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Abstract— Systems of partial differential equations often ad-
mit different Hamiltonian representations, leading to different
boundary variables that are either power or energy conjugate.
It is shown that any linear infinite-dimensional Hamiltonian
system can be transformed into one with constant symplectic
matrix. Alternatively, any passive linear Hamiltonian system
can be converted into one with constant energy storage matrix.
The consideration of energy boundary variables points towards
a new approach to control by interconnection. All this is
illustrated on the example of the elastic rod.

I. INTRODUCTION

Standard port-Hamiltonian modeling of boundary control
systems, as initiated in [15], starts from the Stokes-Dirac
structure associated to a formally skew-adjoint matrix dif-
ferential operator. This leads to the consideration of power
conjugate boundary variables representing the interaction
with the surroundings or with a controller system. Very
recently in [4], see also [16], [5], it was demonstrated how
this can be extended to energy conjugate boundary variables
corresponding to a Stokes-Lagrange structure associated to
the energy storage of the system. This extension from power
port variables to energy port variables parallels recent devel-
opments in the theory of finite-dimensional port-Hamiltonian
systems, where the graph of the gradient of a Hamiltonian
function is replaced by a general Lagrangian subspace or
submanifold [12], [13].

The present paper is continuing this line of research. Its
contributions can be summarized as follows.

First, the results of [4] are specialized to a standard class
of linear infinite-dimensional Hamiltonian systems, thereby
obtaining more explicit expressions and providing additional
insights.

Second, since the same partial differential equations may
give rise to different Hamiltonian systems with different sets
of boundary variables, this leads to the question of equiva-
lence of port-Hamiltonian boundary control models, and how
to transform one into the other. A main result of the present
paper is that any linear infinite-dimensional Hamiltonian
system can be transformed into one with a constant symplec-
tic matrix; thus having only energy boundary variables. In
particular, such formulations admit a standard Lagrangian de-
scription. Conversely, any passive linear infinite-dimensional
Hamiltonian system can be transformed into one with energy
storage described by a constant positive-definite matrix; thus
having only power boundary variables.
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Third, the inclusion of energy boundary variables gives
rise to new schemes for ’control by interconnection’, as
compared to the standard approach based on power variables.
Some initial ideas are presented.

II. MOTIVATING EXAMPLE
Consider a linear elastic rod, on a 1-dimensional spatial

domain [a, b]. The dynamics is described by the partial
differential equation

µ
∂2u

∂t2
(z, t) = −ku(z, t) + κ

∂2u

∂z2
(z, t), z ∈ [a, b], t ∈ R

(1)
Here u(z, t), z ∈ [a, b], t ∈ R, is the displacement of the
rod, µ is the mass density, κ the elasticity modulus, and k
the spring constant.

In order to provide a Hamiltonian formulation one starts
with the expression for the energy at any time t, given as∫ b

a

1

2µ
p2(z, t) +

1

2
κ

(
∂u

∂z

)2

(z, t) +
1

2
ku2(z, t) dz, (2)

where ∂u
∂z (z, t) is the strain, and p(z, t) = µ∂u∂t (z, t) is the

momentum. The first term in (2) represents the kinetic energy,
the second the potential energy due to deformation of the rod
(structural elastic energy), and the third term the potential
energy due to stretching (elastic energy).

The dynamics (1) can be formulated as an infinite-
dimensional Hamiltonian system in at least two ways.
I. Denote ε(z, t) := ∂u

∂z (z, t), and define the Hamiltonian
HI as the energy expressed in the state variables u, ε, p, all
considered as functions of the spatial variable z ∈ [a, b]:

HI(u, ε, p) :=

∫ b

a

1

2µ
p2(z) +

1

2
κε2(z) +

1

2
ku2(z) dz (3)

Then the dynamics of (1) can be written as

∂

∂t


u

ε

p

 =


0 0 1

0 0 ∂
∂z

−1 ∂
∂z 0


︸ ︷︷ ︸

JI( ∂
∂z )


δHI
δu

δHI
δε

δHI
δp

 (4)

Here the last vector is the variational derivative of HI ,
which is the vector-valued function defined by the require-
ment that for all functions ν(z) =

[
νu(z) νε(z) νp(z)

]
vanishing at the boundary points a, b

HI(u+ εν) = HI(u) + ε

∫ b

a

ν(z)


