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Abstract— This paper investigates the problem of H2 state-
feedback control of continuous-time Markov jump Lur’e sys-
tems with sector-bounded nonlinearity. It is provided synthesis
conditions for the design of robust stabilizing controllers in
which the Markov mode θ(t) is not available but is estimated
by a detector θ̂(t). As performance criteria, it is proposed a
multi-objective optimization problem where an H2 guaranteed
cost is minimized and the amplitude of the sector is maximized.
The synthesis framework is provided in terms of linear matrix
inequalities, and a numerical example based on a practical
system is provided to illustrate the results.

I. INTRODUCTION

The dynamics of systems are often studied through math-
ematical representations, making feasible the use of the-
oretical tools that frequently demand the employment of
numerical solutions using some optimization. Most physical
phenomena exhibit nonlinearities, which are important for
accurately capturing their true behavior. In addressing non-
linearities [16], the class of systems known as Lur’e systems
[19], [20] offers a valuable framework for modeling various
phenomena of interest such as saturation, dead zones, and
quantizations, which are commonly encountered in practical
engineering applications. A Lur’e system consists of a linear
time-invariant model coupled with a nonlinear static input-
output map and can be addressed by absolute stability
results. The literature offers a wealth of stability analysis
and synthesis tools based on the Lyapunov stability theory
[21], [13] and frequency domain methods, such as Zames-
Falb multipliers [29], [27], [4], [2], often formulated in terms
of Linear Matrix Inequalities (LMIs) [3].

When the behavior of systems exhibits abrupt changes,
single deterministic models might not be sufficiently precise
to predict their trajectories and perform stability analy-
sis. These changes, often arising from random events, are
best described using stochastic processes. Their statistical
characteristics, such as probabilities, expected values, and
variances, become essential for providing an accurate model.
One way to model such abrupt changes is by employing
Markov Jump Linear Systems (MJLS). This approach de-
composes the system into different operation modes gov-
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erned by standard linear differential (or difference) equations.
Transitions between these modes are modeled as jumps
driven by randomness. An appealing feature of this class
of models is the availability of convex optimization tools to
perform analysis and synthesis. MJLS has been extensively
researched, with [5] and [6] providing comprehensive refer-
ences.

Recently, a class of systems known as Markov jump Lur’e
systems has been created specially to address dynamics
involving stochastic jumps and sector-bounded nonlinearities
[24], [14]. In this context, it is worth of mentioning works
dealing with stability analysis [14], ℓ2-gain state-feedback
control [15], ℓ2−ℓ∞ observer-based control with sensors sat-
urations [30], H∞ filtering for stochastic time-delay systems
[28], and H2 and H∞ filtering and dynamic output-feedback
control with sector bound optimization [9], [8].

This paper investigates the problem of H2 state-feedback
control for continuous-time Markov Jump Lur’e systems.
Aiming to address a more realistic scenario, where only
cluster and partial observations [25] are possible, it is as-
sumed that the controller has access only to estimations
of the Markov process provided by a detector, denoted as
θ̂(t). In this case, the controller adapts according to the
information provided by the detector, as presented in [22],
[23], [11], [10]. Concerning the performance criteria, the
proposed method can optimize both a bound for the H2

norm from the disturbance input to the controlled output,
and the amplitude of the sector associated with the sector-
bounded nonlinearity. As technical contribution, the synthesis
conditions are formulated in terms of LMIs, which are
convex optimization problems well established in the control
literature [3] with specialized software available [1], [17]. A
numerical example based on two coupled electrical machines
is presented to illustrate the achievements.

II. PRELIMINARIES

Notation: Throughout the text, (·)′ indicates transposed
matrices or vectors, diag (·) a diagonal matrix, tr(·) the trace
operator, and ⋆ a block induced by symmetry in square
matrices. The operator E(·) (E(·|·)) is the (conditional)
expected value of a random variable, R+ indicates the set of
positive real numbers, and Her (A) ≜ A+A′. The inequality
X > 0 means that X is a positive definite symmetric matrix.
The set of nonlinear functions belonging to a given sector
is denoted by F. The notation [aij ] is used to represent a
matrix where aij are its entries. The 2-norm (squared) of
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any stochastic signal x : R+ → Rnx is defined as

∥x∥22 ≜ E
(∫ ∞

0

∥x(t)∥2 dt
)
,

and ∥x(t)∥ is the Euclidean norm of vector x(t).
We assume the probability space (Ω,F,P), where Ω is the

sample space, F is the σ-field into Ω, and P is the probability
measure.

