for a given control system based on its potential
risk. Additionally, a defense period 7. can be chosen as a
life span of (2).

Remark 6: For a noiseless case, i.e., w; = 0, an attacker
can exactly identify A of (4) by decipering n + 1 samples
since A is an n-by-n matrix. The security definition in such a
case can be modified so that (3) is secure if 7(n+1,A) > 7.

IV. ENCRYPTED CONTROL SYSTEM DESIGN

This section presents a design method for an optimal
controller and security parameter. To this end, we propose a
novel sample identifying complexity of (4) under the attack
in Definition 5. We reveal that the optimal controller can be
designed as an H5 optimal controller maximizing the sample
identifying complexity. Subsequently, the optimal security
parameter is determined using the controllability Gramian
of (4) with the optimal controller.

A. Optimal controller

The sample identifying complexity of (4) under the attack
in Definition 5 is obtained as follows.

Lemma 1: The function

Y(N,F) = n[(N - 1) te(¥)] )

is a sample identifying complexity of (4) under the attack in
Definition 5, where ¥ = U(F') is a solution to the discrete
Lyapunov equation AVAT — ¥ + [ = 0.

Proof: 1t follows from (5) and (6) that E[e(N, F)] =
(U/n2) W, X 2] = (1/n?) El(X; (X)W, W),
Let X = X5 (X +) and let W = W, W,,. Then, we obtain

]E[tr(XW)] :E[(X11W11+' . '+X1,TWT,1)

NI (XTJWLTJF' . -+XT,TWT,T)],
tst

ty —ts

<

v T
XikWy, 14 Wt,—147 | 5

Mﬁﬁﬁ

E
=1

)

ty
=E l Xk w, 14w, —1+k]>
k=1

T
-

(XT(X X)),

[dlag (wt Wy, -
E[X,(XpX]))~
E[(X,X,) '),
where T = ty —t,, Wi = w, _j w14, and
the third equality follows from that w; _14x and
Wy, 145 are independent for 5 # k. From Jensen’s
inequality, tr ((X, XT) o= YN (X X))t >
n? (30 Mi( X, XT)) = n?tr (X, XT) and E[X ]
> E[X]™ 1 hold, where \; ( ) denotes the ith eigenvalue of
M € R™*"™ and X is a random variable. Hence, the trace
of the expectation of the inverse matrix is bounded from
below by tr (& [(X,X,) 7)) = »°E |tr (X, X)) '] =
n*E [tr (XpX,) )]

:tr(E X]
=no’t

tr(E
=no tr(

1. Furthermore, it follows from (4) that

ty—1

=E |tr E :ctx: ,
t=t,

E [tr (XPXPT)]

ty—1 t—1
- K Ztr etxomg(At)T+ZAtlkwkw;(Atlk)T) ,

t=ts k=0
ty—1 t—1
Z tr <At(At)T + ZAt—l—k(At—l—k)T> ,
t=ts k=0
< o?(N — 1) tr(¥),

where At(At)T + 11; 10 At—1- k(Af 1— k) At(At)T +

CLARART 3N ARAR)T < 3 ARAR)T —
. Consequently, we obtain E[e(N, F)] > (1/n?) -no? -n?-
[02(N — 1) tr(¥)]~ = (N, F). By Definition 6, v(N, F)
is a sample identifying complexity of (4) under the attack in
Definition 5. [ ]

The sample identifying complexity (8) is computed from
the sample size N and the controllability Gramian ¥ of
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(4), which is a function of the feedback gain of (2b). By
Definition 8, for some feedback gain F', the encrypted control
system (3) is secure if 7(N’, A) > 7, holds for the minimum
sample size N’ satisfying v(N’, F') < 7. because the sample
identifying complexity (N, F') is monotonically decreasing
on N. By Definition 7, for some security parameter A, the
sample deciphering time 7(N', \) increases as N’ increases.
Hence, increasing N’, the defense period 7. can be extended
while maintaining the security. A feedback gain F' that
maximizes N’ can be designed by maximizing v(N', F), i.e.,
minimizing the trace of W. The following theorem reveals
that such a controller is the optimal H controller when ~ is
given as (8).

Theorem 1: The feedback gain of (2b) maximizing (8) is

F* :Q*(P*)fl’ (9)

where (n*, P*,Q*) € R x R™*™ x R™*™ is a solution to
the problem

P R I
min 7 st tr(P) <n, P=P' >0, |[RT P O| >0,
(n,P,Q) I O I

R = A,P + B,Q, (Ap, By) are defined in (2a), and I €
R™*™ and O € R™ ™ are the identity and zero matrices,
respectively.

Proof: The parameter in (8) depending on a feedback
gain F is only the Gramian ¥ = W(F'). Hence, the feedback
gain F* maximizing (8) satisfies F* = arg min g tr(V).
Now we consider the fictitious system G : z;41 = Az +
vy, Y = 2¢, where z; € R”, v, € R”, and y; € R".
Then, tr(¥) = ||G||%, holds, where || - ||z, is the H
norm, because VU is the output controllability Gramian of
G. Therefore, the feedback gain is designed as F* =
arg min p||G||g, = Q*(P*)~!, where the second equality
follows from [26, Proposition II.1], a discrete-time version
of [27, Proposition 3.13]. |

The controller (2b) with the feedback gain (9) is the
optimal H, controller for the fictitious system generated
by (4). The controller is also optimal for security in the
sense of Definition 8§ when choosing ~ as (8) because the
controller maximizes the configurable range of an acceptable
estimation error or defense period while maintaining security.
Meanwhile, the optimal controller can reduce the security
parameter satisfying the security for some defense period.
This fact is used for designing a security parameter in the
next section.

