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Abstract— In counter-adversarial systems, to infer the strat-
egy of an intelligent adversarial agent, the defender agent
needs to cognitively sense the information that the adversary
has gathered about the latter. Prior works on the problem
employ linear Gaussian state-space models and solve this
inverse cognition problem by designing inverse stochastic filters.
However, in practice, counter-adversarial systems are generally
highly nonlinear. In this paper, we address this scenario by
formulating inverse cognition as a nonlinear Gaussian state-
space model, wherein the adversary employs an unscented
Kalman filter (UKF) to estimate the defender’s state with re-
duced linearization errors. To estimate the adversary’s estimate
of the defender, we propose and develop an inverse UKF (IUKF)
system. We then derive theoretical guarantees for the stochastic
stability of IUKF in the mean-squared boundedness sense.
Numerical experiments for multiple practical applications show
that the estimation error of IUKF converges and closely follows
the recursive Cramér-Rao lower bound.

I. INTRODUCTION

Complex and dynamic environments in many engineering
applications require intelligent and autonomous agents that
cognitively sense their environment, acquire the relevant
information, and then use it to adapt in real-time to environ-
mental changes for an improved performance [1], [2]. In this
context, inverse cognition — wherein a defender agent learns
the information about itself sensed by a cognitive attacker
or adversarial agent — has recently gathered significant
research interest [3]. The problem is motivated by the need
to design counter-autonomous adversarial systems. For in-
stance, a cognitive radar estimates its target’s kinematic state
and then adapts its waveform and processing for enhanced
target detection [4] and tracking [5]. An intelligent target ob-
serves the radar’s adaptive behavior and predicts the latter’s
future actions in a Bayesian sense. Similar examples abound
in interactive learning, autonomous sensor calibration, fault
diagnosis, and cyber-physical security [6], [7].

In inverse cognition, it is imperative to first identify
if the adversary is cognitive. To this end, [3] developed
stochastic revealed preferences-based algorithms to ascertain
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if the adversary optimizes a utility function and if so,
estimate that function. Further, [7] modeled this problem
as an inverse Bayesian filtering problem. A Bayesian filter
provides a posterior distribution for an underlying state given
its noisy observations. Its so-called inverse then reconstructs
this posterior distribution given the actual state and noisy
measurements of the posterior [7]. These types of inverse
problems may be traced to [8] to find the cost criterion for a
given control policy. Later, analogous formulations appeared
in revealed preferences problem of microeconomics theory
[9] and inverse reinforcement learning (IRL) [10]. In par-
ticular, the inverse cognition framework is a generalization
of IRL, where the adversary’s reward function is learned
passively, to an active learning application.

Among the Bayesian filters for inverse cognition, [6] pro-
posed inverse hidden Markov model to estimate the attacker’s
observations and observation likelihood given measurements
of its posterior. This was later extended to a linear Gaussian
state-space model [7], where the attacker employed Kalman
filter (KF) to estimate the defender’s state and the latter
estimated the former’s estimate of the defender using an
inverse Kalman filter (IKF). However, in practice, counter-
adversarial systems are highly non-linear. In our recent work
[11], we proposed an inverse extended Kalman filter (IEKF)
for non-linear system dynamics. More recently, we developed
stability guarantees for IEKF and its variants in [12], [13].

While extended Kalman filter (EKF) is a popular choice
for non-linear filtering applications, difficulties in its on-
line implementation and unreliable performance have led to
the development of unscented Kalman filter (UKF) [14].
Contrary to the EKF that linearizes the system model at
the state estimates and often fails when high non-linearities
are present, the UKF employs the unscented transform
[15] and propagates a deterministic set of ‘sigma points’
through the non-linear system. By avoiding computation of
the Jacobian matrices, the UKF approximates a Gaussian
random variable’s posterior mean and covariance under non-
linear transformation accurately up to the third-order for any
non-linearity. Note that the EKF achieves only first-order
accuracy with the same computational complexity [16]. The
sufficient conditions for the stochastic stability of UKF have
been discussed in the literature for only linear measurements
[17], where the estimation error was exponentially bounded
in a mean-squared sense subject to mild system conditions.

In this paper, given the widespread use and superior
performance of UKF, we propose and develop inverse UKF
(IUKF) that a counter-adversarial system may employ to
infer the adversary’s estimate in a general non-linear set-
ting. In this framework, the adversary employs UKF as
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the forward Bayesian filter to estimate the defender’s state.
Note that the IUKF is different from the inversion of UKF
[18], which estimates the input based on the output. Clearly,
this inversion of the UKF does not necessarily take the
same mathematical form as the UKF, is employed on the
adversary’s side, and is inapplicable to our inverse cognition
problem. Our IUKF is a different formulation that is focused
on estimating the inference of an adversary that also employs
a UKF to estimate the defender’s state.