Consider the following MJLS Gθ̃(t):

ẋ(t) = Aθ(t)x(t) +Bpθ(t)p(t) +Buθ(t)u(t) +Bwθ(t)w(t),

q(t) = Cqθ(t)x(t),

z(t) = Czθ(t)x(t) +Dzpθ(t)p(t) +Dzuθ(t)u(t),

p(t) = −ϕ (q(t)) ,

where x : R+ → Rnx is the state, z : R+ → Rnz the
performance output, w : R+ → Rnw the exogenous input,
u : R+ → Rnu the control input, p : R+ → Rnp is an
input to the linear part of the system, q : R+ → Rnp is
the output signal, and ϕ : Rnp → Rnp is a static, time-
invariant and decentralized nonlinearity between q(t) and
p(t). It is important to emphasize that p(t) and q(t) may not
necessarily have physical meaning; instead, they could be
defined mathematically to facilitate the representation of the
nonlinear system within the Lur’e framework. All matrices
have compatible dimensions, and the nonlinear function ϕ is
characterized by ϕ(0) = 0, ensuring that the origin x = 0
serves as an equilibrium point. Additionally, ϕ(·) belongs
to the sector

[
0np×np

, κ
]
, with κ ≜ diag(κ1, · · · , κnp

),
κj > 0 for j ∈ {1, 2, · · · , np}, satisfying the following
condition

(ϕ (q(t))− κq(t))
′
ϕ (q(t)) ≤ 0, ∀t ∈ R+. (1)

which means that ϕ(·) is sector-bounded.
The hidden process is denoted by the pair θ̃(t) =

(θ(t),θ̂(t)), where the random variable θ(t) is a homoge-
neous Markov chain taking values in K ≜ {1, 2, · · · , N}
with transition rate matrix [λij ] ∈ RN×N . Besides, to cope
with situations where the process θ(t) cannot be measured
precisely, the random variable θ̂(t) ∈ M = {1, · · · , M} is
assumed to be provided by a suitable detector at all times, as
presented in [22], [23] and [11]. Thus, θ̃(t) is a homogeneous
Markov process

θ̃ : R+ → L
t 7→ (i,k)

,

where L ≜ K × M, and the transition probabilities
p(i,k)(j,ℓ)(ε) = P

(
θ̃(t + ε) = (j,ℓ)|θ̃(t) = (i,k)

)
are given

by [11]

p(i,k)(j,ℓ)(ε) =

{
λ̃(i,k)(j,ℓ)ε+ o(ε), (j,ℓ) ̸= (i,k),

1 + λ̃(i,k)(i,k)ε+ o(ε), (j,ℓ) = (i,k),
(2)

where,

λ̃(i,k)(j,ℓ) =


αk
jℓλij , j ̸= i, ℓ ∈ M,

λ̂i
kℓ, ℓ ̸= k, j = i, i ∈ K,

λii + λ̂i
kk, j = i, ℓ = k,

(3)

and
∑

j∈K λij = 0, with λii ≤ 0, ∀i ∈ K,
∑

ℓ∈M λ̂i
kℓ = 0,

with λ̂i
kk ≤ 0, ∀k ∈ M and

∑
ℓ∈M αk

jℓ = 1, ∀k ∈ M.
Additionally, from (2) one has

∑
(j,ℓ)∈L λ̃(i,k)(j,ℓ) = 0, and

λ̂i
kℓ represents the transition rates from the detector θ̂(t). The

probabilities αk
jℓ dictate what should happen to the detector

after a jump takes place in the Markov chain [23]. Thus,
we obtain the matrix

[
λ̃(i,k)(j,ℓ)

]
∈ RNM×NM , that informs

transition rates between joint Markov chain modes θ̃(t) ∈ L.
Remark 2.1: As presented in [11], we can retrieve some

interesting cases presented in the literature, such as
1) Complete observation: θ̂(t) ≡ θ(t), i.e., M =

