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Abstract— In this paper, we tackle the classical problem of
estimating the parameters of an algebraic linear parameter
model with the objective of solving the long-standing problem
of guaranteeing boundedness of the output error independently
from the growth of the regressors. Two solutions are presented.
The first solution provides global results under the assumption
that the time derivative of the regressor is available. The other
solution disposes of the knowledge of the derivative of the
regressor, and yields results that are valid in a semi-global sense,
under the assumption that the regressor has a bounded growth.
Simulation results provides an illustration of the proposed
techniques in comparison with standard unnormalized and
normalized gradient laws.

I. INTRODUCTION

The estimation of the parameters of an algebraic lin-
ear model is one of the most basic subjects in adaptive
identification, learning, and adaptive control monographs
(see [1]–[5], to name a few). Of particular note is the
gradient-based parameter estimator, which is quite standard
yet powerful, and has received continued attention in the
optimization community [6], and neural network learning
community [7]. Tremendous efforts have been devoted to
achieving faster learning by modifications of gradient-based
estimation methods, (for instance, DREM-based estimation
methods [8], [9], high-order tuner-based estimation methods
[10], [11]), and various fixes, such as projections, deadzones,
and integrator leakages [3], have been introduced in the
gradient-based estimation methods to enhance robustness
to model uncertainties. However, across these techniques,
boundedness of the output error of the estimation model is
often overlooked. Indeed, unless the regressor signals are
assumed to be bounded, the output error can be persistently
increasing in magnitude, which is undesirable in applications.
Besides, boundedness of the output error may be critical
for the stability of the closed-loop system if the parameter
estimates are employed in a control law. Even if normal-
ization is included in the adaptation law, the normalized
output error is bounded while the output error is still not
ensured to be bounded. Moreover, normalization methods
tend to slow down the adaptation, leading to performance
degradation [12].

Based on above considerations, an interesting question
arises: how to guarantee boundedness of the output error
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without requiring boundedness of the regressor, ensuring at
the same time boundedness of the parameter estimates and
asymptotic convergence of the output error?

This question is answered in this paper, under certain
assumptions. By modifying the conventional gradient-based
parameter estimator, we achieve boundedness directly from
Lyapunov arguments without invoking signal chasing argu-
ments and/or asking for the boundedness of the regressor.
To be specific, we incorporate the output error term into the
designed Lyapunov-like function, with the consequence that
the bound on the output error can be made independent of the
regressor’s magnitude and basically dependent only on the
initial mismatch. Further, the estimated parameters under the
proposed adaptation laws are able to exponentially converge
to their true values whenever Persistent Excitation (PE) of
the regressor holds, which makes our results self-contained.

The remainder of the paper is organized as follows.
Section II formulates the linear output error equation for
parameter learning and presents the most common method-
ologies. In Section III, two different adaptation laws are
presented. The first solution is based on the accessibility of
the regressor’s derivative, which provides global results. The
second solution is applicable in absence of direct knowledge
of the derivative of the regressor, but requires the assumption
of bounded growth of the regressor itself. As opposed to
the first method, the second solution provides results that
are valid in a semi-global sense, that is, for arbitrary (but
fixed) compact sets of initial conditions. The convergence
properties of the proposed update laws are also characterized.
Numerical examples are provided in Section IV to illustrate
the performance of the adaptation laws compared with the
conventional gradient-based adaptation laws. Conclusions
and an outlook on future research plans are offered in Section
V.

II. PROBLEM FORMULATION

We consider the problem of estimating the parameter vec-
tor θ of the following paradigmatic algebraic linear parameter
model

y(t) = ξ⊤(t)θ (1)

where y ∈ R, ξ ∈ Rn denote known output and regressor sig-
nals respectively, and θ ∈ Rn is a vector of unknown constant
parameters. By making use of the known regressor ξ(t), it is
immediate to build a conventional output-estimation model
in the form

ŷ(t) = ξ⊤(t)θ̂(t), (2)

where θ̂(t) are the estimated parameters, that are possibly
time-varying being subjected to some form of adaptation
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laws. We consider the possibility of “learning” the parameter
without using batch process, but modifying dynamically θ̂(t)
on-line, by using the measurements y(t) and ξ(t) as they are
collected.