δHI

δu (z)

δHI

δε (z)

δHI

δp (z)

 dz + O(ε2)

(5)
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for small ε. The variational derivative of HI is simply given
as the vector of partial derivatives of the Hamiltonian density

HI(u, ε, p)(z) :=
1

2µ
p2(z) +

1

2
κε2(z) +

1

2
ku2(z), (6)

that is 
δHI
δu

δHI
δε

δHI
δp

 =


k 0 0

0 κ 0

0 0 1
µ


︸ ︷︷ ︸

QI


u

ε

p

 (7)

On the other hand, another Hamiltonian formulation of (1) is
obtained by considering the energy (2) as a function of u, p,
together with their spatial derivatives up to arbitrary order
(in this case only the first-order spatial derivative ∂u

∂z ). This
leads to the alternative Hamiltonian

HII(u, p) :=

∫ b

a

1

2µ
p2(z) +

1

2
κ

(
∂u

∂z

)2

(z) +
1

2
ku2(z) dz

(8)
The computation of the variational derivative of HII is more
involved. In fact, the variational derivative of the middle term∫ b

a

1

2
κ

(
∂u

∂z

)2

(z)dz (9)

is computed by noting that for any νu∫ b

a

1

2
κ

(
∂(u+ ενu)

∂z

)2

− 1

2
κ

(
∂u

∂z

)2

dz = ε

∫ b

a

κ
∂νu
∂z

∂u

∂z
dz

(10)
up to terms O(ε2). Then integration by parts of the last
integral, since νu is zero at the boundary points a, b, yields∫ b

a

−κνu(z)
∂2u

∂z2
(z) dz (11)

Therefore the variational derivative of HII(u, p) is given as[ δHII

δu

δHII

δp

]
=

[
k − κ ∂2

∂z2 0

0 1
µ

][
u

p

]
(12)

This results in the following alternative Hamiltonian formu-
lation of the elastic rod:

∂

∂t

[
u

p

]
=

[
0 1

−1 0

]
︸ ︷︷ ︸
JII

[
k − κ ∂2

∂z2 0

0 1
µ

]
︸ ︷︷ ︸

QII( ∂
∂z )

[
u

p

]
(13)

Here we recognize JII as the (inverse of the) standard
symplectic matrix. This second Hamiltonian formulation is
also referred to as the symplectic formulation of (1).

Remark 2.1: The symplectic formulation of the elastic rod
has the special feature that it admits as well a Lagrangian
representation, and thus can be derived from a variational
principle. Using shorthand notation ∂u

∂z =: uz and ∂u
∂t =: ut,

one defines the Lagrangian density

L(u, uz, ut)(z, t) :=
1

2
µu2

t (z, t)−
1

2
ku2(z, t)− 1

2
κu2

z(z, t)

(14)

Then the dynamics (1) also arises as the Euler-Lagrange
equation of the variational problem (Hamilton’s principle)

0 = δ

∫ tf

t0

∫ b

a

L(u, uz, ut)(z, t)dzdt, (15)

where the variations are taken over all (smooth) functions
δu : [a, b] × [t0, tf ] → R, which are fixed on the boundary
of the rectangle [a, b] × [t0, tf ]. In fact, the Euler-Lagrange
equation for (15) is given by the partial differential equation
∂L

∂u
(u, uz, ut)−

d

dt

∂L

∂ut
(u, uz, ut)−

d

dz

∂L

∂uz
(u, uz, ut) = 0,

(16)
which is seen to reduce to (1).

Both formulations (4) + (7) and (13) of the elastic rod are
Hamiltonian systems; defined for the purpose of this paper
as follows.

Definition 2.2 (Infinite-dimensional Hamiltonian system):
A linear infinite-dimensional Hamiltonian system is a system
of partial differential equations of the form
∂x

∂t
(z, t) = J (

∂

∂z
)Q(

∂

∂z
)x(z, t), z ∈ [a, b], x(z, t) ∈ Rn,

(17)
where the n× n matrix differential operator

J (
∂

∂z
) = −J>(− ∂

∂z
) (18)

is formally skew-adjoint (or constant skew-symmetric), and

Q(
∂

∂z
) = Q>(− ∂

∂z
) (19)

is an n× n formally self-adjoint matrix differential operator
(or constant symmetric matrix).