We also derive sufficient conditions under which the
proposed IUKF achieves stochastic stability. In the process,
we also obtain hitherto unreported stochastic stability results
for the forward UKF under non-linear measurements. The
IUKF’s error dynamics depend on the set of sigma points
chosen by the forward filter and, therefore, the derivation
of these theoretical guarantees is non-trivial, especially the
bounds on the Jacobian matrices of IUKF’s functions. We
validate our models and methods for various non-linear sys-
tems through numerical experiments using recursive Cramér-
Rao lower bound (RCRLB) [19] as a benchmark.

Throughout the paper, we reserve boldface lowercase and
uppercase letters for vectors (column vectors) and matrices,
respectively. The notation [a]i is used to denote the i-
th component of vector a and [A]i,j denotes the (i, j)-
th component of matrix A, with [A](:,j) denoting the j-
th column of the matrix. The transpose operation is (·)T ;
the l2 norm of a vector is ∥ · ∥2; and the notation Tr(A)
and ∥A∥, respectively, denote the trace and spectral norm
of A. For matrices A and B, the inequality A ⪯ B means
that B − A is a positive semidefinite (p.s.d.) matrix. For a
function f : Rn → Rm, ∂f

∂x denotes the Rm×n Jacobian
matrix. Also, In and 0n×m denote a ‘n×n’ identity matrix
and a ‘n × m’ all zero matrix, respectively. We denote the
Cholesky decomposition of matrix A as A =

√
A
√
A

T
.

II. SYSTEM MODEL

Consider the defender’s discrete-time state process
{xk}k≥0, where xk ∈ Rnx×1, evolving as

xk+1 = f(xk) +wk, (1)

where wk ∼ N (0nx×1,Q) represents the process noise
with covariance matrix Q. The defender perfectly knows its
current state. At the time k, the adversary’s observation is

yk = h(xk) + vk ∈ Rny×1, (2)

where vk ∼ N (0ny×1,R) is the adversary’s measurement
noise with covariance matrix R. The adversary infers an esti-
mate x̂k of defender’s current state xk using the observations
{yj}1≤j≤k with its forward UKF. This estimate is then used
by the adversary to compute and take an action g(x̂k) whose
noisy observation ak ∈ Rna×1 recorded by the defender is

ak = g(x̂k) + ϵk, (3)

where ϵk ∼ N (0na×1,Σϵ) is defender’s measurement noise
with covariance matrix Σϵ. Finally, defender computes the
estimate ˆ̂xk of x̂k using {aj ,xj}1≤j≤k in IUKF.

The functions f(·), h(·), and g(·) are suitable non-linear
vector-valued functions. The noise processes {wk}k≥0,
{vk}k≥1, and {ϵk}k≥1 are mutually independent and iden-
tically distributed across time. Throughout this paper, the
system model is perfectly known to both the defender and
adversary. This is the same as the assumption made in prior
formulations of IKF [7] and IEKF [11]. Furthermore, our
numerical experiments later show that the proposed IUKF
is observed to provide reasonable estimates even when the
forward UKF assumption does not hold. In [13], [20], we
addressed the case of an unknown system and an unknown
forward filter by proposing reproducing kernel Hilbert space
(RKHS)-based EKF and UKF, respectively, to jointly learn
the system parameters and then estimate the state.
Forward UKF: The state estimates in the UKF are obtained
as a weighted sum of a set of 2nx + 1 sigma points,
generated deterministically from the previous state estimate.
Considering scaling parameter κ ∈ R, the sigma points
{x̃i}0≤i≤2nx generated from state estimate x̂ and its error
covariance matrix estimate Σ are

x̃i = Sgen(x̂,Σ)

=


x̂, i = 0,

x̂+
[√

(nx + κ)Σ
]
(:,i)

, i = 1, 2, . . . , nx

x̂−
[√

(nx + κ)Σ
]
(:,i−nx)

, i = nx + 1, nx + 2, . . . , 2nx

,

(4)

with their weights ωi =

{
κ

nx+κ i = 0
1

2(nx+κ) i = 1, 2, . . . , 2nx
. De-

note the sigma points generated and propagated for the time
update by {si,k}0≤i≤2nx and {s∗i,k+1|k}0≤i≤2nx , respec-
tively. Similarly, {qi,k+1|k}0≤i≤2nx

and {q∗
i,k+1|k}0≤i≤2nx

are the sigma points, respectively, generated and propagated
to predict observation yk+1 as ŷk+1|k in the measurement
update. The adversary’s forward UKF recursions are [21]