The usual approach adopted to identify the parameter
vector θ consists of resorting to a Certainty Equivalence
(CE) adaptation law (namely the conventional gradient-based
adaptation law), which takes the following form

˙̂
θ(t) = −γξ(t)ỹ(t), γ > 0 (3)

or is equipped with a normalization that permits to discount
the magnitude of the regressor ξ(t):

˙̂
θ(t) = −γ

ξ(t)

1 + ξ⊤(t)ξ(t)
ỹ(t). (4)

In (3) and (4), the parameter error is denoted by θ̃(t) :=
θ̂(t)−θ, and the output error ỹ(t) := ŷ(t)−y(t) is described
by

ỹ(t) = ξ⊤(t)θ̃(t). (5)

The stability of the aforementioned adaptation laws (3), (4)
has been thoroughly studied by means of Lyapunov-like
arguments that permit to prove boundedness of the parameter
estimation error θ̃(t) and asymptotic convergence of ỹ(t) to
zero, under mild assumption on the regressor ξ(t) and its first
time-derivative, but do not allow to guarantee boundedness
of ỹ(t) in the general case (for instance, regressor is un-
bounded). Indeed, using the classic candidate Lyapunov-like
function

V (θ̃) =
1

2
θ̃⊤θ̃.

It is readily seen that the Lie derivative along (3) is

V̇ (t) = −γθ̃⊤(t)ξ(t)ỹ(t) = −γỹ(t)2 ≤ 0, ∀t ≥ 0,

and along (4) is

V̇ (t) = −γ
ỹ(t)2

1 + ξ⊤(t)ξ(t)
≤ 0, ∀t ≥ 0,

which implies that V along system’s trajectories is bounded
by its initial condition (i.e., the norm of the parameter error
vector θ̃(t) is bounded), but no conclusion can be drawn on
the boundedness of ỹ(t) from the analysis of the Lyapunov
function alone, as ỹ(t) does not appear as a constituent of
V (θ̃). Obviously, from the error model (5), we can readily
obtain the bound

|ỹ(t)| ≤ ∥ξ(t)∥∥θ̃(t)∥ ≤ ∥ξ(t)∥
√
2V

(
θ̃(0)

)
,

which clearly shows that the output error bound depends
on the magnitude of the regressor. Surprisingly, the authors
are unaware of any results that establish independence of
the output error from the magnitude (and growth) of the
regressor. Available results are mainly focused on the asymp-
totic convergence properties of the estimators and on the
sole boundedness of the parameters. Asymptotic convergence
of ỹ(t) follows by application of Barbalat’s Lemma [3],
whenever ỹ(t) is uniformly continuous, which in turn can be
established by assuming boundedness of both the regressor

vector ξ(t) and its time-derivative. Note that asymptotic con-
vergence of the output error follows without any assumption
of PE on the regressor, which instead is required to guarantee
asymptotic convergence of the parameter estimation error.

To ensure boundedness of the output error independently
from the magnitude of the regressor, we will adopt a
Lyapunov-like function similar to the one commonly used
in the relative-degree-unitary adaptive control problems [3],
that does not only take as a constituent block the parameter
error, but also the output error:

V (ỹ, θ̃) =
1

2
ỹ2 +

1

2µ
θ̃⊤θ̃, µ > 0. (6)

Clearly, if one can prove that V̇ (t) ≤ 0, ∀t ≥ 0, then
V (ỹ(t), θ̃(t)) ≤ V (ỹ(0), θ̃(0)), ∀t ≥ 0, and in turn one can
conclude that both ỹ(t) and θ̃(t) are bounded by their
initial conditions. In this context, we will present in the
sequel two parameter adaptation laws fitting the above re-
quirements. The key ingredient of both adaptation laws is
a direct feedthrough from the measured output, thus the
estimated parameter will not be the classical ones based
on pure-integration. The first adaptation law will require
the knowledge of ξ̇(t) (measurable), which is available in
some applications. The second adaptation law will only
require that ξ̇(t) is bounded with an upper bound on its
norm known conservatively and that a bound on the pa-
rameter estimation error is also known conservatively. Note
that this last requirement is not restrictive compared to
the standard assumptions formulated in the literature about
the boundedness of the regressor’s time-derivative, which is
usually invoked to establish the uniform continuity condition
required to use the Barbalat’s lemma to prove asymptotic
convergence of the output error. Thus, we will prove that the
exploitation of a conservative norm bound on the regressor’s
time-derivative in the proposed non-CE adaptation law is
able to ensure boundedness of the output error, with a bound
that does not depend on the norm of the regressor. Indeed,
with conventional adaptive laws (3), (4), known bounds on
the output error are in turn dependent on the norm of the
regressor. As opposed to the first method, which yields global
results, the second approach provides a guaranteed domain of
validity for arbitrary fixed compact sets of initial conditions.

