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Abstract— In this paper, we consider the problem of output
bounded controller design for a parallel-flow heat exchanger
described by 2× 2 coupled linear hyperbolic partial differen-
tial equations (PDEs) of balance laws. We aim to drive the
internal fluid outlet temperature to track a reference trajectory
by manipulating the external fluid velocity. Due to physical
limitations, this manipulated variable has to be bounded to
avoid a laminar regime. Consequently, the control problem
becomes bounded and bilinear. Based on the set-invariance
concept and the Lyapunov’s stability theory, first, we design a
bounded state feedback controller. Then, since only boundary
measurements are available, we synthesize an output feedback
controller, and demonstrate the exponential stability of the
closed-loop system. Finally, simulation results are provided to
illustrate the performance of the proposed control technique.

I. INTRODUCTION

Heat exchangers (HEXs) are thermal devices that became

ubiquitous in many industries where thermal energy is ex-

changed between two or many fluid streams. To name a

few, refineries, power stations, and air conditioning are some

examples where HEXs play a major role (see e.g. [?], [?]).

They are employed both in heating and cooling processes

and are very important in reducing energy consumption. De-

pending on the fluids flow directions, they can be described

either as parallel-flow, counter-flow, or cross-flow HEXs. In

this work, we are interested in tubular parallel-flow HEXs.

They consist of a fluid circulating inside an internal tube

with a constant velocity (flow rate) and a non-condensing

vapour fluid flowing inside an external tube (or jacket). Both

fluids move in the same direction, and heat is thus transferred

through the internal tube’s wall.

From a theoretical viewpoint, HEXs belong to the realm

of distributed parameter systems (DPSs), and to improve

their efficiency, we have to account for their spatio-temporal

nature. In the literature, their dynamics can be modeled

by a 2× 2 hyperbolic PDE system of balance laws. These

PDEs describe many physical phenomena, e.g., road traffic,

hydrodynamic channel flows, and oil drilling. As a result,

exhaustive research work was dedicated to the control prob-

lem of these systems. In parallel-flow HEXs, the controlled

variable is the outlet temperature of the internal fluid, and the

objective is to track a predefined reference trajectory. This

can be achieved either by manipulating the inlet temperature

of the external fluid or its velocity. Accordingly, this leads

to either a boundary or a bilinear control problem.
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In the control community, much research was dedicated

to the boundary control problem of hyperbolic PDEs using

mainly the backstepping method e.g., [?] (and references

therein) or optimal control e.g., [?]. However, many physical

processes, like HEXs, chemostats, and traffic flow can be

manipulated through the fluid velocity (see e.g., [1] and

references therein). In practice, this is more efficient re-

garding energy consumption and simplicity. However, from

a theoretical viewpoint, this is more challenging since the

control problem becomes bilinear and constrained.

Research work on constrained control of PDEs dates back

to the work of [2] and [3]. In those studies, input saturation

was expressed as a bound on the state norm. Later, pointwise

saturation in PDEs was handled using linear and bilinear

matrix inequalities (LMIs) [4]. However, in these papers, the

PDE operator was independent of the control input. Thus,

these results cannot handle control problems in which the

manipulated variable appears in the PDE operator itself, as in

the case of parallel-flow HEXs . On the other hand, various

techniques exist to tackle the problem of saturated control

in finite-dimensional systems [?], [?], [?] (and references

therein). However, the already mentioned methods either

rely on a priori knowledge of the model or use algebraic

solutions, and therefore, are difficult to apply on DPSs.

In this paper, we investigate the problem of bounded

bilinear controller design of a 2×2 hyperbolic PDE system

of balance laws. To the extent of the author’s knowledge,

bounded bilinear control of such models, where the input de-

fines the PDE operator, are less investigated in the literature,

especially in the late lumping framework. In our proposed

control approach, as in [5], the key concept is to use the

L1−norm of the distributed tracking error as the controlled

variable instead of the outlet tracking error. Also, inspired

by the work of [6], we make use of the application of the

set-invariance concept in control (see e.g. [?]) to develop

feasibility conditions that guarantee the boundedness of the

control law. The resulting controller needs the distributed

state profiles, which are not available because only bound-

ary measurements are available. Therefore, we develop a

boundary state observer based on the Lyapunov approach

as in [7]. Afterward, we prove the stability of the system

in closed-loop and the convergence of the tracking error

in the Lyapunov framework. We also validate the proposed

regulator, in simulation, on a system modeling a parallel-flow

HEX.