Although both (4) + (7) and (13) are Hamiltonian for-
mulations of the same dynamics (1), and their Hamiltonians
HI and HII express the same energy (2), we will see that
they lead to different sets of boundary variables. In fact, as
detailed in Section IV, the boundary variables are obtained
by ’integration by parts’ applied to the matrix differential
operators J ( ∂∂z ) (formally skew-adjoint) and Q( ∂∂z ) (for-
mally self-adjoint). (As such, this is different from a finite-
dimensional model, where the input and output equations are
specified a priori.) It turns out that the boundary variables
arising from J are power boundary variables (they come in
pairs, with their product having dimension of power), while
the boundary variables arising from Q are energy boundary
variables (again appearing in pairs, but now with product
having dimension of energy).

III. TWO-VARIABLE POLYNOMIAL CALCULUS
An efficient tool to obtain the boundary variables based

on J ( ∂∂z ) and Q( ∂∂z ) is two-variable polynomial matrix
calculus. Based on [18], [14] we first collect relevant results
on one-variable and two-variable polynomial matrices and
the matrix differential operators associated with them. First
recall that a matrix differential operator is given by an
expression

A(
d

dz
) =

N∑
k=0

Ak
dk

dzk
(20)
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for p× q matrices Ak, where z ∈ [a, b] is a scalar variable.
Associated with A( ddz ) is the p×q polynomial matrix A(s) =∑N
k=0Aks

k in the indeterminate s.
Next we consider two-variable polynomial matrices and

their corresponding bilinear differential operators.
Definition 3.1: A p × q two-variable polynomial matrix

Φ(ζ, η) in the two indeterminates ζ and η is given by an
expression of the form

Φ(ζ, η) :=

M∑
k,l=0

Φk,lζ
kηl, (21)

for some nonnegative integer M and p× q matrices Φk,l ∈
Rp×q . It is equivalently defined by its coefficient matrix Φ̃
which is the Mp ×Mq matrix whose (k, l)-th block is the
matrix Φk,l, k, l = 0, . . . ,M,.

The bilinear differential operator DΦ associated with the
two-variable polynomial matrix Φ(ζ, η) in (21) is

DΦ(v, w)(z) =

M∑
k,l=0

[
dk

dzk
v(z)

]>
Φk,l

dl

dzl
w(z), (22)

acting on M -differentiable functions v : R → Rp, w : R →
Rq . This operator defines, in turn, the following bilinear
functional on the functions on the domain [a, b] :

DΦ(v, w) :=

∫ b

a

DΦ(v, w)(z) dz (23)

A p × p two-variable polynomial matrix Φ(ζ, η) is called
symmetric if Φ(ζ, η) = Φ>(η, ζ), or equivalently its co-
efficient matrix Φ̃ is symmetric. A symmetric two-variable
polynomial matrix Φ(ζ, η) defines the quadratic differential
operator DΦ(v, v)(z). Furthermore, the expression

DΦ(v) :=
1

2

∫ b

a

DΦ(v, v)(z)dz (24)

is the corresponding quadratic functional. Repeated integra-
tion by parts for functions with support included in (a, b)
yields

DΦ(v + εδv)−DΦ(v) =

∫ b

a

δv>(z)Q(
d

dz
)(v)(z)dz (25)

up to O(ε2), where Q(s) := Φ(−s, s). Thus the varia-
tional derivative of DΦ(v) is the function Q( ddz )v. Since
Φ(ζ, η) = Φ>(η, ζ) one has Q(s) = Q>(−s), i.e., the matrix
differential operator Q( ddz ) is formally self-adjoint.

Two-variable polynomial matrices can be used to express
integration by parts in a compact way [14, Section 2.2].

Lemma 3.2: The derivative of the bilinear differential op-
erator DΨ associated with the p×q two-variable polynomial
matrix Ψ(ζ, η) is the bilinear differential operator

DΦ(v, w)(z) =
d

dz
(DΨ(v, w)) (z) , (26)

associated with the two-variable polynomial matrix

Φ(ζ, η) = (ζ + η)Ψ(ζ, η) (27)

Conversely, a bilinear differential operator DΦ(v, w)(z) is
the derivative of another bilinear differential operator if

and only if the two-variable polynomial matrix Φ(ζ, η) is
divisible by (ζ + η), i.e., (27) holds for some Ψ(ζ, η)).
In integral form, one derives from (26) the expression