N (K = M) , which implies λ̂i
kℓ = 0, αk

jj = 1 and
αk
jℓ = 0 for j ̸= ℓ;

2) Cluster observation: In this scenario, the Markov modes
may be written as the union of M ≤ N disjoint sets
(clusters) Ki so that K =

⋃
i∈M Ki. We consider the

function h : K → M such that h(i) = j, that is, the
function that represents the cluster where the Markov
mode belongs, and thus the controller has access to h(i).
This is equivalent to λ̂i

kℓ = 0 and αk
ih(i) = 1, so that

whenever θ(t) jumps to i, θ̂(t) jumps simultaneously to
h(i).

Note that the partial observation (M < N) is a particular
case of cluster observation, item (2).

The following subsections define stochastic stability and
the H2 norm for system Gθ̃(t).

A. Stochastic Stability and H2 Norm

The following definitions are necessary for obtaining
analysis and synthesis conditions for the problem under
investigation. The reader can find more details in [6], [3].

Definition 1: (Infinitesimal Generator). Let a stochastic
process defined by {X(t), t ∈ R+}. A function of this pro-
cess is represented by f(X(t)). The infinitesimal generator
φ(·) applied to f is given by

φ(f) ≜ lim
ε→0+

E
(
f(X(t+ ε))− f(X(t))

ε

)
. (4)

Definition 2: (Stochastic Stability (SS) and Mean-Square
Stability (MSS)). The system Gθ̃(t) with null input is said

1) SS if there exists G = G′ > 0, such that

E
(∫ ∞

0

∥x(t)∥2dt
∣∣∣∣θ̃0) ≤ x′

0Gx0.

2) MSS if
lim
t→∞

E(∥x(t)∥2) = 0,

for initial conditions x0 ∈ Rnx and θ̃0 ∈ L.
Definition 3: (H2 norm). Considering that Gθ̃(t) is MSS

and x(0) = 0, the H2 norm of Gθ̃(t) is defined as

∥Gθ̃(t)∥
2
2 =

nw∑
j=1

E
(∫ ∞

0

∥zj(t)∥2dt
)

=

nw∑
j=1

∥zj∥22 = ∥z∥22,

where zj(t) is the system response to impulsive input w(t) =
ejδ(t), ej is a vector with all null entries except the jth,
which is 1, and δ(t) is the Dirac’s impulse.
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The next lemma is useful for the derivation of the main
achievements of the paper, presented in the next section.

Lemma 1: [12] For P = P ′ > 0, the inequality
G′P−1G ≥ Her(G) − P holds for any square matrix G
of compatible dimensions.

B. Problem Statement

The problem to be investigated is the design of the
stabilizing detector-based state-feedback control law u(t) =
Kθ̂(t)x(t), where Kθ̂(t) are gains to be computed, yielding
the following closed-loop system GKθ̃(t)

ẋ(t) = Aθ̃(t)x(t) +Bpθ(t)p(t) +Bwθ(t)w(t),

q(t) = Cqθ(t)x(t),

p(t) = −ϕ (q(t)) ,

z(t) = Czθ̃(t)x(t) +Dzpθ(t)p(t),

(5)

with
Aθ̃(t) = Aθ(t) +Buθ(t)Kθ̂(t),

Czθ̃(t) = Czθ(t) +Dzuθ(t)Kθ̂(t),
(6)

As control objectives, an H2 guaranteed cost is minimized,
and the sector amplitudes κ are maximized. To compact the
notation regarding the indexation of the matrices depending
on θ(t) and θ̂(t), from this point we write Xθ(t) = Xi, i ∈ K,
Xθ̂(t) = Xk, k ∈ M, and Xθ(t)θ̂(t) = Xik, (i,k) ∈ L where
X can be any matrix of the system.

III. MAIN RESULTS

The next theorem presents the first result of the paper,
which is an LMI-based approach to address the problem
under investigation, assuming that the state-feedback gains
are given. The result is an extension of [8] to deal with the
detector-based feedback gains.