Notation. Time and space dependencies are dropped when-

ever it is necessary to alleviate the notation. The symbols

∂t and ∂x express time and space derivatives, respectively.
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Lp(Ω) (Ω =]0, 1]) is the Lebesgue space of order-p. Hs(Ω)
is the Sobolev space of functions on Ω whose derivatives up

to order s are in L2(Ω). Ξ(I,Hs(Ω)) is the space of functions

f : Ξ(I) → Hs(Ω). The notation Ti,e signifies that the

statement under investigation is valid for both Ti and Te. Also,

Ti,e ∈ [T i,e, T̄i,e] suggests that T i,e(x, t)≤ Ti,e(x, t)≤ T̄i,e(x, t)
for x ∈]0,1] and t ≥ 0. For readability, throughout this work

we adopt the following notation ∂tTi,e|Ti,e=T •
i,e

:= ∂tTi,e when

Ti,e = T •
i,e.

II. PROBLEM FORMULATION

Based on energy balance laws and some standard simpli-

fications (see [?]), the temperature’s dynamics of a parallel-

flow heat exchanger can be described by the following

system of hyperbolic PDEs.






∂tTi =−ui(t)∂xTi(x, t)+αi (Te(x, t)−Ti(x, t)),
∂tTe =−ue(t)∂xTe(x, t)+αe (Ti(x, t)−Te(x, t)),
Ti(0, t) = gi(t), Te(0, t) = ge(t),
Ti(x,0) = T 0

i (x), Te(x,0) = T 0
e (x).

(1)

where (x, t) are space and time variables. Ti, Te are re-

spectively the internal and external fluid’s temperatures. The

internal and external fluid velocities are denoted by ui > 0

and ue > 0, respectively. (αi, αe)> 0 are thermal coefficients

that depend on the fluids and tubes’ characteristics. The third

and fourth lines of system (1) denote the boundary and initial

conditions, respectively.

Equation (1) describes heat transport in a parallel-flow

HEX where the external (internal) fluid is used to either

heat or cool the internal (external) fluid. Without loss of

generality, in the present work, we investigate the heating

process of the internal fluid using the external one. Therefore,

the following assumptions are considered.

Assumption 2.1: h1- The parameters αi,e are positive,

the fluid velocities ui,e ∈ L∞(R+) are strictly pos-

itive, the initial conditions are such as (T 0
i ,T

0
e ) ∈

(L2(]0,1]))2 are positive, the boundary conditions are

(gi,ge) ∈ (L2(]0,∞]))2 are also positive, and the zero-

compatibility condition (see [8]) is satisfied.

h2- The boundary and initial conditions are chosen such

that ge(t) > gi(t) > 0, ∀t ≥ 0 and T 0
e (x) > T 0

i (x) >
0, ∀x ∈ [0,1]. To ensure a laminar flow regime the fluid

velocities should be lower bounded, whereas due to

the pumps’ physical limitations, they should be upper-

bounded, thus 0 < ui,emin
≤ ui,e ≤ ui,emax

< ∞.

According to [9] assumption 2.1-h1 ensures that system

(1) admits a unique exponentially stable solution (Ti,Te) ∈
C(0,∞,H1(Ω)). Moreover this solution is positive. Whereas,

assumption 2.1-h2 guarantees that ∂xTe ≤ 0 and ∂xTi ≥ 0

(this can be directly inferred from the steady-state solution

of equation (1)).

In the present work, we consider that αi,e and 0 < uimin
<

ui < uimax are known constants, and the external fluid velocity

ue is the manipulated variable (control input). We aim to

control the outlet internal temperature Ti(1, t) to track a

reference trajectory. The measurements are located at the

tubes’ inlets and outlets as follows

y(t) = [Ti(0, t) Te(0, t) Ti(1, t) Te(1, t)]
T (2)

III. BOUNDED BILINEAR CONTROL DESIGN

Instead of using the tracking error as the controlled vari-

able, to simplify the controller design, we select the function

γ which is the L1−norm of the external and internal tracking

errors as the controlled variable, i.e.,

γ(t)=

∫ 1

0
|T ∗

e (x, t)−Te(x, t)|dx+

∫ 1

0
|T ∗

i (x, t)−Ti(x, t)|dx. (3)

where T ∗
e and T ∗

i denote the target external and internal

temperature profiles. Note that since we are interested in

solutions in C(0,∞,H1(Ω)), then from the embeddedness of

H1(Ω) in C(Ω), the convergence of the norm γ(t) implies the

point-wise convergence of the distributed tracking error, and

thus the convergence of the internal fluid’s outlet tracking

error.

