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Abstract— This paper concentrates on the issues of stability
and stabilization for a class of switched linear systems with a
new class of switching signals in discrete-time domain. The
considered switching signals are of general random mode-
dependent sojourn-time (RMST) property. Compared with
the dwell-time switching or Markov chain often studied in
the literature, it is capable of describing the mode-dependent
sojourn-time consisting of a fixed part and a random part with
the known expectation. By fully considering the characteristics of
RMST, the criteria of stability and stabilization are derived for
the underlying systems. Further, the results are extended to the
asynchronously switched stabilizing control for RMST switched
systems. A numerical example is provided to demonstrate the
effectiveness and potential of the theoretical results.

I. INTRODUCTION

The past decades have witnessed increasing attention in the
era of nondeterministic switching [1]–[3], which is motivated
by their powerful capability in modeling complex switching
dynamics. The sequence of mode switching and the switching
instants in nondeterministic switched systems are usually
unknown. As a typical class of nondeterministic switching,
the dwell-time (DT) switching [4] have been extensively
studied in recent years [5]. An important subject on them is
to determine minimum admissible DT [6]. Once the switching
conflicts with the minimum value, the resulting closed-loop
system stability cannot be guaranteed anymore. Therefore, for
a given set of subsystems, it is significant to further obtain
more switching signals that ensure the system stability even
if the constraint on DT is not satisfied.

Unlike the DT switching, if the nondeterministic switching
is attached to a stochastic process, it can be regarded as
stochastic switching, i.e., Markov chain. However, as pointed
out in [7], the Markov chain is not suitable to describe the
cases where the mode switching occurs at least a fixed period
of time after the previous switching, while the cases can be
encountered in many applications [8], [9], etc. To generalize
the scope of stochastic switching, in [7], the sojourn-time of
each subsystem is divided into a fixed part and a random part,
on which the switching is described by transition probabilities.
It greatly impulses the studies on switched systems with
such switching signals [10]–[14]. However, a more practical
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case is that the random part of the sojourn-time is available
in the form of mathematical expectation, which covers the
switching above as a special case. Unfortunately, the problems
of stability and stabilization have not been fully investigated
for the switched system with sojourn-time expectation, which
motivates us for this work.

Moreover, on control synthesis problems of switched
systems, the switchings of system modes and controller modes
are commonly assumed to be synchronous [4-15]. However,
it is not practical due to the fact that it takes time to identify
the system mode and activate the corresponding controller,
which results in a time lag between the switchings of system
modes and controllers, i.e., asynchronous switching [15]. The
mode mismatch between the system and the controller may
degrade the system stability [16], [17]. Thus, studies on the
switched systems in the presence of asynchronous switching
with diverse switching signals have been available in [18],
[19]. However, it is worth mentioning that the problems of
asynchronously switched control for switched systems with
persistent sojourn-time expectation have almost not been
investigated so far.

In this paper, we are interested in dealing with the problems
of stability and stabilization for discrete-time switched
systems with a new class of switching signals. The main
contributions lie in the following several aspects:

1) The concept of random mode-dependent sojourn-time
(RMST) is proposed such that the restrictions of DT and
the Markov chain are relaxed.

2) The stability analysis is carried out for the underlying
systems, upon which the conditions on the existence of
the stabilizing controller are obtained.

3) The results are extended to RMST switched system with
asynchronous switching.

The remainder of the paper is organized as follows. Section
II represents the formulation of the considered systems and
the definition of RMST. In section III, the stability and
stabilization conditions are given for the switched systems
with RMST and asynchronous RMST switching, respectively.
An illustrative example is given in Section IV. Section V
concludes this paper.