III. ADAPTATION LAWS WITH DIRECT OUTPUT
FEEDTHROUGH

In this section, we present two adaptation laws charac-
terized by the fact that the estimated parameter vector θ̂(t)
contains a direct feedthrough from the observed output y(t).
Consequently, the update laws depart from the classical dy-
namic structure obtained from certainty-equivalence design.

A. The case of known derivative of the regressor

When the derivative of the regressor, ξ̇(t), is known, then
it is possible to exploit this additional information to modify
the usual CE adaptive law to enforce boundedness of the out-
put error. Consider the following adaptation law comprising
these key ingredients: a direct output-to-parameter-estimate
feedthrough (y(t) to θ̂(t)), a regressor-derivative injection
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(ξ̇(t)), and a filtered regressor’s auto-covariance matrix Ξ(t):

θ̂(t) =
(
I + Ξ(t) + µξ(t)ξ⊤(t)

)−1
(
µξ(t)y(t)+ϑ̂(t)

)
Ξ̇(t) = −ϕΞ(t) + (1− ϕ) ξ(t)ξ⊤(t)

˙̂
ϑ(t) = Ξ̇(t)θ̂(t) + µξ̇(t)ỹ(t)− µγξ(t)ỹ(t)

Ξ(0) = 0n,n ∈ Rn×n

ϑ̂(0) = ϑ̂0 ∈ Rn (7)

where µ > 0 is an arbitrary positive constant parameter
adaptation gain, ϕ : 0 < ϕ < 1 is a user-defined forgetting
factor, γ > 0 is a positive constant gain useful to tune the
convergence speed of the output error, and ϑ̂0 is an initial
parameter guess.

The convergence properties of the proposed adaptation law
are stated in the following theorem:

Theorem 3.1: Consider the model (1), where the regressor
ξ(·) : R≥0 → Rn is a known continuously differentiable
signal, with known derivative. Let the gain γ in (7) be
selected so that γ > (1− ϕ)/(2µ). Then, the adaptation law
(7) applied to the linear output error equation (5) guarantees
the following properties, for all ϑ̂0 ∈ Rn and all θ ∈ Rn:
(i) θ̂(·) ∈ L∞, ỹ(·) ∈ L∞ ∩ L2;

(ii) if ξ(·), ξ̇(·) ∈ L∞, then in addition to property (i),
ỹ(t) → 0 as t → ∞;

(iii) if ξ(·), ξ̇(·) ∈ L∞ and ξ(·) is PE, then in addition to
properties (i), (ii), ỹ(t), θ̃(t) converge to zero exponen-
tially fast.
Proof: Fix, arbitrarily, ϑ̂0 ∈ Rn and θ ∈ Rn. By

left-multiplying both sides of the first identity in (7) by the
nonsingular matrix I + µξ(t)ξ⊤(t) + Ξ(t) and rearranging
terms, one obtains the following simplified expression for
θ̂(t):

θ̂(t) = −µξ(t)ỹ(t)− Ξ(t)θ̂(t) + ϑ̂(t). (8)

The time-derivative of θ̂(t) in (8) reads as

˙̂
θ(t) =�����

−µξ̇(t)ỹ(t)− µξ(t) ˙̃y(t)−XXXXΞ̇(t)θ̂(t)− Ξ(t)
˙̂
θ(t)

+
XXXXΞ̇(t)θ̂(t) +�����

µξ̇(t)ỹ(t)− µγξ(t)ỹ(t)

= −µξ(t)ξ̇⊤(t)θ̃(t)− µξ(t)ξ⊤(t)
˙̂
θ(t)− Ξ(t)

˙̂
θ(t)

−µγξ(t)ỹ(t)

=

(
1

µ
(I+Ξ(t)) + ξ(t)ξ⊤(t)

)−1

×(
−ξ(t)ξ̇⊤(t)θ̃(t)−γξ(t)ỹ(t)

)
. (9)