Let us consider the following control input

ue(t) =







uemin
if ρ(t)≤ uemin

,

ρ(t) if uemin
< ρ(t)< uemax ,

uemax if ρ(t)≥ uemax ,

(4)

where






ρ(t) = φ(t;Te)
−1

[

+
∫ 1

0
sgn(δTe)(−∂tT

∗
e +αe (Ti −Te))dx

+
∫ 1

0
sgn(δTi)(−∂tT

∗
i +∂t Ti)dx−kpγ(t)

]

,

φ(t;Te) =

∫ 1

0
sgn(δTe)∂xTe dx,

(5)

and

{
δTi(x, t) = T ∗

i (x, t)−Ti(x, t),
δTe(x, t) = T ∗

e (x, t)−Te(x, t),
(6)

while the gain kp > 0. Note that if the control input ue was

unbounded, then by selecting ue(t) = ρ(t), we can ensure,

using straightforward computations, that γ̇(t) ≤ −kp γ(t).
Therefore, the tracking error converges exponentially to zero.

However, since ue is bounded then the direct method to

handle input constraints is to use the saturation operator

as in equations (4)-(5). On the other hand, input saturation

hinders the nominal stabilization properties of the controller,

and therefore we need to specify the region of attraction

under which the system’s closed-loop desired behavior is

guaranteed. In the following assumption, we state feasibility

conditions on the choice of the target temperature profiles

T ∗
i,e.

Assumption 3.1: Desired temperature profiles T ∗
i,e are cho-

sen such as






uemin
≤

1

(T ∗
e (1, t)−T ∗

e (0, t))

[∫ 1

0

(

−∂tT
∗

e +αe (T
∗

i −T ∗
e )

)

dx

+

∫ 1

0

(

−∂tT
∗

i −αi (T
∗

i −T ∗
e )−ui ∂xT ∗

i

)

dx
]

≤ uemax
.

(7)

Assumption 3.1 expresses that the desired profile T ∗
e (and

thus T ∗
i ) must be chosen such that they satisfy equation

(1) and the control input generating them satisfies the input
constraints.
By a continuity argument we can ensure that since the
pair (T ∗

e ,T
∗

i ) is continuous, then there exist temperature
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intervals [T i,e, T̄i,e)] such that T i,e < T ∗
i,e < T̄i,e, (T i,e, T̄i,e) ∈

(C(0,∞,H1(Ω)))2 and (T i,e, T̄i,e) satisfy equation (1). More-
over, the following inequality holds for all Te ∈ [T e, T̄e] and
Ti ∈ [T i, T̄i]







uemin
≤ φ(t;Te)

−1
[∫ 1

0
sgn(δTe)(−∂tT

∗
e +αe (Ti −Te))dx

+
∫ 1

0
sgn(δTi)(−∂tT

∗
i +∂t Ti)dx−kpγ(t)

]

≤ uemax
,

φ(t;Te) =
∫ 1

0
sgn(δTe)∂xTe dx.

(8)

Inequality (8) states that, from a continuity argument, we

can always find a region around the desired profiles T ∗
i,e for

which the unbounded control law ρ(t) satisfies the control

constraints. This region– described by inequality (8)– defines

the region of attraction.

Remark III.1 From equation (1), in a heating process of

the internal fluid using the external one, for a fixed ui, when

the external fluid velocity ue approaches its maximum value

uemax then it generates a temperature profile Ti that is close

to its maximum profile (and Te tends towards its minimum

profile), and vice versa when it reaches its minimum value.

This statement can be verified by analyzing the steady-state

solution of equation (1) (for space limitation, we do not

investigate it further).

Remark III.1 is important especially in analyzing the

stabilizing properties of the control input (4)-(5) in the

following proposition.

Proposition 3.2: Consider system (1). Provided that as-

sumptions 2.1 and 3.1 are fulfilled then

1- The domain ]0, T̄e]×]0, T̄i] is positively invariant, where

T̄i,e satisfy assumption 3.1.