DΦ(v, w) = DΨ(v, w)(b)−DΨ(v, w)(a) =: [DΨ(v, w)(z)]
b
a

(28)
Finally, we will make use of the following observation

concerning factorization of two-variable polynomial matrices
into one-variable polynomial matrices [18]. Consider the p×
q two-variable polynomial matrix Φ(ζ, η) with Mp ×Mq
coefficient matrix Φ̃. Consider any factorization Φ̃ = X̃>Ỹ
of Φ̃, where X̃ is a k×Mp matrix and Ỹ is a k×Mq matrix
for some nonnegative integer k

X̃ =
[
X0 X1 · · · XM

]
, Ỹ =

[
Y0 Y1 · · · YM

]
(29)

Define the k×p, respectively k×q, one-variable polynomial
matrices

X(s) := X0 +X1s+ · · ·+XMs
M

Y (s) := Y0 + Y1s+ · · ·+ YMs
M

(30)

Then it is immediately verified that Φ(ζ, η) = X>(ζ)Y (η).

IV. PORT HAMILTONIAN BOUNDARY CONTROL
SYSTEMS

Consider a Hamiltonian system (17), with J ( ∂∂z ) a for-
mally skew-adjoint, and Q( ∂∂z ) a formally self-adjoint matrix
differential operator. Equivalently, the corresponding polyno-
mial matrices satisfy

J (s) = −J>(−s), Q(s) = Q>(−s) (31)

Boundary variables are now introduced as follows. First,
let us start with J (s). Since J (s) = −J>(−s) the two-
variable polynomial expression J>(ζ) + J (η) is zero for
ζ + η = 0. Therefore

J>(ζ) + J (η) = (ζ + η) Π(ζ, η) (32)

for some two-variable symmetric polynomial matrix Π(ζ, η).
Using factorization of two-variable polynomial matrices (see
the previous section) it follows that

Π(ζ, η) = Z>(ζ) ΣZ(η) (33)

for some polynomial matrix Z(s) and invertible symmetric
matrix Σ. In most cases of interest, see e.g. [15], Σ has as
many positive as negative eigenvalues1, in which case we
can take Σ to be in the canonical form

Σ =

[
0 I

I 0

]
(34)

Partition accordingly Z(s) =

[
Zf (s)
Ze(s)

]
. Then the boundary

variables corresponding to J ( ∂∂z ) are defined as[
f∂

e∂

]
:=

[
Zf ( ∂∂z )

Ze(
∂
∂z )

]
Q(

∂

∂z
)x (35)

1If this is not the case we have to utilize the more general theory
developed in [3].
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evaluated at the boundary points a, b of the spatial domain
[a, b]. We obtain the following power balance.

Proposition 4.1: Consider the Hamiltonian system (17),
where Q( ∂∂z ) is a constant matrix Q, defining the Hamilto-
nian

H(x) :=
1

2

∫ b

a

x>(z)Qx(z)dz (36)

Then (17) with boundary variables (35) satisfies

d

dt
H = e∂(b)>f∂(b)− e∂(a)>f∂(a) (37)

Proof: First substitute ∂x
∂t = J ( ∂∂z )Q( ∂∂z )x into

d

dt
H =

1

2

∫ b

a

(
∂x

∂t
(z)

)>
Qx(z) + x>(z)Q

∂x

∂t
(z)dz (38)

Second, notice that (32) expresses the following integration
by parts identity for q(z) := Qx(z)∫ b

a

(
J ( ∂∂z (z)q(z)

)>
q(z) + q>(z)

(
J ( ∂∂z q(z)

)
dz

=
∫ b
a

∂
∂z

[
(Z( ∂∂z )q(z))>ΣZ( ∂∂z )q(z))

]
dz

= 2
[
e∂(z)>f∂(z)

]b
a
,

(39)

where for the last equality we substituted (35). Taken to-
gether this results in (37).

Since H has dimension of energy, the product of the vec-
tors f∂ , e∂ has dimension of power. Therefore the elements
of f∂ , e∂ define power boundary variables.

