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Abstract— We present a novel closed-loop interpretation of
the steady-state notion of moment. In particular, to close the
loop in an interconnection-based moment-matching configu-
ration we introduce a signal generator that ensures internal
stability of the interconnection while interpolating the moments
of the underlying system. Unlike the traditional open-loop
configuration, the closed-loop scheme allows the relaxation of
the internal stability property of the underlying system. Fur-
thermore, for a fixed signal generator, we provide conditions for
any linear models to achieve moment matching in closed loop.
In particular, we define the family of all (stable and unstable)
admissible plants achieving moment matching through the same
signal generator. These results offer a new perspective on
moment matching and yield a moment matching interpretation
of the dual Youla-Kučera parameterization.

Index Terms— Moment matching; Closed-loop interpolation;
Model reduction; Steady-state behaviour.

I. INTRODUCTION

Large-scale systems present a significant research chal-
lenge in systems and control, as they involve a large number
of interconnected subsystems described by ordinary differ-
ential equations [1]–[3]. These systems also arise from the
spatial discretization of partial differential equations, see [4]–
[7]. To overcome the computational complexity associated
with numerical simulations and to improve controller design
for these systems, model order reduction techniques have
gained considerable attention in recent years, e.g. [8]–[13].

Moment matching is a popular model reduction technique
that combines rational interpolation theory and the concept
of moment to approximate and interpolate high-order dynam-
ical systems. Traditionally, moments of linear systems have
predominantly been associated with the coefficients of the
Laurent series expansion of the transfer function at some
point. However, in [14], the notion of moment was related
to the solution of a certain Sylvester equation. Building upon
this insight, the concept of moment was reinterpreted in [15]
in terms of the steady-state output response of the underlying
system driven by a signal generator. This configuration,
representative of an open-loop cascade interconnection, has
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gained considerable attention and has been instrumental in
advancing model reduction techniques, e.g. [16]–[21].

Yet, the open-loop characterization of the notion of mo-
ment has a caveat: the underlying system to be interpolated
must be internally stable. Indeed, the stability property is
crucial for ensuring the existence of a steady-state output
response, which imposes constraints on the applicability of
the open-loop interpretation of moment matching. In experi-
mental settings, relaxing stability conditions is only possible
when the initial state of the system lies on the manifold
characterizing the moment. However, if the system’s state is
not known or fully measured, this caveat persists.

In this article, we revisit the notion of interconnection-
based moment matching by introducing the concept of
closed-loop interpolation. This notion relies on constructing
a signal generator that takes the output of the plant to be
interpolated as its input. The signal generator is designed to
ensure the internal stability of the interconnection scheme,
while interpolating the underlying system at desired operat-
ing points. As a result, unlike the open-loop configuration, a
closed-loop interpolation scheme allows for the relaxation
of any stability conditions of the underlying system. We
further demonstrate the existence of a family of linear
models that parameterize all linear models achieving moment
matching in a closed-loop fashion. Specifically, for a fixed
generalized signal generator characterizing the moment of
a certain system, we provide conditions for the family of
parameterized models to achieve moment matching in a
closed-loop configuration.

Organization: In Section II the interconnection-based
notion of moment is recalled, and a motivating example is
provided. Section III introduces the concept of closed-loop
interpolation. In Section IV a family of parameterized models
achieving moment matching in a closed-loop interpolation
scheme is presented. Section V uses the benchmark example
of a NASA HiMAT aircraft model [22] to demonstrate the
applicability of the proposed closed-loop scheme. Finally,
Section VI offers concluding remarks and discusses future
perspectives.

Notation: The field of real (complex) numbers is de-
noted by R (C). The set of vectors having n rows with real
entries is denoted by Rn, and the set of matrices having
n rows and m columns with real-valued entries is denoted
by Rn×m. The spectrum of a square matrix A ∈ Rn×n is
denoted by σ(A). With some abuse of notation, the time
variable is omitted whenever this does not cause confusion.
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II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a linear, time-invariant, system described by the
equations

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t),
(1)

in which x(t) ∈ Rn is the state, u(t) ∈ Rm is the input,
y(t) ∈ Rp is the output, A ∈ Rn×n, B ∈ Rn×m, and
C ∈ Rp×n are constant matrices, and the associated transfer
function

W (s) := C(sI −A)−1B.