2- The tracking error of the closed-loop system using

control law (4)-(5) is exponentially stable (relatively to

the domain ]0, T̄e]×]0, T̄i]).
Proof: First, note that ∂tTi,e|Ti,e=0 = 0. Based on

assumption 2.1 we have ∀t ≥ 0 : gi,e(t)> 0 and ∀x ∈ [0,1] :

T 0
i,e(x)> 0, then Ti,e(x, t)> 0, ∀t ≥ 0,∀x ∈ [0,1].

When Ti = T̄i then ue = min(uemax ,ρ) > 0, Te = Te, and
from equation (1) we get

∫ 1

0
∂tTe|Te=T e

dx =−min(uemax
,ρ)

∫ 1

0
∂xT e dx+αe

∫ 1

0
(T̄i −T e)dx

= min(uemax
,ρ) [T e(0, t)−T e(1, t)]

︸ ︷︷ ︸

>0

+αe

∫ 1

0
(T̄i −T e)dx.

(9)

Also we have sgn(δTe)
∣
∣
Te=T e

= 1 and sgn(δTi)
∣
∣
Ti=T̄i

=−1.

From equation (8), by replacing Te by T e and consequently
Ti by T̄i, after straightforward simplifications, we know that

uemax
≥

1

[T e(1, t)−T e(0, t)]

[∫ 1

0

(

−∂tT
∗

e −αe (T̄i −T e)
)

dx

+

∫ 1

0

(

∂tT
∗

i −∂t T̄i

)

dx−kpγ(t)
]

.

(10)

By replacing inequality (10) in equation (9) we get

∫ 1

0
∂tTe|Te=T e

dx ≥−
[∫ 1

0

(

−∂tT
∗

e −αe (T̄i −T e)
)

dx

+
∫ 1

0

(

∂tT
∗

i −∂t T̄i

)

dx−kpγ(t)
]

+αe

∫ 1

0
(T i − T̄e)dx.

(11)

By rearranging the terms in the previous inequality (11), we

obtain

∫ 1

0
(∂tT e − ∂tT

∗
e )dx+

∫ 1

0
(∂tT

∗
i − ∂t T̄i)dx ≥ kpγ(t), (12)

However, when Ti = T̄i and Te = T e, then

γ(t) =

∫ 1

0
(T ∗

e (x, t)−T e(x, t))dx+

∫ 1

0
(T̄i(x, t)−T∗

i (x, t))dx

and thus inequality (12) becomes

γ̇(t)≤−kp γ(t).

Also, if ue = ρ(t) then direct calculations lead to γ̇(t) =
−kp γ(t). Accordingly, we conclude that when the temper-

ature profile Ti reaches T̄i then Ti,e converges exponentially

towards T ∗
i,e.

On the other hand, when Ti approaches its lower bound
T i, then Te becomes close to T̄e and ue = max(uemin

,ρ)> 0.

In this case, sgn(δTe)
∣
∣
Te=T̄e

= −1 and sgn(δTi)
∣
∣
Ti=T i

= 1.

Moreover,

∫ 1

0
∂tTe|Te=T̄e

dx =−max(uemin
,ρ)

∫ 1

0
∂xT̄e dx+αe

∫ 1

0
(T i − T̄e)dx

= max(uemin
,ρ) [T̄e(0, t)− T̄e(1, t)]

︸ ︷︷ ︸

>0

+αe

∫ 1

0
(T i − T̄e)dx.

(13)

By replacing Te by T̄e and Ti by T i, from equation (8) we
infer that

uemin
≤

1

[T̄e(0, t)− T̄e(1, t)]

[∫ 1

0
−
(

−∂tT
∗

e +αe (T i − T̄e)
)

dx

+

∫ 1

0

(

−∂tT
∗

i +∂t T i

)

dx−kpγ(t)
]

.

(14)

Therefore, if ue = uemin
by replacing inequality (14) in

equation (13) we infer that

∫ 1

0
∂tTe|Te=T e

dx ≤
[∫ 1

0
−
(

−∂tT
∗

e +αe (T i − T̄e)
)

dx

+
∫ 1

0

(

−∂tT
∗

i +∂tT i

)

dx−kpγ(t)
]

+αe

∫ 1

0
(T i − T̄e)dx.

(15)

Hence

∫ 1

0

(

∂tT e −∂tT
∗

e

)

dx+
∫ 1

0

(

∂tT
∗

i −∂tT i

)

dx ≤−kpγ(t) (16)

and

γ̇(t)≤−kp γ(t).