Theorem 3.1: Let Kk, k ∈ M be given stabilizing state-
feedback gains. If there exist symmetric positive definite
matrices Pik, (i,k) ∈ L, a diagonal matrix κ > 0, and
positive scalars γ2 and ξ satisfying the LMIs

γ2 >
∑

(i,k)∈L

πiktr(B
′
wi
PikBwi

), (7)

tr(κ) > ξ, (8) Tik(P) ⋆ ⋆
−B′

pi
Pik + κCqi −2Inp

⋆
Czik −Dzpi

−Inz

 < 0, (9)

with the operator

Tik(P) ≜ Her ((Ai +Bui
Kk)

′
Pik) +

∑
(j,ℓ)∈L

λ̃(i,k)(j,ℓ)Pjℓ,

and πik ≜ P
(
θ̃0 = (i,k)

)
, then system GKθ̃(t)

is MSS for
any nonlinearity ϕ(·) belonging to sector [0np×np

, κ], and

max
F

∥z∥2 <
√
γ2, F ≜

{
ϕ(q(t)) ∈

[
0np×np

, κ
]}

(10)
Proof: We start defining the Lyapunov stochastic func-

tion vx(t),θ̃(t) ≜ x(t)′Pθ̃(t)x(t) and its infinitesimal generator

φ(vx(t),θ̃(t)) = ẋ′Pθ̃(t)x+ x′Pθ̃(t)ẋ+ x′φ(Pθ̃(t))x, (11)

where φ(Pθ̃(t)) is given by,

= lim
ε→0+

E
(
Pθ̃(t+ε) − Pθ̃(t)

ε

∣∣∣∣ θ̃(t) = (i,k)

)
= lim

ε→0+

∑NM
(j,ℓ)∈H λ̃(i,k)(j,ℓ)Pjℓε+ (1 + λ̃(i,k)(i,k)ε)Pik − Pik

ε

=
∑

(j,ℓ)∈L

λ̃(i,k)(j,ℓ)Pjℓ,

H ≜ L \ (i,k) = {(j,ℓ) ∈ L : (j,ℓ) ̸= (i,k)} . (12)

Multiplying (9) on the left by
[
x′ ϕ(q)′ 0′

]
and on the

right by the transpose, yields

x′Tik(P)x−2ϕ(q)′ϕ(q)+Her(ϕ(q)′(−B′
pi
Pik+κCqi)x) < 0,

(13)
which can be rewritten, using (11), as follows

φ(vx(t),θ̃(t)) < Her
(
(ϕ(q)− κq)′ϕ(q)

)
≤ 0, (14)

assuring the stochastic stability of the system. Next, rewrite
(9) as follows[

Tik(P) ⋆
−B′

pi
Pik + κCqi −2Inp

]
+

[
C ′

zik
−D′

zpi

] [
C ′

zik
−D′

zpi

]′
< 0,

and multiply on the left by
[
x′ ϕ(q)′

]
and on the right by

the transpose to obtain

x′(Tik(P) + C ′
zik

Czik)x+ ϕ(q)′(−2Inp +D′
zpi

Dzpi)ϕ(q)+

Her
(
ϕ(q)′(−(B′

pi
Pik +D′

zpi
Czik) + κCqi)x

)
< 0,

which can be rewritten, using (11), as follows

φ(vx(t),θ̃(t)) + ∥z(t)∥2 < Her((ϕ(q)− κq)
′
ϕ(q)) ≤ 0.

(15)

From inequality (15), we have

∥z(t)∥2 < −φ(vx(t),θ̃(t)). (16)

Integrating (16) and applying the mathematical expectation
on both sides leads to

E
(∫ ∞

0

∥z(t)∥2dt
)

<

− E
(∫ ∞

0

φ
(
vx(t),θ̃(t)

)
dt

∣∣∣∣x0 = Bwi
ej , θ̃0 = (i,k)

)
,

(17)

implying

max
F

∥z∥22 < E
(
x′
0Pikx0

∣∣x0 = Bwi
ej
)
, (18)

where F is the set of possible nonlinearities. To get (18) from
(17), we used the fact that limt→∞ E

(
vx(t),θ̃(t)

)
= 0, since

the system is stochastically stable. Moreover, note that the
initial condition x0 ≜ Bwi

ej is equivalent to the impulsive
input discussed in Definition 3. Thus, we have that

max
F

∥z∥22 < E

 nw∑
j=1

(
e′jB

′
wi
PikBwi

ej
)