Throughout the article, we assume that system (1) is minimal,
i.e. (A,B) is controllable, and (A,C) is observable.

Definition 1. Let s⋆ ∈ C \ σ(A) and k ∈ N \ 0. The 0-
moment of system (1) at s⋆ is given by the complex matrix
η0(s

⋆) = W (s⋆). For k ≥ 1, the k-moment of the system (1)
at s⋆ is given by the complex matrix

ηk(s
⋆) =

(−1)k

k!

dkW

dsk
(s⋆).

The moments of the system (1) (in the sense of Definition 1)
have been equivalently characterized in terms of a certain
Sylvester equation in [14] and [15].

Lemma 1. Consider the system (1) with s⋆ ∈ C\σ(A). Then
the moments η0(s

⋆), . . . , ηk(s
⋆) are in one-to-one relation

with the matrix CΠ, where Π ∈ Rn×ν is the (unique)
solution of the Sylvester equation

AΠ+BL = ΠS, (2)

S ∈ Rν×ν is any non-derogatory1 real matrix with charac-
teristic polynomial given by det(sI−S) =

∏N
i=1(s−s⋆)k+1,

and L ∈ Rm×ν is such that the pair (S,L) is observable.

Definition 2. Consider the system (1) and suppose that there
exists a unique Π ∈ Rn×ν such that (2) holds. The moment
of the system (1) at (S,L) is defined as CΠ.

The one-to-one characterization of Lemma 1 combined
with the algebraic notion of moment of Definition 2 allow
for an interpretation of the notion of moment in the time
domain [15]. This interpretation relies upon the steady-state
output response [23] of the interconnection (open-loop) of
the system (1) with a signal generator described by the
equations

ω̇(t) = Sω(t), ω(0) = ω0, (3a)

u(t) = Lω(t), (3b)

with ω(t) ∈ Rν and u(t) ∈ Rm. The open-loop interconnec-
tion yields the augmented system

ω̇(t) = Sω(t), (4a)

ẋ(t) = Ax(t) +BLω(t), (4b)

y(t) = Cx(t), (4c)

1A matrix is non-derogatory if its characteristic and minimal polynomials
coincide.

ω̇ = Sω
ẋ = Ax+Bu

y = Cx

u = Lω y

Fig. 1: The open-loop notion of moment.

which possesses a well-defined invariant set

M := {(x, ω) ∈ Rn × Rν | x = Πω}.

The interconnection-based interpretation (4) of the notion of
moment enables the problem of interpolation of points to be
interpreted as a problem of interpolation of signals.

Definition 3. The linear system described by the equations

ξ̇(t) = Aξ(t) +Bu(t), ξ(0) = ξ0, (5a)

y(t) = Cξ(t), (5b)

with ξ(t) ∈ Rρ and y(t) ∈ Rp is a model at (S,L) of the
system (1) if the system (5) has the same moment at (S,L)
as (1). In this case, the system (5) is said to achieve moment
matching at (S,L). Furthermore, if ρ < n then the system (5)
is a reduced order model of the system (1).

While the notion of moment in Definition 1 holds for every
linear-time invariant system, the interconnection-based no-
tion of moment (4) requires the invariant set M to be attrac-
tive. When the system (1) in unstable, the interconnection-
based concept of moment can be made meaningful by
using a stabilizer that renders the set M attractive. Yet, the
trajectories of the closed-loop system for arbitrary stabilizers
may converge towards a set different than M, and hence
the moment of the system might be modified. This issue is
revealed by a simple example.

Example 1. Consider a two-dimensional system of the
form (1) with matrices

A =

[
0 1

−a0 −a1

]
, B =

[
0

1

]
, C =

[
1 0

]
,

in which a0 ∈ R\0 and a1 ∈ R. Consider a first-order signal
generator of the form (3) with S = 0 and L = 1.