To prove the stability properties, we will employ the follow-
ing quadratic form, that will serve as a candidate Lyapunov
function in the PE case to show the exponential convergence
of the estimator, as well as a Lyapunov-like function in
absence of PE:

VΞ(t, ỹ, θ̃) =
1

2
ỹ2 +

1

2µ
θ̃⊤ (I + Ξ(t)) θ̃, µ > 0. (10)

This function is clearly inspired by (6), used in relative-
degree one adaptive control problems, with the addition
of time-varying matrix Ξ(t) as a weighting term for the

parameter error. The Lie derivative of (10) along the solutions
of (7) and along the trajectory (5) reads as

V̇Ξ(t) = ỹ(t) ˙̃y(t) +
1

µ
θ̃⊤(t)(I + Ξ(t))

˙̂
θ(t)

+
1

µ

θ̃⊤(t)Ξ̇(t)θ̂(t)

2

= θ̃⊤(t)ξ(t)ξ̇⊤(t)θ̃(t) + θ̃⊤(t)ξ(t)ξ⊤(t)
˙̂
θ⊤(t)

+
1

µ
θ̃⊤(t) (I + Ξ(t))

˙̂
θ(t)

− 1

µ

ϕ

2
θ̃⊤(t)Ξ(t)θ̃(t) +

1

µ

1− ϕ

2
ỹ(t)2

= θ̃⊤(t)ξ(t)ξ̇⊤(t)θ̃(t)

+ θ̃⊤(t)

(
1

µ
(I + Ξ(t)) + ξ(t)ξ⊤(t)

)
˙̂
θ(t)

− 1

µ

ϕ

2
θ̃⊤(t)Ξ(t)θ̃(t) +

1

µ

1− ϕ

2
ỹ(t)2 (11)

Upon substitution of (9) in (11), we obtain the following Lie
derivative of (10) along the trajectories of (7):

V̇Ξ(t) = (((((((((
θ̃⊤(t)ξ(t)ξ̇⊤(t)θ̃(t)−(((((((((

θ̃⊤(t)ξ(t)ξ̇⊤(t)θ̃(t)

−γθ̃⊤(t)ξ(t)ỹ(t)

− 1

µ

ϕ

2
θ̃⊤(t)Ξ(t)θ̃(t) +

1

µ

1− ϕ

2
ỹ(t)2

= −
(
γ − 1

µ

1− ϕ

2

)
ỹ(t)2 − 1

µ

ϕ

2
θ̃⊤(t)Ξ(t)θ̃(t).

(12)
Choosing γ > (1 − ϕ)/(2µ), then V̇Ξ(t) ≤ 0, ∀t ≥ 0,
hence VΞ(t), along the system’s trajectories, is bounded
by its initial condition. Therefore, ỹ(·), θ̃(·) ∈ L∞, thus
θ̂(·) ∈ L∞. Integrating both sides of the last identity in
(12) one immediately obtains that ỹ(·) ∈ L2. Moreover, if
ξ(t) and ξ̇(t), t ≥ 0, are bounded, ˙̂

θ(t) is bounded from
(9), which implies that ỹ(t), t ≥ 0, is uniformly continuous.
Hence, by Barbalat Lemma, it can be concluded that ỹ(t)
converges asymptotically to zero. We are left to show that
θ̃(t) converges exponentially to zero if ξ(t) is PE. According
to Lemma 6.1, proven in Appendix, the PE condition∫ t

t−TPE

ξ(τ)ξ⊤(τ)dτ ≥ ϵPEI, ∀t ≥ TPE , (13)

for some TPE , ϵPE > 0, implies that there exists ϵΞ > 0
such that Ξ(t) ≥ ϵΞI for all t ≥ TPE . This latter result, in
turn, implies that

V̇Ξ(t) ≤ −
(
γ − 1

µ

1− ϕ

2

)
ỹ(t)2 − ϵΞ

µ

ϕ

2
θ̃⊤(t)θ̃(t), (14)

for all t ≥ TPE . Hence, assuming that ξ(·) is bounded
and PE, it follows that Ξ(t) is bounded for all t ≥ 0 and
uniformly positive definite, rendering VΞ(·) a quadratic, pos-
itive definite, radially unbounded and decrescent Lyapunov
function, which is also strict. In view of (14) we conclude
that in case of PE the function VΞ(t) converges to zero
exponentially fast along trajectories. Consequently, both ỹ(t)
and θ̃(t) converge to zero exponentially fast.