If ue = ρ then straightforward computations lead to γ̇(t) ≤
−kp γ(t). In conclusion, we have proved that the temperatures

Ti,e are trapped in the domain ]0, T̄e]×]0, T̄i], i.e., this domain

is positively invariant, and that the L1− norm of the tracking

error is exponentially stable. From the embeddedness of

H1(Ω) in C(Ω), we conclude that the pointwise tracking

error is also exponentially converging to zero (relatively to

the domain ]0, T̄i]×]0, T̄e]).
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IV. STATE ESTIMATION

The control law presented in (4)-(5) requires the exact

knowledge of the distributed profiles of both the internal

and external temperatures Ti and Te. However, only boundary

measurements are available. Therefore, in this section, we

develop an estimator able to reconstruct the distributed

profiles in finite time. The observability of system (1)-(2)

was established in the work of [?].

Let T̂i,e denote the estimated temperature profiles of Ti,e,

respectively. We consider the estimator given by the follow-

ing system of equations:






∂t T̂i =−ui(t)∂xT̂i(x, t)+αi (T̂e(x, t)− T̂i(x, t)),
∂t T̂e =−ue(t)∂xT̂e(x, t)+αe (T̂i(x, t)− T̂e(x, t)),
T̂i(0, t) = gi(t)−κi ∆Ti(1, t),
T̂e(0, t) = ge(t)−κe ∆Te(1, t),
T̂i(x,0) = T̂ 0

i (x), T̂e(x,0) = T̂ 0
e (x).

(17)

where κi,e are the tuning parameters and ∆Ti,e = T̂i,e − Ti,e

are the state estimation errors. Their dynamics are computed

using equations (1) and (17) and are given by






∂t∆Ti =−ui(t)∂x∆Ti(x, t)+αi (∆Te −∆Ti),
∂t∆Te =−ue(t)∂x∆Te +αe (∆Ti −∆Te),
∆Ti(0, t) =−κi ∆Ti(1, t),
∆Te(0, t) =−κe ∆Te(1, t),
∆Ti(x,0) = T̂ 0

i (x)−T 0
i (x), ∆Te(x,0) = T̂ 0

e (x)−T 0
e (x).

(18)

Proposition 4.1: Consider system (1) under assumptions

2.1 and 3.1. Provided that the fluid ui and ue are positive

and bounded, then if the tuning parameters κi and κe are

selected such that 0 < κi,e < 1 then the L2−norm of the

state estimation errors ∆Ti,e is globally exponentially stable.

Proof: The proof is based on the Lyapunov’s stability

theory and inspired from the work of [7]. Let V1(t) be a

Lyapunov candidate function defined by

V1(t) =

∫ 1

0
e−σx

( 1

αi

(∆Ti)
2 +

1

αe

(∆Te)
2
)

dx. (19)

Using (18) and straightforward simplifications the derivative
of (19) is computed as follows

V̇1 = 2

∫ 1

0
e−σx

(−ui

αi
∆Ti ∂x∆Ti −

ue

αe
∆Te ∂x∆Te − (∆Te −∆Ti)

2
)

dx

≤−
σ ui

αi

∫ 1

0
e−σx (∆Ti)

2 dx−
σ ue

αe

∫ 1

0
e−σx (∆Te)

2 dx

−
ui

αi
(e−σ −κi)(∆Ti(1, t))

2 −
ue

αe
(e−σ −κe)(∆Te(1, t))

2
,

(20)

where the inequality in (20) is achieved using integration by

parts, and by replacing the boundary conditions given in (18)

while assuming that assumption 2.1 is fulfilled, and ui,e are

positive. Since 0 < κi,e < 1 then there exists always a σ such

that (e−σ −κi,e)> 0. Accordingly, inequality (20) becomes

V̇1 ≤−
σ ui

αi

∫ 1

0
e−σx (∆Ti)

2 dx−
σ ue

αe

∫ 1

0
e−σx (∆Te)

2 dx,

≤−σ min(ui, ue)V1(t). (21)

Therefore, we conclude that the L2−norm of the state

estimation errors are globally exponentially stable.

V. OUTPUT-FEEDBACK CONTROL

In this section, we demonstrate that the output-feedback

controller obtained by substituting Ti,e by its estimate T̂i,e in

(4)-(5) ensures the stability of the closed-loop system and

guarantees the asymptotic convergence of the tracking error.