In case Q( ∂∂z ) is a true matrix differential operator (not
equal to a constant matrix), other boundary variables arise.
Since Q(s) = Q>(−s) the two-variable polynomial expres-
sion Q(η)−Q>(ζ) is zero for ζ + η = 0. Therefore

Q(η)−Q>(ζ) = (ζ + η) Γ(ζ, η) (40)

for some two-variable polynomial matrix Γ(ζ, η), which
is skew-symmetric by skew-symmetry of Q(η) − Q>(ζ).
Hence, one factorizes

Γ(ζ, η) = G>(ζ) ∆G(η) (41)

for some polynomial matrix G(s) and invertible skew-
symmetric matrix ∆, which we can take to be in the
canonical form

∆ =

[
0 −I
I 0

]
(42)

Partitioning accordingly G(s) =

[
Gχ(s)
Gε(s)

]
, one defines the

boundary variables[
χ∂

ε∂

]
:=

[
Gχ( ∂∂z )

Gε(
∂
∂z )

]
x, (43)

to be evaluated at the boundary points a, b. These boundary
variables are of a different nature than the ones defined in
(35), and lead to a different form of power balance. First,
one needs to extend the definition of the Hamiltonian H as
compared with the expression (36). In fact, H is defined as

the quadratic functional, cf. (24), corresponding to the two-
variable symmetric polynomial matrix

H(ζ, η) := 1
2

(
Q(η) +Q>(ζ)

)
+ 1

2 (ζ + η)
(
G>χ (ζ)Gε(η) +G>ε (ζ)Gχ(η)

) (44)

Explicitly,

H(x) =
1

2

∫ b

a

x>Q(
∂

∂z
)x dz +

1

2

[
G>χ (

∂

∂z
)x ·Gε(

∂

∂z
)x

]b
a

(45)
Note that since H(−s, s) = Q(s), the variational derivative
of H(x) is the function Q( ∂∂z )x, as required. One obtains
the following power balance, extending (37).

Theorem 4.2: Consider the Hamiltonian system (17) with
Hamiltonian H defined by (45). Then

d

dt
H =

[
e>∂ f∂ + ε>∂

∂

∂t
χ∂

]b
a

, (46)

where χ∂ , ε∂ are the boundary variables defined in (43), and
f∂ , e∂ are the boundary variables as defined in (35).

Proof: By the definition of H in (45)

d
dtH = 1

2

∫ b
a

(
x>Q( ∂∂z )∂x∂t + ∂x

∂t

>
Q( ∂∂z )x

)
dz+

1
2

[(
Gχ( ∂∂z )x

)> ·Gε( ∂∂z )∂x∂t +
(
Gε(

∂
∂z )x

)> ·Gχ( ∂∂z )∂x∂t

]b
a

(47)
Furthermore, using the ’integration by parts’ properties of
the matrix differential operator Q( ∂∂z ), cf. (40), (41), (42),
one obtains

x>Q( ∂∂z )∂x∂t = ∂x
∂t

>
Q( ∂∂z )x+

∂
∂z

(
(Gχ( ∂∂z )x)> ·Gε( ∂∂z )∂x∂t − (Gε(

∂
∂z )x)> ·Gχ( ∂∂z )∂x∂t

)
(48)

Substituting into (47) then yields

d

dt
H =

∫ b

a

∂x

∂t

>
Q(

∂

∂z
)x dz +

[
G>ε (

∂

∂z
)x ·Gχ(

∂

∂z
)
∂x

∂t

]b
a

(49)
Permuting in the last term spatial and time derivatives, and
using the properties of the matrix differential operator J ( ∂∂z )
leading to the power boundary variables f∂ , e∂ (see the
computation resulting in (37)), one finally obtains (46).

Since d
dtH has dimension of power, the product of the

variables χ∂ and ε∂ has dimension of energy. Thus χ∂ , ε∂
are called energy boundary variables.

All this leads to the following definition.
Definition 4.3 (pH boundary control system): The linear

port-Hamiltonian boundary control system corresponding to
(17) is obtained by supplementing (17) with the power
boundary variables (35) resulting from J ( ∂∂z ), and the
energy boundary variables (43) corresponding to Q( ∂∂z ), all
evaluated at the boundary points a, b. The Hamiltonian H is
given by (45), and satisfies the power balance (46).