Remark 3.1: Note that (8) is not implementable in this
very form (as opposed to the equivalent expression (7), which
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instead is computable from available signals) as ỹ(t) im-
plicitly needs θ̂(t) to be available. Therefore, the adaptation
law (7) is equivalent to the not-realizable direct-output-error
feedthrough law (8). As such, matrix normalization is used
in the present solution to overcome the lack of realizability
for (8), not to enforce signal boundedness as instead is the
case of the usual scalar normalization (see, e.g., (4)).

B. Unknown derivative of the regressor, with known bound

When the derivative of the regressor is unknown, one can
exploit a known bound on the norm of the time-derivative
of the regressor to introduce a discontinuous injection aimed
at “dominating” the regressor’s derivative. The price to pay,
however unsurprisingly, is a semi-global domain of validity
of the ensuing results.

More specifically, let ℓ > 0 be a known constant such that
supt≥0 ∥ξ̇(t)∥ ≤ ℓ. Assume that the unknown parameter θ in
the model (1) ranges within a known compact set Θ ⊂ Rn.
Furthermore, we assume that the initial value of the regressor,
ξ(0), is taken within a known compact set Kξ ⊂ Rn. It is
stressed that both Θ and Kξ can be selected arbitrarily, but
must remain fixed to be used in the selection of the gains of
the update law to be presented below. It is also noted that Θ
and Kξ implicitly determine a compact set Ky ⊂ R for the
initial condition y(0), that is, y(0) ∈ Ky , where

Ky = {y ∈ R : |y| ≤ max |ξ⊤θ|, ξ ∈ Kξ, θ ∈ Θ} (15)

In this scenario, the update law (7) is replaced by

θ̂(t) =
(
I+Ξ(t) + µξ(t)ξ⊤(t)

)−1
(
µξ(t)y(t) + ϑ̂(t)

)
Ξ̇(t) = −ϕΞ(t) + (1− ϕ)

ξ(t)ξ⊤(t)

1 + ξ⊤(t)ξ(t)
˙̂
ϑ(t) = Ξ̇(t)θ̂(t)− µδξ(t)sign(ỹ(t))− µγξ(t)ỹ(t)

Ξ(0) = 0n,n ∈ Rn×n

ϑ̂(0) = ϑ̂0 ∈ Θϑ ⊂ Rn (16)

where δ > 0 is a scalar and Θϑ ⊂ Rn is a compact set,
both to be determined. The compact set Θϑ shall be selected
“large enough” so that the set

Θ̂ :=
{
θ̂ ∈ Rn : θ̂ =

(
I + µξξ⊤

)−1
(
µ ξy + ϑ̂

)
, ξ ∈ Kξ,

y ∈ Ky, ϑ̂ ∈ Θϑ

}
, (17)

which is the set of initial conditions θ̂(0) for θ̂(t), contains
the parameter set Θ in its interior.

The convergence properties of the adaptation law (16) are
summarized as follows:

Theorem 3.2: Let ℓ > 0 be an upper bound on ∥ξ̇(t)∥,
t ≥ 0. Fix, arbitrarily, compact sets Θ,Kξ ⊂ Rn for θ and
ξ(0), respectively, and let Ky and be defined as in (15). Select
the compact set Θϑ such that Θ̂ in (17) satisfies Θ̂ ⊇ Θ.
Finally, as in Theorem 3.1, choose γ > (1− ϕ)/(2µ).

Then, there exists a positive constant δ such that for all
δ ≥ δ, the adaptation law (16) guarantees that:
(i) θ̂(·) ∈ L∞, ỹ(·) ∈ L∞ ∩ L2;

(ii) if ξ(·) ∈ L∞, then in addition to property (i), ỹ(t) → 0
as t → ∞;

(iii) if ξ(·) ∈ L∞ and ξ(·) is PE, then in addition to prop-
erties (i), (ii), ỹ(t), θ̃(t) converge to zero exponentially
fast.
Proof: Let θ ∈ Θ and ξ(·) be such that ξ(0) ∈ Kξ and

∥ξ̇(t)∥ ≤ ℓ for all t ≥ 0, and fix, arbitarily, ϑ̂0 ∈ Θϑ. Notice
that, in correspondence with Θ, Kξ, and the sets defined
in (15) and (17), compact sets K̃y ⊂ R and Θ̃ ⊂ Rn for the
initial values ỹ(0) and θ̃(0), respectively, are determined via
the relations