Notations: In this paper, Rn refers to the n-dimensional
Euclidean space; Z and Z+ denote the set of integers
and non-negative integers, respectively; Z[a,b] denotes the
set {k ∈ Z|a ≤ k ≤ b}. E{·} stands for the math-
ematical expectation. For the complete probability space
(Ω,F ,Pr), Ω denotes the sample space, F represents the
σ-algebra of subsets of the sample space, and Pr is the
probability measure on F . P ≻ 0(⪰ 0) means that P is
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real symmetric and positive definite (semi-positive definite).
diag{a1, a2, · · · , an} represents the diagonal matrix with
diagonal elements a1, a2, · · · , an. We use ∗ as an ellipsis
for the terms that are induced by symmetry. The minimum
eigenvalue of positive definite matrix M is denoted by

φmin(M). Ξ (U, V, ρ,X, Y, Z) =

[
−X UY + V Z
∗ −ρX

]
is a

matrix function, where U, V,X, Y, Z are the constant matrices
with compatible dimensions and ρ is a non-zero constant.
The notation max(b1, b2, · · · ) defines a function that returns
the largest value from the provided terms b1, b2, · · · .

II. PRELIMINARIES AND PROBLEM FORMULATION

Fix the complete probability space (Ω,F ,Pr) and consider
a family of discrete-time switched linear systems:

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k) (1)

where the vectors x(k) ∈ Rnx and u(k) ∈ Rnu are the system
state and the control input, respectively; σ (k) is a piecewise
constant switching signal taking values from the index set
L = {1, · · · , N} with N being the number of candidate
subsystems. Throughout the paper, it is assumed that the
switching signal σ is unknown a priori to the controller but
its instantaneous value is available in real time.

In this paper, the switching signal is considered to be of
RMST property. To facilitate understanding the concept, the
following definition of mode-dependent dwell-time (MDT)
is first provided.

Definition 1: [5] Consider the switching instants k0, k1,
k2, · · · , ks, · · · with 0 = k0 < k1 < k2 < · · · < ks < · · · .
The positive constant τi is called the mode-dependent dwell-
time associated with the ith mode if for all s ≥ 0 such that
σ (k) = i for k ∈ [ks, ks+1), ks+1 − ks ≥ τi.

Unlike “dwell-time”, which describes the lower bound of
the running time of the subsystem, “sojourn-time” directly
defines the actual time interval between two consecutive
switchings. Taking the difference into account, the definition
of RMST is given as below.

Definition 2: Let k0, k1, k2, · · · , ks, · · ·with 0 = k0 <
k1 < k2 < · · · < ks < · · · denote the switching instants.
The positive constant fd

i and non-negative random variable
rdi ∼ Xd

i are called the fixed mode-dependent sojourn-time
and the random mode-dependent sojourn-time associated with
the ith mode, respectively, if for all s ≥ 0 such that σ(k) = i
for k ∈ [ks, ks+1), ks+1 − ks = fd

i + rdi .
Later development requires the definition of stability, and

the following definition of stochastic stability is adopted in
this paper.

Definition 3: [20] The discrete-time switched system (1)
is said to be stochastically stable (SS) if

E{
∞∑
k=0

∥x(k)∥2 |x(0), σ(0)} < ∞ (2)

holds for all initial conditions x(0) ∈ Rn and σ(0) ∈ L.
The mode-dependent control pattern formulated as u(k) =

Kσ(k)x(k) is used to stabilize the switched system (1), which

results the closed-loop system:

x(k + 1) = (Aσ(k) +Bσ(k)Kσ(k))x(k) (3)

Since the switchings of system modes and controllers is
difficult to be synchronous in practice, the phenomena of
asynchronous switching is considered in controller design
scheme. Let Γi, i ∈ L denote the time lag of asynchronous
switching, and the resulting closed-loop switched system is
given as below.

x(k + 1) = Aσ(k)xk +Bσ(k)Kσ(k−Γσ(k))x(k)

= (Aσ(k) +Bσ(k)Kσ̂(k))x(k) (4)

where σ̂ (k) is the asynchronous switching signal governing
the switching of candidate controllers. Fig. 1. presents the
illustration of the asynchronous RMST switching signal.

Then, the objectives in this paper are to design a set
of mode-dependent state feedback stabilizing controllers
such that closed-loop systems (3) and (4) are SS under
admissible RMST and asynchronous RMST switching signals,
respectively.

III. MAIN RESULTS

In this section, the stability analysis of RMST switched
systems is first carried out. Then, the existence conditions
of the stabilizing controller are given. In the presence of
asynchronous switching, the results are further extended to
the switched system with RMST switching.