The Sylvester equation (2) yields a unique solution Π⊤ =[
a−1
0 0

]
and the moment of the system at (S,L) is CΠ =

a−1
0 .2 Note that for a0 > 0 and a1 > 0 the system is

exponentially stable, the invariant set M is attractive, and the
(open-loop) interconnection (4) has a well-defined steady-
state output response, y → CΠω. On the contrary, for any
other a0 and a1 the origin of the system is not asymptotically
stable, and M is not attractive. Hence, to render M attractive
we consider a state feedback of the form

u = −Kx+ Lω,

where K =
[
k0 k1

]
. Note that if k0 > −a0 and k1 > −a1

the closed-loop system is exponentially stable, i.e. σ(A −

2The moment CΠ = a−1
0 is the DC gain of the transfer function W (s),

i.e. W (0) = −CA−1B = a−1
0 . Hence the condition a0 ̸= 0 is required

to have a well-defined moment.

8061



BK) ⊂ C−. Note, however, that the Sylvester equation
associated with the closed-loop system is given by

(A−BK)Π +BL = ΠS,

which yields a unique Π⊤ =
[
(a0 + k0)

−1 0
]
, and thus the

moment of the closed-loop system at (S,L) is CΠ = (a0 +
k0)

−1. It can be readily seen that the moment at (S,L) of the
closed-loop system is now parameterized by k0. Specifically,
for every k0 ̸= 0 the feedback modifies the moment of the
underlying system, while for k0 = 0 the feedback leaves
the moment of the underlying system untouched. Therefore,
we may conclude that whenever k0 = 0 and a0 > 0 the
(closed-loop) interconnection

ω̇(t) = Sω(t),

ẋ(t) = (A−BK)x(t) +BLω(t),

y(t) = Cx(t),

possesses a well-defined invariant set M which is attractive
for every k1 > −a1 and the moment of the closed-loop sys-
tem remains untouched. On the contrary, for any a0 < 0, the
state feedback controller is incapable of achieving simultane-
ous stabilization of the closed-loop system and preservation
of the moment of the underlying system. Note that, it is still
possible to achieve stabilization of the closed-loop system
without altering the moment of the system through the use
of a suitable dynamic output feedback.

◁

Motivated by the previous example, in the remainder of
this article we provide a closed-loop interpolation scheme
that aims at relaxing the stability properties of the underlying
plant in the interconnection-based notion of moment.

III. CLOSED-LOOP MOMENT MATCHING

In this section we introduce the concept of closed-loop in-
terpolation by moment matching. To begin with, we define an
enhancement of the signal generator (3), called generalized
signal generator.

A generalized signal generator is a linear time-invariant
system modeled by the equations

ω̇(t) = Sω(t), ω(0) = ω0, (6a)
ż(t) = Fz(t)−K (CΠω(t)− y(t)) , z(0) = z0, (6b)
u(t) = Hz(t) + Lω(t), (6c)

with states ω(t) ∈ Rν and z(t) ∈ Rr, output u(t) ∈ Rm, and
input y(t) ∈ Rp. The matrices characterizing the generalized
signal generator (6) have the following properties.

H1. The matrix S ∈ Rν×ν is non-derogatory and verifies
the spectrum conditions

σ(S) ∩ σ(A) = Ø, σ(S) ∩ σ(F ) = Ø.

The matrix L ∈ Rm×ν is such that the pair (S,L) is
observable.

H2. The matrices F ∈ Rr×r, K ∈ Rr×ν , and H ∈ Rm×r

are such that σ(J) ⊂ C− where

J :=

[
F KC

BH A

]
.

In addition, K is such that rankK = ν.

H3. The matrix Π ∈ Rn×ν is the (unique) solution of the
Sylvester equation (2).

The notion of closed-loop interpolation relies on the steady-
state output response of the interconnection of the system (1)
and the generalized signal generator (6), which yields the
(closed-loop) interconnected system

ω̇(t) = Sω(t), (7a)
ż(t) = Fz(t) +KC (x(t)−Πω(t)) , (7b)
ẋ(t) = BHz(t) +Ax(t) +BLω(t), (7c)
y(t) = Cx(t). (7d)

Lemma 2. Consider the system (1) and the generalized
signal generator (6). Then, for every (z(0), x(0), ω(0)) ∈
Rr×Rn×Rν the trajectories of (7) converge to the invariant
set Mzxω := {(z, x, ω) ∈ Rr×Rn×Rν | (z, x) = (0,Πω)}.