K̃y =
{
ỹ ∈ R : |ỹ| ≤ max |ξ⊤θ|+max |y|, ξ ∈ Kξ,

θ ∈ Θ̂, y ∈ Ky

}
Θ̃ :=

{
θ̃ ∈ Rn : θ̃ = θ̂ − θ, θ̂ ∈ Θ̂, θ ∈ Θ

}
(18)

Consequently, the differential equations for the output and
parameter estimation errors

˙̃y(t) = ξ̇⊤(t)θ̃(t) + ξ⊤(t)
˙̂
θ(t) ,

˙̃
θ(t) =

˙̂
θ(t) (19)

take initial conditions (ỹ(0), θ̃(0)) in the compact set K̃y×Θ̃
for all θ ∈ Θ, all ξ(0) ∈ Kξ and all ϑ̂(0) ∈ Θϑ. For the time-
varying system (19), consider again the Lyapunov function
candidate (10). Due to normalization of the regressor on the
right-hand of the dynamic equation for Ξ(t) in (16), the
trajectory Ξ(t) is uniformly bounded. As a result, VΞ(t, ỹ, θ̃)
is positive definite, radially unbounded and decrescent, as
there exist globally quadratic and positive definite functions
W1(ỹ, θ̃) and W2(ỹ, θ̃) satisfying

W1(ỹ, θ̃) ≤ VΞ(t, ỹ, θ̃) ≤ W2(ỹ, θ̃)

for all (ỹ, θ̃) ∈ R × Rn and all t ≥ 0. For c > 0, let Ωc ⊂
R× Rn denote the level set of the function W2(ỹ, θ̃)

Ωc :=
{
(ỹ, θ̃) ∈ R× Rn : W2(ỹ, θ̃) ≤ c

}
, c > 0

and select c > 0 such that Ωc ⊂ K̃y × Θ̃. Since the matrix
I + Ξ(t) + µξ(t)ξ⊤(t) is nonsingular, the first identity of
(16) can be rewritten as θ̂(t) = −Ξ(t)θ̂(t)−µξ(t)ỹ(t)+ϑ̂(t),
whose time-derivative is

˙̂
θ(t) = −����Ξ̇(t)θ̂(t)− Ξ(t)

˙̂
θ(t)−µξ̇(t)ỹ(t)− µξ(t) ˙̃y(t)

+����Ξ̇(t)θ̂(t)− µδξ(t)sign(ỹ(t))− µγξ(t)ỹ(t)

= −Ξ(t)
˙̂
θ(t)− µξ̇(t)ỹ(t)− µξ(t)ξ̇⊤(t)θ̃(t)

− µξ(t)ξ⊤(t)
˙̂
θ(t)− µδξ(t)sign(ỹ(t))−µγξ(t)ỹ(t)

=

(
1

µ
(I+ Ξ(t)) + ξ(t)ξ⊤(t)

)−1

×(
− ξ(t)ξ̇⊤(t)θ̃(t)−γξ(t)ỹ(t)

− ξ̇(t)ỹ(t)− δξ(t)sign(ỹ(t))

)
. (20)

Upon substitution of (20) in (11), we obtain the following
expression of the Lie derivative of (10) along the trajectories
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of the system:

V̇Ξ(t) =(((((((((
θ̃⊤(t)ξ(t)ξ̇⊤(t)θ̃(t)−(((((((((

θ̃⊤(t)ξ(t)ξ̇⊤(t)θ̃(t)

− γθ̃⊤(t)ξ(t)ỹ(t)− θ̃⊤(t)ξ̇(t)ỹ(t)

− δθ̃⊤(t)ξ(t)sign(ỹ(t))

− 1

µ

ϕ

2
θ̃⊤(t)Ξ(t)θ̃(t) +

1

µ

1− ϕ

2
ỹ(t)2

= −
(
γ− 1

µ

1−ϕ

2

)
ỹ(t)2 − θ̃⊤(t)ξ̇(t)ỹ(t)− δ|ỹ(t)|

− 1

µ

ϕ

2
θ̃⊤(t)Ξ(t)θ̃(t)