Let the bounded output-control law be formulated as follows.

ue(t) =







uemin
if ρ̂(t)≤ uemin

,

ρ̂(t) if uemin
< ρ̂(t)< uemax ,

uemax if ρ̂(t)≥ uemax ,

(22)

where






ρ̂(t) = φ(t; T̂e)
−1

[∫ 1

0
sgn(δ T̂e)

(

−∂tT
∗

e +αe (T̂i − T̂e)
)

dx

+
∫ 1

0
sgn(δ T̂i)

(

−∂tT
∗

i −αi (T̂i − T̂e)−ui ∂xT̂i

)

dx−kp γ̂(t)
]

,

φ(t; T̂e) =
∫ 1

0
sgn(δ T̂e)∂xT̂e dx,

(23)

and







δ T̂i,e(x, t) = T ∗
i,e(x, t)− T̂i,e(x, t),

γ̂(t) =
∫ 1

0

(

|δ T̂i(x, t)|+ |δ T̂e(x, t)|
)

dx.
(24)

A relationship between γ(t) and γ̂(t) can be formulated as

follows.

γ(t) =

∫ 1

0
|T ∗

i −Ti|dx+

∫ 1

0
|T ∗

e −Te|dx,

=

∫ 1

0
|T ∗

i − T̂i + T̂i−Ti|dx+

∫ 1

0
|T ∗

e − T̂e + T̂e −Te|dx

=
∫ 1

0
|δ T̂i +∆Ti|dx+

∫ 1

0
|δ T̂e +∆Te|dx (25)

where ∆Ti,e are the state estimation errors defined by equation

(18).

Considering that we can always find a constant

0 < wi,e < ∞ such that
∫ 1

0
|∆Ti,e|dx ≤ wi,e

∫ 1

0
(∆Ti,e)

2 dx,

and using the triangle inequality, equation (25) becomes

γ(t)≤

∫ 1

0
|δ T̂i|dx+

∫ 1

0
|∆Ti|dx+

∫ 1

0
|δ T̂e|dx+

∫ 1

0
|∆Te|dx,

≤ γ̂(t)+wi

∫ 1

0
(∆Ti)

2 dx+we

∫ 1

0
(∆Te)

2 dx,

≤ γ̂2(t)+ w̄i

∫ 1

0
e−σx(∆Ti)

2 dx+ w̄e

∫ 1

0
e−σx(∆Te)

2 dx.

(26)

For the third inequality in (26), from the boundedness of the

space interval [0,1], we can always find w̄i,e that satisfies it.

Inequality (26) states that the tracking error γ(t) > 0 is

bounded by γ̂(t) and ∆Ti,e. Accordingly, if we prove that

the right hand side of inequality (26) is asymptotically

stable then we can guarantee that the tracking error γ(t) is

also asymptotically stable. Note that since we have already

proved, in the previous section, that provided that the control

input ue(t) is positive, the state estimation error is exponen-

tially stable, it remains to analyze convergence properties of

γ̂(t) in closed-loop.
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Lemma 5.1: Provided that assumptions 2.1 and 3.1 are

satisfied, the control input ue(t) defined by equation (22)-

(23) ensures both the positive invariance of the domain

]0, T̄i]×]0, T̄e] and the exponential convergence of the track-

ing error γ̂(t) introduced in system (24) (relatively to the

domain ]0, T̄e]×]0, T̄i]) .

Proof: Due to space limitation, the proof of lemma 5.1

is sketched briefly.

First, note that, except for the boundary conditions, the state

observer in (17) is identical to the original model given in

system (1), and that ρ̂(t) is obtained by replacing Ti,e by

T̂i,e in equation (5). Therefore, if assumptions 2.1 and 3.1

are fulfilled, then for extreme cases when ue(t) = uemin
or

ue(t) = uemax the proof of lemma 5.1 is similar to the one

established for proposition 3.2. It remains to investigate the

case when ue(t) = ρ̂(t). Computing ˙̂γ(t) and replacing ue(t)
by ρ̂(t) results in ˙̂γ(t) =−kp γ̂(t). Thus, γ̂(t) is exponentially

stable, and this concludes the proof of lemma 5.1.

At this stage we can formulate the following theorem.