Proof. By H1 and the center manifold theorem [24], the
closed-loop interconnected system (7) has a globally well-
defined invariant manifold (which is a hyperplane) given by
Mzxω . In particular, assume (x, z) = (Πω,Ψω) for some
Π ∈ Rn×ν and Ψ ∈ Rr×ν , then

ż = Ψω̇ =⇒ FΨ = ΨS, (8a)

ẋ = Πω̇ =⇒ AΠ+B(HΨ+ L) = ΠS. (8b)

The spectrum condition in H1 (i.e. σ(S)∩σ(F ) = Ø) ensures
that (8a) is satisfied only by Ψ = 0, whereas (8b) reads as
AΠ + BL = ΠS which is (2), whereby a unique solution
exists since σ(S)∩ σ(A) = Ø by H1. With this in mind we
have that (7b) and (7c) yield the following equations

ż = Fz +KC (x−Πω) ,

ẋ−Πω̇ = BHz +A (x−Πω) .

Finally, by virtue of H2 we have that for every initial condi-
tion (z(0), x(0), ω(0)), limt→∞ z(t) = 0 and limt→∞ x(t)−
Πω(t) = 0.

The generalized signal generator (6) yields a closed-loop
interconnection scheme (as in Figure 2) in which Mzxω is
an invariant and attractive set for every (x(0), z(0), ω(0))
regardless of the eigenvalues of A. The restriction of the
system (7) to the set Mzxω yields a copy of the system (3a).
Every signal generator of the form (3) can be enhanced with
the generalized version (6), which is obtained by combining
the dynamics (6a), containing the interpolation points, with
the dynamics (6b).

Theorem 1. Consider the system (1) and the generalized
signal generator (6). Then, the steady-state output response
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ω̇(t) = Sω(t)

ż(t) = Fz(t)−KCΠω(t) +Ky(t)

u(t) = Hz(t) + Lω(t)

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

y(t) = CΠω(t) + ε(t)

Fig. 2: Diagrammatic illustration of the closed-loop interpolation scheme for linear systems with decay term ε(t).

of the (closed-loop) interconnected system (7) is in one-to-
one relation with the moment at (S,L) of the system (1).

Proof. By the steady-state response of (7) discussed in
Lemma 2, since for t sufficiently large z(t) → 0 and
x(t) → Πω(t), it follows that the output response (7d) yields

lim
t→∞

y(t)− CΠω(t)

= Cx(t)− CΠω(t) = 0,

which, by Definition 2, implies that the moment of (1) at
(S,L) through the generalized signal generator (6) is CΠ.

The dynamics described in (6b) introduce degrees of
freedom in constructing the signal generator. Additionally,
the parameters of the dynamics (6b) can be adjusted to
enhance the attractiveness of the invariant set characterizing
the moment. As a result, for any matrix A, the closed-
loop interpolation scheme maintains the one-to-one relation
with the k-moment, i.e. η0(s⋆), . . . , ηk(s⋆), of system (1) at
s⋆ ∈ C \ σ(A).

IV. MODEL REDUCTION BY CLOSED-LOOP
MOMENT MATCHING

Given a generalized signal generator (6) defining the
moment at (S,L) of the system (1), the focus of this section
is to characterize linear models achieving moment matching
at (S,L) by using the generalized signal generator (6).

Consider a family of multi-input, multi-output, linear
systems Σ of dimension ρ ≥ ν described by the equations

ξ̇a = A11ξa +A12ξb +B1u, ξa(0) = ξ10 , (9a)

ξ̇b = A21ξa(t) +A22ξb +B2u, ξb(0) = ξ20 , (9b)

y = C1ξa + C2ξb, (9c)

with states ξa(t) ∈ Rν and ξb(t) ∈ Rρ−ν , input u(t) ∈ Rm,
output y(t) ∈ Rp, and matrices A11, A12, A21, A22, B1, B2,
C1, and C2 of appropriate dimension. As per system (1), we
let the state-space realization of system (9), with transfer
function W (s), be minimal, i.e. (9) is controllable and
observable.