A. Stability and stabilization of RMST switched systems

Lemma 1: Consider the discrete-time switched system
x(k + 1) = fσ(k)(x(k)), and 0 < αi < 1, µi ≥ 1 are
given constants. For the prescribed fixed mode-dependent
sojourn-time fd

i and random mode-dependent sojourn-time
rdi ∼ Xd

i , suppose that there exists a family of functions
Vσ(k)(x(k)) : Rnx → R, σ(k) ∈ L and a constant ε > 0
such that ∀σ(k) = i ∈ L,

Vi(x(k)) ≥ ε ∥x(k)∥2 (5)

Vi(x(k + 1))− αiVi(x(k)) ≤ 0 (6)

and ∀(σ(ks − 1) = j, σ(ks) = i) ∈ L × L, i ̸= j

Vj(x(ks))− µiVi(x(ks)) ≤ 0. (7)

Then the switched system is SS for RMST switching signals
satisfying

µiα
fd
i

i E
rd
i
∼Xd

i

(α
rdi
i ) < 1,∀i ∈ L. (8)

Proof: From (6) and (7), we obtain that

∆Vσ(ks)(x(ks))

= Erdi ∼Xd
i

{
Vσ(ks+1)(x(ks+1))

}
− Vσ(ks)(x(ks))

≤ Erdi ∼Xd
i

{
µiVσ(ks)(x(ks+1))

}
− Vσ(ks)(x(ks))

≤ Erdi ∼Xd
i
{µiα

rdi +fd
i

i Vσ(ks)(x(ks))} − Vσ(ks)(x(ks))

= (µiα
fd
i

i Erdi ∼Xd
i
{αrdi

i } − 1)Vσ(ks)(x(ks)). (9)
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Fig. 1: Illustration of the asynchronous RMST switching signal. The blue and red lines denote the synchronous and
asynchronous switching signals, respectively, and gray regions represent asynchronous intervals.

Define the coefficient

λi
∆
= µiα

fd
i

i Erdi ∼Xd
i
{αrdi

i } − 1,∀i ∈ L.

Taking the mathematical expectation of both sides and
iterating, we obtain

Erdn∼Xd
n,n=1,...,N

{
Vσ(ks+1)(x(ks+1))

}
≤Vσ(k0)(x(k0))+

s∑
h=0

Erdn∼Xd
n,n=1,...,N{λσ(kh)Vσ(kh)(x(kh))}

≤Vσ(0)(x(0)) + λmax

s∑
h=0

Erdn∼Xd
n,n=1,...,N{Vσ(kh)(x(kh))}

where λmax
∆
= maxi∈Lλi. Denoting Erdn∼Xd

n,n=1,...,N {·}
by EXd

rd {·}, it is straightforward from (8) and (9) that
∆Vσ(ks)(x(ks)) < 0 and

lim
s→∞

EXd

rd

{
Vσ(ks+1)(x(ks+1))

}
< ∞.

Then, one has
∑∞

s=0 EXd

rd {Vσ(ks)(x(ks))} ≤
1

λmax
( lim
s→∞

EXd

rd

{
Vσ(ks+1)(x(ks+1))

}
− Vσ(0)(x(0))) < ∞.

With the aid of (6), it holds that

Vσ(ks)(x(ks)) = maxk∈[ks,ks+1)Vσ(k)(x(k))

and
∞∑
k=0

EXd

rd {Vσ(k)(x(k))}

<

∞∑
s=0

EXd

rd {(fd
σ(ks)

+ rdσ(ks)
)Vσ(ks)(x(ks))}

<

∞∑
s=0

EXd

rd {fd
σ(ks)

+ rdσ(ks)
}EXd

rd {Vσ(ks)(x(ks))}

=maxi∈LEXd

rd {fd
i + rdi }

∞∑
s=0

EXd

rd {Vσ(ks)(x(ks))} < ∞.

Further, it implies from (5) that
∞∑
k=0

EXd

rd {ε ∥x(k)∥2} ≤
∞∑
k=0

EXd

rd {Vσ(k)(x(k))} < ∞.

Therefore, the stochastic stability of the switched system with
the RMST switching signal satisfying (8) can be concluded
from Definition 5.