= E
(
tr
(
B′

wi
PikBwi

))
=

∑
(i,k)∈L

πiktr
(
B′

wi
PikBwi

)
,

(19)
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and using (7), that

max
F

∥z∥22 <
∑

(i,k)∈L

πiktr
(
B′

wi
PikBwi

)
< γ2, (20)

Finally, note that in inequality (8) the scalar ξ > 0 is a lower
bound for tr(κ), which refers to the sum of all κj > 0, ∀j ∈
{1, · · · , np} , concluding the proof.

To determine the minimum H2 guaranteed cost (γ2)
and the maximum lower bound for the sum of all sector
amplitudes (ξ), we propose the following multi-objective
convex optimization problem

inf
Pik>0, κ>0

{g(γ2, ξ) : subject to (7) − (9)} , (21)

where g(γ2, ξ) ≜ −bξ + aγ2 is the objective function to be
optimized, with weights a > 0 and b > 0 chosen by the
designer a priori. This optimization problem simultaneously
minimizes the H2 guaranteed cost with weight a and −ξ
with weight b, subject to constraints (7)-(9). In other words,
it maximizes the amplitudes of the sectors while minimizing
the H2 guaranteed cost.

The following theorem presents the primary contribution
of the paper: a synthesis condition for designing H2 detector-
based state-feedback controllers for continuous-time Markov
jump Lur’e systems. Moreover, these results hold even when
ϕi(q(t)) is different for each mode i ∈ K, as discussed in [7].

Theorem 3.2: Let ζik > 0, ∀(i,k), (j,ℓ) ∈ L be given
scalars. If there exist positive definite symmetric matrices
Xik, Wik and Z(i,k)(j,ℓ), matrices Yk, Qk and Rik, for all
(i,k),(j,ℓ) ∈ L, k ∈ M, a diagonal matrix τ > 0 and positive
scalars ν and γ2 such that the following LMIs∑

(i,k)∈L

πiktr(Wik) < γ2, tr(τ ) < ν, (22)[
Wik ⋆
Bwi

Xik

]
> 0,

[
Z(i,k)(j,ℓ) ⋆

Rik Xjℓ

]
> 0, (23)

Wik +Her(UikVik) < 0, (24)

hold with the matrices Wik, Uik and Vik respectively given
by

λ̃(i,k)(i,k)Xik ⋆ ⋆ ⋆ ⋆
Xik 0nx×nx

⋆ ⋆ ⋆
−τB′

pi
0np×nx −4τ + 2Inp ⋆ ⋆

0nz×nx
0nz×nx

−Dzpi
τ −Inz

⋆
Xik 0nx×nx

0nx×np
0nx×nz

Πik

 ,

[
Ā′

ik −Q′
k (CqiQk)

′ C̄ ′
zik

(0nx×nx)
′]′ ,[

ζikInx
Inx

0nx×np
0nx×nz

0nx×nx

]
,

and

Āik = AiQk +Bui
Yk, C̄zik = CziQk +Dzui

Yk,

Πik ≜ −Her(Rik) +
∑

(j,ℓ)∈H

λ̃(i,k)(j,ℓ)Z(i,k)(j,ℓ), (25)

with H given in (12), then the state-feedback gains

Kk = YkQ
−1
k , k ∈ M (26)

associated with the sector amplitudes

κ = τ−1, (27)

assure that the closed-loop system GKθ̃(t)
is MSS for any

nonlinearity ϕ(·) belonging to sector [0np×np
, κ] and (10).

Proof: Suppose that (22)-(24) hold. Applying the
Schur complement in second inequality of (23) provides
Z(i,k)(j,ℓ) > R′

ik (Xjℓ)
−1

Rik, which multiplied by λ̃(i,k)(j,ℓ)

and summed up for all (j,ℓ) ∈ H, yields∑
(j,ℓ)∈H

λ̃(i,k)(j,ℓ)Z(i,k)(j,ℓ) > R′
ik∆ikRik ≥ Her (Rik)−∆−1

ik ,

where ∆ik =
∑

(j,ℓ)∈H λ̃(i,k)(j,ℓ) (Xjℓ)
−1

. Rewriting the
previous inequality, yields

−Her (Rik) +
∑

(j,ℓ)∈H

λ̃(i,k)(j,ℓ)Z(i,k)(j,ℓ) ≥ −∆−1
ik .