To study the moment of the family of systems described
by equations (9) we consider the closed-loop interpolation

scheme given by the interconnection of (9) and the general-
ized signal generator (6) which yields

ω̇ = Sω, (10a)

ż = Fz +KC1ξa +KC2ξb −KCΠω, (10b)

ξ̇a = A11ξa +A12ξb +B1Hz +B1Lω, (10c)

ξ̇b = A21ξa +A22ξb +B2Hz +B2Lω, (10d)

y = C1ξa + C2ξb. (10e)

Lemma 3. For all (z(0), ξa(0), ξb(0), ω(0)) ∈ Rr × Rν ×
Rρ−ν×Rν the trajectories of the interconnected system (10)
converge to the invariant set

Mzξω := {(z, ξa, ξb, ω) ∈ Rr×Rν × Rρ−ν × Rν

| (z, ξa, ξb) = (0, ω, 0)}
if and only if

A11 = S −B1L, (11a)

A21 = −B2L, (11b)

C1 = CΠ, (11c)

and A12, A22, B1, B2, and C2 are such that σ(S)∩ σ(S −
B1L) = Ø, σ(S) ∩ σ(A22) = Ø, σ(S) ∩ σ(F ) = Ø, and
σ(J0) ⊂ C−, where

J0 =

 F KC1 KC2

B1H S −B1L A12

B2H −B2L A22

 .

Proof. Following the same rationale as per Lemma 2, assume
(ξa, ξb, z) = (Π1ω,Π2ω,Ψω) for some Π1 ∈ Rν×ν , Π2 ∈
R(ρ−ν)×ν , and Ψ ∈ Rr×ν , then

ż = Ψω̇ =⇒

FΨ+KC1Π1 +KC2Π2 −KCΠ = ΨS, (12a)

ξ̇a = Π1ω̇ =⇒

A11Π1 +A12Π2 +B1HΨ+B1L = Π1S, (12b)

ξ̇b = Π2ω̇ =⇒

A21Π1 +A22Π2 +B2HΨ+B2L = Π2S. (12c)

Pick (Π1ω,Π2ω,Ψω) = (ω, 0, 0). A direct computation
yields

(12b) =⇒ A11 +B1L− S = 0 =⇒ (11a),

(12c) =⇒ A21 +B2L = 0 =⇒ (11b),
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and (12a) =⇒ 0 = K(C1 − CΠ). This last implication
emphasizes that, if (11c) holds then (12a) is satisfied. Note
that by virtue of H2 we have that K ∈ Rr×ν is full column
rank and thus the condition (11c) is also necessary as C1 −
CΠ = 0 is the unique solution of (12a). Moreover, by the
conditions σ(S) ∩ σ(S − B1L) = Ø, σ(S) ∩ σ(A22) = Ø,
σ(S)∩ σ(F ) = Ø the matrices Π1 = I , Π2 = 0, and Ψ = 0
are the unique solution of (12a)-(12b)-(12c). Finally, by the
center manifold theory [24] the attractiveness of the invariant
set Mzξω is guaranteed by the asymptotic stability of the
zero equilibrium of the system (10c)-(10d) for ω = 0, that
is σ(J0) ⊂ C−.

Theorem 2. Consider the family of systems (9) and the
generalized signal generator (6). Let CΠ be the moment
at (S,L) of the system (1) obtained from (6). Suppose that
the solution of (10) converges to the set Mzξω for every
(z(0), ξa(0), ξb(0), ω(0)) ∈ Rr ×Rν ×Rρ−ν ×Rν . Then (9)
achieves moment matching at (S,L).

Proof. The steady-state output response of (10) is obtained
from Lemma 3 and this implies that

lim
t→∞

y(t)− CΠω(t) = (C1ξa(t) + C2ξb(t)− CΠ)ω(t)

= C1ω(t)− CΠω(t) = 0.

For a given generalized signal generator, Theorem 2
guarantees that this family, under the conditions of Lemma 3,
achieves moment matching in a feedback control scheme. We
observe in Corollary 2.1 below that any system verifying the
necessary and sufficient conditions in Lemma 3 is a model
parameterized in A12, A22, B1, B2, and C2 which achieves
moment matching at (S,L).