Based on Lemma 1, the following theorem gives existence
conditions of the mode-dependent stabilizing controllers for
the underlying system (1) with the RMST switching signal.

Theorem 1: Consider the discrete-time switched linear
system (1) and let 0 < αi < 1, µi ≥ 1 be given constants.
For the prescribed fixed mode-dependent sojourn-time fd

i

and random mode-dependent sojourn-time rdi ∼ Xd
i , suppose

there exist matrices Si ≻ 0, Ri, ∀i ∈ L, such that ∀i ∈ L

Ξ (Ai, Bi, αi, Si, Si, Ri) ⪯ 0 (10)

and ∀(i× j) ∈ L × L, i ̸= j,

Sj − µjSi ⪯ 0 (11)

Then the closed-loop switched system (3) is SS for any RMST
switching signal satisfying (8). The stabilizing controller gain
is given by Ki = RiS

−1
i .

Proof: Let Pi
∆
= S−1

i ,∀i ∈ L. Performing congruence
transformation to (10) via diag{Pi, Pi} and considering Ki =
RiS

−1
i , one has [

−Pi PiAi + PiBiRiS
−1
i

∗ −αiPi

]
=

[
−Pi PiAi + PiBiKi

∗ −αiPi

]
⪯ 0.

By the Schur complement, we obtain

(PiAi + PiBiKi)
TP−1

i (PiAi + PiBiKi)− αiPi ⪯ 0

which yields that

xT (k)AT
i PiAix(k) + 2xT (k)AT

i PiBiKix(k)

+xT (k)KT
i B

T
i PiBiKix(k)− αix

T (k)Pix(k) ⪯ 0.

Now consider the Lyapunov function with the quadratic form:

Vσ(k)(x(k)) = xT (k)Pσ(k)x(k),∀σ(k) = i ∈ L. (12)

Then, inequation (6) in Lemma 1 can be derived. It follows
from (11) that −P−1

i − IT (−µjPj)
−1I ⪯ 0, and by Schur

complement, it holds that
[
−P−1

j I; I − µiPi

]
⪯ 0. By
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considering the Schur complement again to the term −µiPi,
one has Pj − µiPi ⪯ 0, together with (12), which implies
(7) in Lemma 1. Further, selecting ε

∆
= mini∈L {φmin(Pi)},

the stochastic stability of the resulting closed-loop switched
system (3) can be concluded by Lemma 1.

B. Stability and stabilization of RMST asynchronously
switched systems

Lemma 2: Consider the discrete-time switched system
x(k + 1) = fσ(k)(x(k)), σ(k) ∈ L. 0 < αi < 1, βi > 0,
µi ≥ 1, i ∈ L are given constants. For the prescribed fixed
mode-dependent sojourn-time fd

i , random mode-dependent
sojourn-time rdi ∼ Xd

i and time lag Γi, suppose that
there exists a family of functions Vσ(k)(x(k)) : Rn → R,
σ(k) ∈ L and a constant ε > 0 such that ∀σ(k) = i ∈ L,
∀(σ(ks − 1) = j, σ(ks) = i) ∈ L × L, i ̸= j, (5) and (7) are
satisfied, and ∀σ(k) = i ∈ L,

Vi(xk+1)− θiVi(xk) ≤ 0 (13)

hold, where

θi =

{
βi, ∀k ∈ [ks, ks + Γi)
αi, ∀k ∈ [ks + Γi, ks+1)

.

Then the switched system is SS for asynchronous RMST
switching signals satisfying

µiβ
Γi
i α

fd
i −Γi

i E
rd
i
∼Xd

i

(α
rdi
i ) < 1,∀i ∈ L. (14)

Proof: From (7) and (13), we obtain that

∆Vσ(ks)(x(ks))

= Erdi ∼Xd
i
{Vσ(ks+1)(x(ks+1))} − Vσ(ks)(x(ks))

≤ Erdi ∼Xd
i
{µiβ

Γi
i α

fd
i −Γi

i E
rd
i
∼Xd

i

(α
rdi
i )Vσ(ks)(x(ks+1))}

− Vσ(ks)(x(ks))

= (µiβ
Γi
i α

fd
i −Γi

i E
rd
i
∼Xd

i

(α
rdi
i )− 1)Vσ(ks)(x(ks)). (15)

Define the coefficient

λ
[Γi]
i

∆
= µiβ

Γi
i α

fd
i −Γi

i E
rd
i
∼Xd

i

(α
rdi
i )− 1,∀i ∈ L.