Example 4.4: Let us illustrate the developed theory on
the two Hamiltonian formulations of the linear elastic rod

2712



discussed before in Section II. Consider JI as given in the
first Hamiltonian formulation (4) of the elastic rod. Then

J>I (ζ)+JI(η) = (ζ+η)

0 0
0 1
1 0

[0 1

1 0

][
0 0 1

0 1 0

]
︸ ︷︷ ︸

Z

(50)

Hence the power boundary variables are given as[
f∂

e∂

]
=

[
0 0 1

0 1 0

]
k 0 0

0 κ 0

0 0 1
µ


︸ ︷︷ ︸

Q


u

ε

p

 =

[
p
µ

κε

]
,

which are the velocity and the stress. On the other hand, in

the formulation (13), QII(s) =

[
k − κs2 0

0 1
µ

]
. Hence

QII(η)−Q>II(ζ) =

[
κ(ζ2 − η2) 0

0 0

]

= (ζ + η)

[
κ(ζ − η) 0

0 0

]

=

[
1 κζ

0 0

][
0 −1

1 0

][
1 0

κη 0

]
(51)

Thus [
χ∂

ε∂

]
=

[
1 0

κ ∂
∂z 0

][
u

p

]
=

[
u

κ∂u∂z

]
(52)

Note that the second boundary variable ε∂ is equal to the
stress κ∂u∂z , and thus happens to be equal to the boundary
variable e∂ in the first Hamiltonian formulation. On the other
hand, the boundary variable χ∂ = u is the displacement, in
contrast with the boundary variable f∂ = p

µ (velocity).
The resulting Hamiltonian H defined in (45) is computed

by considering the two-variable polynomial matrix, cf. (44),

H(ζ, η) = 1
2

[
k − κη2 0

0 1
µ

]
+ 1

2

[
k − κζ2 0

0 1
µ

]

+ 1
2 (ζ + η)(

[
1

0

] [
κη 0

]
+

[
κζ

0

] [
1 0

]
)

= 1
2

[
2k − κ(ζ2 + η2) 0

0 2
µ

]
+ 1

2

[
κ(ζ + η)2 0

0 0

]

=

[
k + κζη 0

0 1
µ

]
(53)

This yields the Hamiltonian HII already given in (8).

V. EQUIVALENCE OF HAMILTONIAN
FORMULATIONS

The example of the linear elastic rod shows that there may
be different Hamiltonian formulations of the same dynamics
(17), leading to different sets of boundary variables, and thus
to different port-Hamiltonian boundary control systems. This
raises the question of equivalence, and the possibilities of
transforming one Hamiltonian formulation into another.

Let us start from the skew-symmetric polynomial matrix
J (s). Using a similar line of reasoning as in [17], but
for the skew-symmetric instead of the symmetric case, one
associates to J (s) the two-variable polynomial matrix

Φ(ζ, η) :=
1

2
(J(η)− J>(ζ)) (54)

Since J (s) = −J>(−s), it follows that Φ(−s, s) =
J(s) and, furthermore, that Φ(ζ, η) is skew-symmetric. This
means that the coefficient matrix Φ̃ is skew-symmetric, and
hence for some polynomial matrix W (s)

J (s) = Φ(−s, s) = W (s)J̃W>(−s), J̃ :=

[
0 Ik
−Ik 0

]
,

(55)
where J̃ is the standard symplectic matrix. It follows that
the subspace of functions of the spatial variable z that are
in the image of the differential operator W ( ∂∂z ) is invariant
under the dynamics. The dynamics restricted to this invariant
subspace of functions x = W ( ∂∂z )x̃ is generated by

˙̃x = J̃ Q̃(
∂

∂z
)x̃, (56)

with Q̃(s) := W>(−s)Q(s)W (s). Since J̃ is a constant
symplectic matrix this is a symplectic Hamiltonian system
as in the symplectic formulation (13) of the elastic rod.

Conversely, start from the symmetric polynomial matrix
Q(s), where we make the additional assumption (motivated
by impedance passivity) that the Hermitian matrices Q(iω)
satisfy Q(iω) ≥ 0 for all ω ∈ R. Then it is well-known from
spectral factorization theory, see e.g. [7], that there exists a
polynomial matrix V (s) such that

Q(s) = V >(−s)V (s) (57)

Now define the new state vector x̃ := V ( ∂∂z )x. Then by
substituting Q( ∂∂z ) = V >(− ∂

∂z )V ( ∂∂z ) it follows that

˙̃x = V (
∂

∂z
)J (

∂

∂z
)V >(− ∂

∂z
)V (

∂

∂z
)x = J̃ (

∂

∂z
)x̃, (58)

where J̃ (s) := V (s)J (s)V >(−s) is the new J -matrix.
Summarizing we obtain

Proposition 5.1: Consider a Hamiltonian system (17). It
can be always transformed into a Hamiltonian system with J
equal to a symplectic matrix. In particular, any Hamiltonian
system (17) can be derived from a variational principle (15).
Conversely, if Q(iω) ≥ 0 for all ω ∈ R, then the Hamiltonian
system (17) can be transformed into a Hamiltonian system
with Q = I .