Corollary 2.1. Consider the generalized signal generator (6)
and suppose that the family of systems (9) satisfies the
conditions in Lemma 3. Let Σ̃ be any model of (1) of
dimension ρ ≥ ν achieving moment matching at (S,L).
Suppose that the solution of Σ̃ converges to the (well-defined)
invariant set

Mzξ̃ω
:= {(z, ξ̃a, ξ̃b, ω) ∈ Rr × Rν × Rρ−ν × Rν

| (z, ξ̃a, ξ̃b) = (0, Π̃1ω, Π̃2ω)},

for every (z̃(0), ξ̃1(0), ξ̃2(0), ω(0)) ∈ Rr×Rν ×Rρ−ν ×Rν .
Then the family of systems (9) is a parameterization of Σ̃.

Proof. Let X̃ ∈ R(ρ−ν)×(ρ−ν) be any invertible matrix.
Then, without loss of generality, for every Π̃2 ∈ R(ρ−ν)×ν

and every invertible Π̃1 ∈ Rν×ν we can define the change
of coordinates

ξ̃1 = Π̃1ξa, ξ̃2 = Π̃2ξa + X̃ξb. (13)

Hence, avoiding tedious computations, the result is directly
proved by substituting (13) in (10) yielding that any system
Σ̃ associated with the attractive set Mzξ̃ω makes the set
Mzξω invariant and attractive, by the necessary and sufficient
conditions of Lemma 3.

It is worth mentioning that if ω(t) = 0 for every t ∈ R,
the proposed generalized signal generator acts as a stabilizer
of dimension r for any system of dimension ρ within the
family of systems satisfying the conditions in Lemma 3.
Consequently, the family of systems described in (9) that
meet the conditions in Lemma 3 also defines the set of all
admissible plants stabilized by a given stabilizing controller.
This leads to a moment matching interpretation of the well-
known dual Youla-Kučera parameterization [25], [26], which
defines the set of all admissible plants stabilized by a given
stabilizing controller.

V. NUMERICAL VALIDATION

We consider the benchmark example of a two-input, two-
output NASA HiMAT aircraft model as in [22], [27]. The
dynamics of the aircraft are described by the equations (1)
with n = 6 and matrices A, B, and C as in [27]. The zero
equilibrium of the system is unstable, and the steady-state
behavior is not well defined. Hence, to construct a moment
matching interpolation scheme, we construct a generalized
signal generator of the form (6) with matrices

S =

[
0 2
−2 0

]
, L =

[
1 0
0 1

]
,

and

H⊤ =


227
8814 − 109

10437

− 374
499

337
3750

− 367
1845 − 13

3962

− 648
2051

116
6675

 , K =


24847
171

1617
463

− 16391
15 − 35873

133

− 156367
1348

12345
176

30811
26

17792
67

 ,

F =


− 7121

49 − 1721
47 − 6784

303 − 3209
100

16391
15 − 1269

668
16513
61 − 38

52369

5956
51 − 2336

217 − 6693
85 − 1469

155

− 20151
17

337
125 − 16673

63
232
445

 ,

satisfying the conditions H1-H2-H3. Moreover, we design
an unstable interpolant of the form (5) of dimension ρ = 2
with matrices

A =

[
1 2

−2 1

]
, B =

[
−1 0

0 −1

]
, C =

[
1657
583

285
12158

4426
1525 − 1127

401

]
,

satisfying the conditions of Lemma 3 and Theorem 2. The
interpolant, a reduced order model of dimension ρ = 2,
achieves moment matching at (S,L), as shown in Fig. 3.

VI. CONCLUSION

In this paper we have revisited the concept of
interconnection-based moment matching and introduced the
notion of closed-loop interpolation. While open-loop mo-
ment matching is limited by a strong stability require-
ments on the underlying system, closed-loop interpolation
overcomes this limitation by employing a signal generator
that ensures internal stability. This approach allows relaxing
stability conditions, even when the system’s state is not
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Fig. 3: Time histories of the moment (dashed red) and the
outputs (solid blue) of the NASA HiMAT aircraft model, and
the outputs (dotted black) of the reduced order model (of di-
mension 2).

fully known or measured. We have also demonstrated the
existence of a family of models that parameterize all linear
models achieving moment matching in a closed-loop fashion.
These parameterized models offer flexibility and adaptability
in achieving moment matching at desired operating points.
Finally, we have discussed a benchmark example involving
a two-input, two-output, NASA HiMAT aircraft model, il-
lustrating the effectiveness of closed-loop interpolation in
achieving moment matching.
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