≤ −
(
γ− 1

µ

1−ϕ

2

)
ỹ(t)2 + |θ̃⊤(t)ξ̇(t)||ỹ(t)| − δ|ỹ(t)|

− 1

µ

ϕ

2
θ̃⊤(t)Ξ(t)θ̃(t)

≤ −
(
γ− 1

µ

1−ϕ

2

)
ỹ(t)2 −

(
δ − |θ̃⊤(t)ξ̇(t)|

)
|ỹ(t)|

− 1

µ

ϕ

2
θ̃⊤(t)Ξ(t)θ̃(t). (21)

Choosing δ to satisfy the following inequality

δ ≥ δ := ℓ max
θ̃∈Ωc

|θ̃| (22)

and recalling that γ > (1− ϕ)(2µ), one obtains

V̇Ξ(t, ỹ, θ̃) ≤ −
(
γ − 1− ϕ

2µ

)
ỹ2 − ϕ

2µ
θ̃⊤Ξ(t)θ̃ ≤ 0 (23)

for all (ỹ, θ̃) ∈ Ωc and all t ≥ 0. As a result, all solutions(
ỹ(t), θ̃(t)

)
, t ≥ 0, originating from K̃y × Θ̃ are bounded,

i.e., ỹ(·), θ̃(·) ∈ L∞. Integrating both sides of (23) we
immediately obtain that ỹ(·) ∈ L2. Moreover, if ξ(·), ξ̇(·)
are bounded, then from (20), ˙̂

θ(·) ∈ L∞ as well, which
implies that ỹ(t), t ≥ 0, is uniformly continuous. Thus,
by Barbalat’s Lemma one can conclude that ỹ(t) converges
to zero asymptotically. To prove exponential convergence of
both ỹ(t) and θ̃(t) in case of PE, one can proceed according
to the same line of reasoning used to prove Theorem 3.1.

IV. ILLUSTRATIVE SIMULATION STUDY
In this section, we conduct numerical experiments to

validate the theoretical result of the proposed adaptive law.
Consider a second-order SISO system in the form of

z(s) =
b1s+ b0

s2 + a1s+ a0
Ju(t)K

where ai, bi, i = 0, 1 are unknown parameters to be esti-
mated. F JuK denotes the output of the operator F(s) (in
the Laplace domain) with the input u(t). It is explicitly seen
that the system is expressed as a dynamic model. Following
the standard procedures of transferring the dynamic model
into algebraic model, we first rewrite the system into

s2 Jz(t)K = −a1s Jz(t)K − a0 Jz(t)K + b1s Ju(t)K + b0 Ju(t)K

and filter both sides by the operator Λ(s) = (s+1)2, which
gives the targeted algebraic linear parameter model in the
form of (1):

y(t) = ξ⊤(t)θ,

where y(s) := s2

Λ(s) Jz(t)K, and

ξ(s) : =
(

s
Λ(s) Jz(t)K 1

Λ(s) Jz(t)K s
Λ(s) Ju(t)K 1

Λ(s) Ju(t)K
)⊤

θ : =
(
−a1 −a0 b1 b0

)⊤
.

We compare the proposed adaptive laws (7), (16) with
the conventional ones (3), (4), under different choices of u.
The unknown plant parameters are chosen as a1 = 1, a0 =
1, b1 = 1, b0 = −1. For the sake of a fair comparison,
the tuning parameter γ in all four methods are the same,
specifically, γ = 10 and the other parameters µ, ϕ, δ in our
method are selected as µ = 0.8, ϕ = 0.5, and δ = 20,
which is sufficiently large. ϑ̂,Ξ and the plant are initialized
to be ϑ̂(0) = 04,1, Ξ(0) = 04,4, and z(0) = 2. All the
simulations are conducted under the Runge-Kutta integration
method with fixed sampling interval 10−3s.

A. Case 1: u(t) = 10 t

In the first case of u(t) = 10 t, ξ(t) is not PE and
monotonically increasing, but has a bounded time-derivative,
thus the requirement for the design of adaptation law (16)
is fulfilled. As depicted in Fig.1, the output error ỹ(t)
under the four adaptation laws, though converging to zero at
the very beginning, behaves differently afterward. Since we
choose a monotonically increasing signal u(t), the regressor
ξ(t) is also monotonically increasing, which leads to the
unboundedness of the output error under the CE adaptation
laws without/with normalization. Consequently, the output
error ỹ(t) under the conventional adaptation laws (3), (4)
diverges, whereas the proposed adaptation laws guarantee
the boundedness of the output error. Thanks to the out-
put feedthrough, the output error remains bounded, which
achieves the main objective of the proposed adaptation laws.
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Fig. 1. Comparison of the time history of output error ỹ(t).