Example 5.2: Consider the elastic rod (1) with its Hamil-
tonian formulations (4) and (13). Then

W (s) =

1 0
s 0
0 1

 , V (s) =

[√
k +
√
κs 0

0 1√
µ

]
(59)

Note that x̃ := V ( ∂∂z )x transforms (13) into a system with
two-dimensional state function, with first component given
by
√
ku+

√
κ∂u∂z (weighted combination of displacement and
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strain). Alternatively, the Hamiltonian formulation (4), with
Q scaled to the identity matrix, is obtained by considering

V ′(s) =


√
k 0√
κs 0
0 1√

µ

 , (60)

still satisfying V ′>(−s)V ′(s) = QII(s).

VI. CONTROL BY INTERCONNECTION VIA
ENERGY PORTS

Although control by interconnection of physical systems
is typically performed through the power ports of the system,
see e.g. [6], it can be done through the energy ports as well.
In fact, traces of this can be already found in [9]. In the
context of infinite-dimensional Hamiltonian systems (17) it
can be illustrated as follows. Consider a Hamiltonian system
(17) with energy boundary variables χ∂ , ε∂ as defined in
(43). For simplicity, denote χa := χ∂(a), χb := χ∂(b) and
εa := ε∂(a), εb := ε∂(b). Now consider the feedback

εb = − ∂P
∂χb

(χb) (61)

for some function P (χb). Then the closed-loop port-
Hamiltonian boundary control system can be seen to satisfy

d

dt

(
H(x) + P (Gχ(

∂

∂z
)x(b))

)
=
[
e>∂ f∂

]b
a
−ε>a

d

dt
χa (62)

Thus we have effectively shaped the Hamiltonian H of the
system by an additional (boundary) energy term P (χb).

Instead of the static feedback (61), we could also consider
a controller system that is a finite-dimensional input-output
Hamiltonian system with dissipation, as defined in [10], [11],

ẋc = [J(xc)−R(xc)]
(
∂Hc

∂xc
(xc)− ∂C>

∂xc
(xc)uc

)
,

yc = C(xc),
(63)

with controller state xc, where the matrices J(xc), R(xc)
satisfy J(xc) = −J>(xc), R(xc) = R>(xc) ≥ 0. Intercon-
nection to the Hamiltonian system (17) via the energy port
at boundary point b, using the interconnection

εb = yc, uc = χb, (64)

results in a closed-loop system with total Hamiltonian

H(x) +Hc(xc)− C(xc)
>Gχ(

∂

∂z
)x(b), (65)

where H(x) is defined in (45).
Further research is needed to explore the scope of control

by interconnection using energy ports; see [10] for initial
results in the finite-dimensional case.

VII. CONCLUDING REMARKS

Although we confined ourselves in this paper to the exam-
ple of the elastic rod, it is obvious that the existence of dif-
ferent Hamiltonian representations occurs in other physical
domains as well. For instance, the Hamiltonian formulations
of the transmission line, as detailed in [11], are completely

analogous to those of the elastic rod for k = 0. Furthermore,
the derivation of different sets of power and energy port
variables has already been explored in [1] for the formulation
of beam models such as the Timoshenko and Euler-Bernoulli
model. In this reference also use is made of the notion of
Stokes-Lagrange structures as introduced in [4], see also
[16]. (Stokes-Lagrange structures generalize formally self-
adjoint matrix differential operators, just like Lagrangian
subspaces generalize symmetric linear mappings.) Further
research is needed for the (non-trivial) extension of the
developed theory from one-dimensional spatial domains to
higher-dimensional spatial domains, for example in case of
Maxwell’s equations on a bounded domain in R3. Finally,
an important extension concerns the generalization from
quadratic Hamiltonians as treated in the present paper to
general Hamiltonians depending on the state variables and
their spatial derivatives; see [8] for previous related work.
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