Using Lemma 1 on block (3× 3) of (24) gives

−4τ + 2Inp
= −2(τ ′ + τ − Inp

) ≥ −2τ ′Inp
τ = −2τ 2.

Thus, (24) still holds with Wik rewritten as

Wik =


λ̃(i,k)(i,k)Xik ⋆ ⋆ ⋆ ⋆

Xik 0nx×nx
⋆ ⋆ ⋆

−τB′
pi

0np×nx −2τ 2 ⋆ ⋆
0nz×nx

0nz×nx
−Dzpi

τ −Inz
⋆

Xik 0nx×nx
0nx×np

0nx×nz
−∆−1

ik

.
Moreover, (24) can be factorized as follows

Wik +Her(UikQkVik) < 0, (28)

with Vik as previously defined and Uik given by[
A′

ik −Inx
C ′

qi C ′
zik

0′nx×nx

]′
.

Multiplying (28) on the right by U ⊥
ik and on the left by the

transpose, where U ⊥
ik is a basis for the null space of Uik,

(i.e., UikU ⊥
ik = 0), with

U ⊥
ik =


Inx

0nx×np
0nx×nz

0nx×nx

A′
ik C ′

qi C ′
zik

0nx×nx

0np×nx Inp 0np×nz 0np×nx

0nz×nx 0nz×np Inz 0nz×nx

0nx×nx
0nx×np

0nx×nz
Inx

 .

provides
Hik(X) ⋆ ⋆ ⋆

−τB′
pi

+ CqiXik −2τ 2 ⋆ ⋆
CzikXik −Dzpi

τ −Inz
⋆

Xik 0nx×np 0nx×nz −∆−1
ik

 < 0,

(29)
where, Hik(X) ≜ Her(AikXik) + λ̃(i,k)(i,k)Xik. Applying
the Schur complement in (29) and a congruence transforma-
tion in the result with diag(X−1

ik ,τ−1,Inz
) , gives Tik(P) ⋆ ⋆

−B′
pi
Pik + κCqi −2Inp

⋆
Czik −Dzpi −Inz

 < 0, (30)

with X−1
ik = Pik and τ ≜

(
1/κ1, · · · ,1/κnp

)
, which is (9).
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The application of the Schur complement in the first
inequality of (23) provides Wik > B′

wi
X−1

ik Bwi , which
multiplied by πik and summed up for all (i,k) ∈ L, and
taking into account (22), gives

γ2 >
∑

(i,k)∈L

πiktr(Wik) >
∑

(i,k)∈L

πiktr(B
′
wi
PikBwi

),

as in (20), thereby concluding the proof.
To obtain a feasible controller, we can solve the following

multi-objective optimization problem, akin to (21):

inf {g(γ2, ν) : subject to (22) − (24)} , (31)

with g(γ2, ν) ≜ bν + aγ2.

IV. EXAMPLE

The synthesis conditions are implemented within Matlab
(version 2015A) using a DELL computer equipped with
an Intel Core i7 processor, 16GB of RAM. The LMIs are
programmed using the parser Yalmip [17] and solved using
the Mosek toolbox [1]. Regarding the scalars ζik necessary
to test the proposed synthesis conditions, we fixed ζik = ζ
and performed a linear search on ζ considering 40 values
logarithmically spaced in the interval [10−5, 102].