B. Optimal security parameter

A large security parameter not only improves the security
level of encrypted control systems but also generally in-
creases the computation costs of encryption, decryption, and
homomorphic evaluation algorithms. Hence, the minimum
security parameter achieving the security is optimal in terms
of the implementation costs of encrypted control systems.
Similarly to the optimal controller design, the optimal secu-
rity parameter can be designed by maximizing the minimum
sample size N’ satisfying v(N', F) < . for some F

because, by Definition 7, A decreases as N increases for
some 7(N, \). The maximization is achieved by the optimal
controller (9) as already discussed. The following lemma
shows the minimum sample size with the optimal controller.

Lemma 2: Consider the attack in Definition 5. Given the
controller (2b) with the feedback gain (9). The minimum
sample size N* satisfying y(N*, F*) < 7, is

N* = N7, ¥%) = [n[y. tr(¥*)] 7 +2,  (10)

where . is definined in Definition 8, and ¥* = W(F*) is
the Gramian in Lemma 1 with the feedback gain F'*.
Proof: Tt follows from (8) that (N, F*) < 7. <
N > n[y.tr(¥*)]~! + 1. Therefore, the minimum sample
size N* satisfying v(N*, F'*) < ~,. is given as (10). ]

Using the minimum sample size, the optimal security
parameter is determined as follows.

Theorem 2: Consider the attack in Definition 5. Given the
controller (2b) with the feedback gain (9). The minimum
security parameter \* making the encrypted control system
(3) secure, in the sense of Definition 8, is

N =M1, T, N¥) = [logy Y. (N*) 7' +1, (1D

where T, 7., and N* are defined in Definition 7, Definition 8,
and Lemma 2, respectively.

Proof: Tt follows from (7) that 7(N*, \) > 7.<=\>
log, Y7.(N*)~1. Therefore, the minimum security parameter
A* satisfying 7(N*, \*) > 7. is given as (11). ]

Consequently, the optimal encrypted control system with
updatable homomorphic encryption under the attack in Def-
inition 5 can be systematically designed as follows: 1) Set
the desired security level (7., 7.). 2) Suppose an attacker’s
computer performance Y. 3) Compute the optimal controller
F* of (9). 4) Compute the Gramian ¥* = W(F*) in
Lemma 1. 5) Compute the sample size N* = N(v., U*)
of (10). 6) Compute the optimal security parameter \* =
A(7e, T, N*) of (11). From Theorem 2, the designed en-
crypted control system is secure, in the sense of Definition 8.
Note that the design procedure can be applied to other
attacks by changing the sample identifying complexity (8)
and controller (9). Moreover, the optimal design of encrypted
control systems with typical homomorphic encryption can be
achieved by computing only the optimal security parameter
A5 = A7, T, 1).

V. NUMERICAL EXAMPLE

Given the parameters of (2a) as

0.2 0.6 0 0 0 1
05 —-0.5 —-0.1 0.2 0 0
Ap = 0 0 0.5 0|’ By = 0.5 0.5
0 0 0 0.3 1 0
The optimal feedback gain (9) is given as
e 0.06 0.08 —0.17 —-0.24
~|-0.06 —-0.63 —0.15 0.08 |’

where CVXPY [28] is used for solving the optimization
problem in Theorem 1. Fig. 1 depicts the estimation error (6)
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Fig. 1. Estimation error and sample identifying complexity.

(gray dots), its expectation (blue solid line), and the sample
identifying complexity (8) (orange dashed line) for N =
500, ..., 5000, where the attack of Definition 5 is performed
50 times for each sample size with 02 = 0.01. The result
shows that (8) is an appropriate choice of a sample identi-
fying complexity. Moreover, with 7. = 1076, 7, = 31536 x
10% s (10 years), and T = 4.42x 107 FLOPS!, the minimum
sample size (10) and security parameter (11) are obtained as
N* = 785569 and \* = 68 bit, respectively. Note that the
minimum security parameter making the encrypted control
system in Remark 3 secure is A\ = A(7., T,1) = 87 bit.
When using the updatable homomorphic encryption in [15]
and the ElGamal encryption [22], the minimum key lengths
(1) achieving A* and A§ bit security are respectively given
as k* = 589 and 1031 bit, where the time complexity of the
fastest known algorithm for breaking the encryption schemes
is Q(k) = exp{(64/9)/3(In 2¥)1/3(In1n 2%)2/3} [29].

VI. CONCLUSIONS

This study proposed an optimal controller and security
parameter for encrypted control systems under the least
squares identification, disclosing the parameters of a closed-
loop system. We revealed that the optimal controller is an Ho
optimal controller, and the optimal security parameter was
computed for an encrypted control system with the controller
and updatable homomorphic encryption.

Updatable homomorphic encryption plays a crucial role
in the proposed design method. In future work, we will
construct updatable (leveled) fully homomorphic encryption.
Furthermore, the proposed design method can be applied to
other attacks, such as subspace identification.
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