Theorem 5.2: Consider system (1)-(2), the observer (17)

and assume that assumptions 2.1 and 3.1 are satisfied. If the

control gain kp is positive then the observer-based controller

described by equations (22)-(23) ensures that

1- The domain ]0, T̄i]×]0, T̄e] is positively invariant.

2- The tracking error γ(t) and the L2−norm of the state es-

timation errors ∆Ti,e converge uniformly asymptotically

to zero relatively to ]0, T̄i]×]0, T̄e].
Proof: From lemma 5.1, we know that if assumptions

2.1 and 3.1 are satisfied then the domain ]0, T̄i]×]0, T̄e] is

positively invariant and that γ̂(t) is exponentially converging.

Let us introduce the following Lyapunov candidate func-

tion

V (t) = γ̂2(t)+ w̄i

∫ 1

0
e−σx(∆Ti)

2 dx+ w̄e

∫ 1

0
e−σx(∆Te)

2 dx.

(27)

Its derivative can be written as

V̇ ≤−2kp γ̂2(t)+min(w̄i, w̄e)V̇1,

≤−2kp γ̂2(t)−σ ,min(w̄i ui, w̄e ue)V1(t), (28)

where V1(t) is defined in (19) and we have employed

inequality (21). From this last inequality (28) we conclude

that

V̇ (t)≤−min(2kp,
w̄i σ ui

αi

,
w̄e σ ue

αe

)V (t). (29)

Therefore the control law (22)-(23) guarantee the exponential

stability of both γ̂ and ‖∆Ti,e‖2. As a result, from inequality

(26) we conclude that γ also is asymptotically stable (rela-

tively to the domain ]0, T̄i]×]0, T̄e]).

VI. SIMULATION RESULTS

To illustrate the performance of the proposed control strat-

egy in (22)-(23), the dynamic model of a parallel-flow heat

exchanger as in (1) is considered with αe =αi = 1, ui = 1 and

where the time and space variable are normalized. The input

ue bounds are , uemax = 20, uemin
= 0.5. All the parameters are
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Fig. 1: External T ∗
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i distributed target tem-

perature profiles
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Fig. 2: External ∆Te(x, t)(%) and internal ∆Ti(x, t)(%) state

estimation relative errors

dimensionless. Based on these constraints and on assumption

3.1’s requirements, the target temperature profiles T ∗
i and T ∗

e

are selected and depicted in figure 1. Implementation of the

system model in (1), the observer in (17) and the conroller

in (22)-(23) is carried out in Matlab/Simulink® using the

quadratic B-splines Galerkin method (see e.g. [10], [11]).

The observer tuning gains are κ1 = 0.8, κ2 = 0.5 and the

controller gain kp = 100. Note that since the control law

design was not based on Galerkin truncation, there is no

risk of spillover instabilities.

Figure 2 shows the distributed external ∆Te(x, t) and internal

∆Ti(x, t) state estimation errors. Since these errors do not

exceed 1%, at steady-state, then we can confirm that the

observer in equation (17) performs well and that the errors

converge in finite time.

To illustrate the performance of the controller, we plot the

outlet temperature Ti(1, t) and its relative tracking error in

figure 3. These plots show that the tracking error converges

rapidly and in finite-time. The error’s maximum amplitudes

is below 1% (at steady-state).

The control input ue(t) is presented in figure 4 (left panel)

and is clearly contained by the input upper and lower bounds,

i.e., uemin
< ue < uemax . In addition, from figure 4 (right panel),
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Fig. 4: Profiles of the control input u(t) and the average

tracking error γ(t)

the controlled variable γ(t) is rapidly converging and in finite

time.

VII. CONCLUSION

This work dealt with the problem of output-feedback

bounded bilinear control of 2×2 hyperbolic PDE systems of

balance laws. First, we selected the L1−norm of the tracking

error as the controlled variable that simplified the bilinear

control problem. Then using the set invariance concept, the

proposed control strategy is guaranteed to respect the input

constraints while achieving the control objectives. Since

only boundary measurements are available, we proposed a

boundary observer to reconstruct the distributed profiles.

After that, we demonstrated the stability of the closed-

loop system and the convergence of the tracking errors.

The results in the simulation section show the ability of

the proposed control technique to guarantee satisfactory

performances. Note that this work is not limited to parallel-

flow hyperbolic PDE systems but can be straightforwardly

applied to hetero-directional hyperbolic PDEs (as in cross-

flow heat exchangers). In future works, we intend to address

robustness issues related to unknown (or partially known)

parameters and external disturbances.