This experiment is devoted to a practical example in-
volving two coupled electrical machines, borrowed from
[18], [26], [8]. The goal is to design a controller for this
nonlinear model using the same parameters adopted in [8].
Furthermore, two scenarios are investigated: (1) complete
observation and (2) partial observation. The state transition
rates matrices [λij ] ,

[
λ̂i
jℓ

]
and probability matrix

[
αk
jℓ

]
are

given by

[λij ] =


−3.0 0.5 2.5 0.0
0.5 −3.0 0.0 2.5
2.5 0.0 −3.0 0.5
0.0 2.5 0.5 −3.0

 ,

(1) : λ̂i
jℓ = 0, ∀i ∈ K, αk

jj = 1, ∀k ∈ M,

(2) :
[
λ̂i
jℓ

]
= τi

[
−1 1
1 −1

]
,
[
α1
jℓ

]
=


3/4 1/4
2/5 3/5
5/8 3/8
1/3 2/3

 ,
[
α2
jℓ

]
=

[
I2
I2

]
,

where τi = {2, 1, 0.5, 0.1}. Consider also the sets K =
{1, 2, 3, 4}, M = {1, 2, 3, 4} for scenario (1) and M =
{1, 2} for scenario (2). The nonlinear dynamic system is
given by1

φ̈1(t) = −φ1(t)− µ
(1)
i sin(φ1(t)− φ2(t))

φ̈2(t) = −100φ2(t)− 0.1φ̇2(t) + µ
(2)
i sin(φ1(t)− φ2(t)),

1References [18] and [6] are recommended for the reader interested in
more details about these parameters.

which can be presented as in (5) with the matrices ∀i ∈ K,

Ai =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −100 0 −0.1

 , Bpi
=


0
0

µ
(1)
i

−µ
(2)
i

 ,

B′
ui

=
[
0 0 1 1

]
, Bwi = I4, Cqi =

[
1 −1 0 0

]
,

Czi =

[
I4

01×4

]
, Dzui

=

[
04×1

1

]
, Dzpi

= 05×1.

with, µ(1) = µ(2) = {−0.2, 0, 0, 0.2} , and state vector
x(t)′ = [φ1(t) φ2(t) φ̇1(t) φ̇2(t)]. As discussed in [8],
this system is unstable in open-loop. Next, the optimization
problem (31) is employed to design stabilizing controllers
for both scenarios.
Case 1: Adopting ζ = 50, a = 5 and b = 12, provides√
γ2 = 9.9135, κ = 1.0693 and the gains
K1

K2

K3

K4

 =


−0.6245 −1.4227 −1.5203 −0.9050
−0.5769 −1.3828 −1.4916 −0.9063
−0.6008 −1.3978 −1.5093 −0.9058
−0.5558 −1.3993 −1.4902 −0.9070

.
To illustrate this result, we conducted a Monte Carlo sim-
ulation with 2500 sample paths, each lasting 15 seconds,
and the initial condition x(0)′ = [1 0 0 0]. The closed-loop
system norm is ∥z∥2 = 1.3899, and time simulations are
only presented for Case 2 (to save space).

Case 2 Adopting ζ = 14, a = 5 and b = 10, the optimization
problem (31) gives

√
γ2 = 9.9100, κ = 1.0230 and[

K1

K2

]
=

[
−0.5881 −1.3963 −1.5005 −0.9057
−0.5664 −1.3893 −1.4897 −0.9063

]
.

Fig. 1a presents the mean-square performance output along
with its standard deviation, indicating the stochastic stability
of the electrical machines with random coupling (∥z∥2 =
1.3895), utilizing the same parameters as those specified in
Case 1. Fig. 1b depicts the behavior of the control input
in the last run among all 2500 rounds. As for Fig. 1c, note
that the nonlinear function belongs to the sector [0, κ], and
Fig. 1d presents the last round of the Markov and detector
processes.

V. CONCLUSION

This paper presented a multi-objective optimization ap-
proach for robustly stabilizing continuous-time Markov jump
Lur’e systems. Considering a more realistic scenario where
only an estimate of the Markov mode is available (provided
by a detector), synthesis conditions incorporating both H2

performance and the amplitudes of the sectors associated
with nonlinearities are formulated in terms of LMIs. A nu-
merical example (based on a practical system) demonstrating
the results under the partial observation of the Markov mode
was presented to illustrate the effectiveness of the proposed
approach.
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Fig. 1: 1a Mean and standard deviation of ∥z(t)∥2 evaluated
at all times t for Case 2. 1b Latter run of u(t) evaluated at all
times t. 1c Sector condition: in green the sector [0, κ], and
in light blue the latter mapping q(t) 7→ ϕ(q(t)). 1d Latter
run of Markov process θ(t) and the detector’s process θ̂(t).
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