B. Case 2: u(t) = ω(t) + ν(t)

In the second case, we choose a sufficiently rich and
bounded signal ω(t) = sin(t) + sin(3t) to verify the con-
vergence properties of ỹ(t) and θ̂(t). Also, we show the
robustness of the proposed algorithm by selecting a random
noise ν(t) with uniform distribution within the interval
[−0.1, 0.1]. The linear parameter model now becomes y(t) =
ξ⊤(t)θ + ωf (t), with ωf (s) := s2

Λ(s) Jω(t)K. Utilizing [13,
Corollary 5.2], we can compute the norm-bound of ωf (t)
as supt≥0 |ωf (t)| ≤ 2.7066. The outcomes of the adaptation
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laws in the noise-free and noisy cases are shown in Figs.
2-3. Figs. 2-3 demonstrate the exponential convergence of
the estimated parameter error to zero without noise ν(t) and
to a small residual set in the presence of noise ν(t).
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Fig. 2. Time history of θ̂(t) converging to θ1 = −1, θ2 = −1, θ3 =
1, θ4 = −1 by adaptation laws (7), (16) without noise ν(t).
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Fig. 3. Time history of θ̂(t) converging to θ1 = −1, θ2 = −1, θ3 =
1, θ4 = −1 by adaptation law (7), (16) with noise ν(t).

V. CONCLUSION

In this paper, we have tackled the long-standing issue of
guaranteeing, in the learning of algebraic linear-in-the param-
eter error models, a bound on the output error independent
from the magnitude of the regressors, but depending only on
the initial mismatch. We have presented two novel adaptation
laws that yield Lyapunov-certified output error boundedness,
even in absence of PE. As for conventional adaptation laws,
in case of PE the proposed algorithms yield exponential
convergence of the output and parameter estimation errors
to zero. The outcomes of the simulations are consistent with
the theoretical results and show that the proposed adaptation
laws outperform the state of the art. Future research will be
directed towards including the proposed adaptation laws in
adaptive control problems.

VI. APPENDIX

Lemma 6.1: Let Ξ(t) be a filtered regressor’s auto-
covariance matrix evolving according to (7). If the PE
condition (13) holds, then ∃ϵΞ > 0:

Ξ(t) ≥ ϵΞI, ∀t ≥ TPE .

Proof: Let v ∈ Rn be an arbitrary constant n-
dimensional vector. From the dynamics of Ξ(t) we obtain

v⊤Ξ(t)v =

∫ t

0

e−ϕ(t−τ)(1− ϕ)v⊤ξ(τ)ξ(τ)⊤vdτ (24)

Given 0 < ϕ < 1, all terms in (24) are non-negative,
therefore v⊤Ξ(t)v ≥ 0,∀t ≥ 0, for any possible v ∈ Rn.
Moreover, for any t1, t2 : 0 ≤ t1 < t2 we have

v⊤Ξ(t2)v − v⊤Ξ(t1)v ≥∫ t2

t1

e−ϕ(t2−τ)(1− ϕ)v⊤ξ(τ)ξ(τ)⊤vdτ.

Considering that v⊤Ξ(t1)v ≥ 0, and that, for any
ϕ : 0 < ϕ < 1 the following inequality holds:

e−ϕ(t2−τ)(1− ϕ) ≥ e−ϕ(t2−t1)(1− ϕ), ∀τ ∈ [t1, t2],

then, we get the lower bound

v⊤Ξ(t2)v ≥ e−ϕ(t2−t1)(1− ϕ)×
v⊤

(∫ t2
t1

ξ(τ)ξ(τ)⊤dτ
)
v

Finally, taking t2 = t and t1 = t− TPE , with t ≥ TPE , and
using the PE assumption (13), we obtain

v⊤Ξ(t)v ≥ e−ϕTPE (1− ϕ)v⊤ϵPEIv

for any possible v ∈ Rn, which yields to the lower bound

Ξ(t) ≥ ϵΞI, ∀t ≥ TPE

with ϵΞ = ϵΞ(ϵPE) := e−ϕTPE (1− ϕ)ϵPE .
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