REFERENCES

[1] W. Gu, X. Chen, K. Liu, B. Zhang, Q. Chen, and C. Hui, “Retrofitting
of the heat exchanger network with steam generation in a crude oil
distillation unit,” Chemical Engineering & Technology, vol. 38, no. 2,
pp. 203–214, 2015.

[2] Z. Dong, B. Li, J. Li, D. Jiang, Z. Guo, X. Huang, and Z. Zhang,
“Passivity based control of heat exchanger networks with application
to nuclear heating,” Energy, vol. 223, p. 120107, 2021.

[3] P. Ascencio, A. Astolfi, and T. Parisini, “Backstepping PDE design:
A convex optimization approach,” IEEE Transactions on Automatic

Control, vol. 63, no. 7, pp. 1943–1958, 2018.
[4] X. Xu and S. Dubljevic, “Optimal tracking control for a class of

boundary controlled linear coupled hyperbolic PDE systems: Applica-
tion to plug flow reactor with temperature output feedback,” European

Journal of Control, vol. 39, pp. 21–34, 2018.
[5] I. Karafyllis, M. Malisoff, and M. Krstic, “Sampled-data feedback

stabilization of age-structured chemostat models,” in 2015 American

Control Conference, Chicago, Illinois, USA, July 1-3 2015.
[6] M. Slemrod, “Feedback stabilization of a linear control system in

Hilbert space with an a priori bounded control,” Mathematics of

Control, Signals, and Systems, vol. 2, no. 3, pp. 262–85, 1989.
[7] I. Lasiecka and T. Seidman, “Strong stability of elastic control systems

with dissipative saturating feedback,” Systems & Control Letters,
vol. 48, no. 3, pp. 243–252, 2003.

[8] A. Mironchenko, C. Prieur, and F. Wirth, “Local stabilization of an
unstable parabolic equation via saturated controls,” IEEE Transactions

on Automatic Control, vol. 66, no. 5, pp. 2162–2176, September 2020.
[9] S. Tarbouriech and M. Turner, “Anti-windup design: an overview of

some recent advances and open problems,” IET Control Theory &

Applications, vol. 3, no. 1, pp. 1–19, 2009.
[10] R. Antonelli and A. Astolfi, “Continuous stirred tank reactors: easy to

stabilise?” Automatica, vol. 39, no. 10, pp. 1817–1827, 2003.
[11] B. Zitte, B. Hamroun, D. Astolfi, and F. Couenne, “Robust control of

bilinear systems by forwarding: Application to counter current heat
exchanger,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 11 515–11 520,
2020.

[12] S. Mechhoud and T. M. Laleg-Kirati, “Bounded bilinear control of
coupled first-order hyperbolic PDE and infinite dimensional ODE in
the framework of PDEs with memory,” Journal of Process Control,
vol. 355, no. 2, pp. 827–848, 2019.

[13] F. Viel, F. Jadot, and G. Bastin, “Global stabilization of exothermic
reactors under input constraints,” Automatica, vol. 33, no. 8, pp. 1437–
1448, 1997.

[14] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, pp.
1747–1767, 1999.

[15] J. M. Coron, B. d’Andrea Novel, and G. Bastin, “A strict lyapunov
function for boundary control of hyperbolic systems of conservation
laws.” IEEE Transactions on Automatic Control, vol. 52, no. 1, pp.
2–11, 2007.

[16] W. Ray and B. Ogunnaike, Process Dynamics, Modeling and Control.
Oxford University Press, 1994.

[17] J. Rauch and F. J. Massey III, “Differentiability of solutions to
hyperbolic initial boundary value problems,” Transactions of the AMS.,
vol. 189, pp. 303–318, 1974.

[18] C. Z. Xu and G. Sallet, “Exact observability and exponential stability
of infinite-dimensional bilinear systems,” Math. Control Signals Syst.,
vol. 9, pp. 73–93, 1996.

[19] H. Sano, “Observability and reachability for parallel-flow heat ex-
changer equations.” IMA journal of Methematical Control and Infor-

mation, vol. 24, no. 1, pp. 137–147, 2007.
[20] C. De Boor, A practical guide to splines, N. Y. Springer, Ed. Applied

mathematics series, 1978, vol. 27.
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