Taking the mathematical expectation of both sides and
iterating, we obtain

EXd

rd

{
Vσ(ks+1)(x(ks+1))

}
≤Vσ(k0)(x(k0)) +

s∑
h=0

EXd

rd {λ[Γσ(kh)]

σ(kh)
Vσ(kh)(x(kh))}

≤Vσ(0)(x(0)) + λ[Γ]
max

s∑
h=0

EXd

rd {Vσ(kh)(x(kh))}

where λ
[Γ]
max

∆
= maxi∈Lλ

[Γi]
i . It is straightforward from (14)

and (15) that ∆Vσ(ks)(x(ks)) < 0 and

lim
s→∞

EXd

rd

{
Vσ(ks+1)(x(ks+1))

}
< ∞.

Then, one has
∑∞

s=0 EXd

rd {Vσ(ks)(x(ks))} ≤
1

λ
[Γ]
max

( lim
s→∞

EXd

rd

{
Vσ(ks+1)(x(ks+1))

}
− Vσ(0)(x(0))) < ∞.

Consider cases 0 < β < 1 and β > 1, it

holds from (13) that maxk∈[ks,ks+1)Vσ(k)(x(k)) ≤
max(Vσ(ks)(x(ks)), β

fd
i

i Vσ(ks)(x(ks))) and
∞∑
k=0

EXd

rd {Vσ(k)(x(k))}

<

∞∑
s=0

EXd

rd {(fd
σ(ks)

+ rdσ(ks)
)max(1, β

fd
σ(ks)

σ(ks)
)Vσ(ks)(x(ks))}

<maxi∈LEXp

rp {(fd
i + rdi )max(1, β

fd
i

i )}

×
∞∑
s=0

EXd

rd {Vσ(ks)(x(ks))} < ∞.

It follows from (5) that
∞∑
k=0

EXd

rd {ε ∥x(k)∥2} ≤
∞∑
k=0

EXd

rd {Vσ(k)(x(k))} < ∞.

Therefore, the stochastic stability of the switched system with
the asynchronous RMST switching signal satisfying (14) is
concluded from Definition 5.

Now, we are in a position to derive the existence conditions
of the controller such that the asynchronously switched system
(4) with RMST switching is SS.

Theorem 2: Consider discrete-time switched linear system
(1) and let 0 < αi < 1, βi > 0, µi ≥ 1, i ∈ L be given
constants. For the prescribed fixed mode-dependent sojourn-
time fd

i , random mode-dependent sojourn-time rpi ∼ Xd
i and

time lag Γi, i ∈ L, suppose there exist matrices Si ≻ 0, Ri,
∀i ∈ L, such that ∀(i× j) ∈ L×L, i ̸= j, (10) and (11) are
satisfied, and

Ξ (Ai, Bi,−βi, Si, Sj , Rj)− diag{0, βi(Sj + ST
j )} ⪯ 0

(16)
Then the closed-loop switched system (4) is SS for any RMST
switching signal satisfying (14). The stabilizing controller
gain is given by Kj = RjS

−1
j .

Proof: In a similar vein to the proof of Theorem 1, the
one for Theorem 2 can be obtained and thus is omitted here.

Likewise, the following corollary is given for the case
of random mode-independent sojourn-time switching with
mode-independent delay.

Corollary 1: Consider discrete-time switched linear sys-
tem (1) and let 0 < α < 1, µ ≥ 1, β > 0 be given constants.
For the fixed sojourn-time fd, the random mode-dependent
sojourn-time rd ∼ Xd and time lag Γ, suppose there exist
matrices Si ≻ 0, Ri, ∀i ∈ L, such that ∀(i × j) ∈ L × L,
i ̸= j,

Ξ (Ai, Bi, α, Si, Si, Ri) ⪯ 0 (17)

Ξ (Ai, Bi,−β, Si, Sj , Rj)−diag{0, β(Sj+ST
j )} ⪯ 0 (18)

Sj − µSi ⪯ 0 (19)

Then the closed-loop switched system (4) is stochastically sta-
ble for the random mode-independent sojourn-time switching
signal satisfying

µβΓαfd−ΓE
rd∼Xd

(αrd) < 1.

The stabilizing controller gain is given by Kj = RjS
−1
j .
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IV. NUMERICAL EXAMPLES

In this section, a numerical example is used to verified
the developed theoretical results on RMST asynchronously
switched systems.

Example 1: Consider the switched linear system (1) with
three subsystems:

Ai =


1.5144 0.0041 0.0029 −0.0692
0.0073 1.3665 3.6480 −0.6112
0.0152 a1i 1.4125 a2i

0 0 0.1520 0.1520



Bi =


0.0442 0.0176

bi −0.7592
−0.5520 0.4490

0 0


where

a11 = 0.0560, a12 = 0.0101, a13 = 0.0822

a21 = 0.2250, a22 = 0.0182, a23 = 0.3870

b1 = 0.3545, b2 = 0.0978, b3 = 0.5112

x0 = [ 3 −2 0.5 −2 ]T . Setting

α1 = 0.95, α2 = 0.97, α3 = 0.93

µ1 = 1.85, µ2 = 1.82, µ3 = 1.88

and the mode-dependent stabilizing controllers can be ob-
tained by Theorem 1. Let fp

1 = 6, fp
2 = 5, fp

3 = 7, rpi =
4, 6, 8 with given probability distribution 0.24, 0.12, 0.64,
respectively, and generate 80 RMST switching signals ran-
domly. The state responses of the closed-loop switched system
with and without asynchronous switching are illustrated in
Fig. 2 and Fig. 3, respectively. When the time lag between
subsystems and controllers is Γ1 = 4,Γ2 = 3,Γ3 = 5, it
can be clearly seen that the controllers designed without
considering asynchronous switching lead to larger overshoots.
One can infer that the system tend to be unstable with
the increase of the time lag. Thus, the controller ensuring
the system stability is designed below for RMST switching
signals in the presence of asynchronous switching.

Then, considering αi = 0.835, βi = 1.38, µi = 1.26, the
minimal MDT τ∗i = 12.4262, ∀i ∈ L can be derived from
[15]. Therefore, the system stability is guaranteed for MDT
no less than 12. By Lemma 2, it can be checked that the
above RMST switching signals ensure the resulting closed-
loop system stability. Obviously, under the framework of the
RMST switching, the system can remain stable even if the
actual running time of the subsystem does not satisfy the
minimal MDT constraint. It is concluded that by utilizing
statistical information, the set of admissible switching signals
ensuring system stability can be expanded.

Finally, by applying the stabilizing controllers derived by
Theorem 2, the state responses of the asynchronously switched
system with RMST switching are given in Fig. 4. Compared
with the case where the asynchronous switching exists but
not be considered in Fig. 3, the overshoots of state responses
are significantly reduced, which verifies the validity of the
theoretical result.
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Fig. 2: 80 realizations of state responses of the closed-loop
system with RMST switching.

0 20 40 60
−400

−300

−200

−100

0

100

200

300

400

Time

St
at

e 
R

es
po

ns
es

x1

x2

x3

x4

x̄1

x̄2

x̄3

x̄4

Fig. 3: Illustration of the increase of overshoot and the degra-
dation of convergence caused by asynchronous switching.

V. CONCLUSION

In this paper, the stability and stabilization problems are
addressed for switched systems with sojourn-time expectation.
A new concept of RMST switching signals is proposed, and
the stability analysis and control synthesis are carried out
for the RMST switched system such that more admissible
switching signals can be obtained to ensure the system
stability. Compared with the existing studies on sojourn-time
with fixed and random parts, the restriction of the Markov
chain is relaxed. Further, extended results are presented for the
switched system with asynchronous RMST switching. Finally,
a numerical example is used to illustrate the effectiveness of
the proposed methods.
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