Time update: {si,k}0≤i≤2nx = Sgen(x̂k,Σk), (5)
s∗i,k+1|k = f(si,k) ∀i = 0, 1, . . . , 2nx,

x̂k+1|k =

2nx∑
i=0

ωis
∗
i,k+1|k, (6)

Σk+1|k =

2nx∑
i=0

ωis
∗
i,k+1|k(s

∗
i,k+1|k)

T − x̂k+1|k(x̂k+1|k)
T +Q,

Measurement update: {qi,k+1|k}0≤i≤2nx = Sgen(x̂k+1|k,Σk+1|k),
(7)

q∗
i,k+1|k = h(qi,k+1|k) ∀i = 0, 1, . . . , 2nx,

ŷk+1|k =

2nx∑
i=0

ωiq
∗
i,k+1|k, (8)

Σy
k+1 =

2nx∑
i=0

ωiq
∗
i,k+1|k(q

∗
i,k+1|k)

T − ŷk+1|k(ŷk+1|k)
T +R,

Σxy
k+1 =

2nx∑
i=0

ωiqi,k+1|k(q
∗
i,k+1|k)

T − x̂k+1|k(ŷk+1|k)
T ,

Kk+1 = Σxy
k+1

(
Σy

k+1

)−1
,

x̂k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1|k), (9)

Σk+1 = Σk+1|k −Kk+1Σ
y
k+1K

T
k+1. (10)
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Inverse UKF: The IUKF seeks to find an estimate ˆ̂xk of
the state estimate x̂k given our actual states {xj}1≤j≤k

and observations {aj}1≤j≤k given by (3). To this end, the
inverse filter has x̂k as the state and ak as the observation.
Substituting (2), (6) and (8) in (9), yields the state transition

x̂k+1 =

2nx∑
i=0

ωi

(
s∗i,k+1|k −Kk+1q

∗
i,k+1|k

)
+Kk+1h(xk+1)

+Kk+1vk+1. (11)

In this state transition, xk+1 is a known exogenous
input while vk+1 represents the process noise in-
volved. The propagated sigma points {s∗i,k+1|k}0≤i≤2nx

and
{q∗

i,k+1|k}0≤i≤2nx
, and the gain matrix Kk+1 are functions

of the first set of sigma points {si,k}0≤i≤2nx . These sigma
points in turn, are obtained deterministically from the previ-
ous state estimate x̂k and covariance matrix Σk using (5).
Hence, IUKF’s state transition, under the assumption that
parameter κ is known to the defender, is

x̂k+1 = f̃(x̂k,Σk,xk+1,vk+1). (12)

Our numerical experiments in Section IV show that the
IUKF provides reasonably accurate estimates even when
assuming a κ different from its true value. The IUKF’s
stability (Theorem 2) is independent of the assumed κ and
only requires a stable forward UKF.

In (12), the process noise vk+1 is non-additive because
Kk+1 depends on the previous estimates. Furthermore, the
covariance matrix Σk does not depend on the current forward
filter’s observation yk. It is evaluated recursively using the
previous estimates and initial covariance estimate Σ0. The
inverse filter treats Σk as a known exogenous input in the
state transition (12). It approximates Σk as Σ∗

k by computing
the covariance matrix using its own previous estimate, i.e.
ˆ̂xk, in the same recursive manner as the forward filter
estimates at its estimate x̂k (using (10) after computing gain
matrix Kk+1 from the generated sigma points).

The presence of non-additive noise term in the state
transition (12) leads us to consider an augmented state vector
zk = [x̂T

k ,v
T
k+1]

T of dimension nz = nx+ny for the inverse
filter formulation. Here, (12) is expressed in terms of zk as
x̂k+1 = f̃(zk,Σk,xk+1). Denote ẑk = [ˆ̂xT

k ,01×ny
]T and

Σ
z

k =
[

Σk 0nx×ny

0ny×nx R

]
. Considering κ as IUKF’s scaling

parameter, the sigma points {sj,k}0≤j≤2nz
are generated

from ẑk and Σ
z

k similar to (4) with weights ωj . Finally, the
IUKF’s recursions to infer the estimate ˆ̂xk and the associated
error covariance estimate Σk are

Time update:

s∗j,k+1|k = f̃(sj,k,Σ
∗
k,xk+1) ∀j = 0, 1, . . . , 2nz, (13)

ˆ̂xk+1|k =

2nz∑
j=0

ωjs
∗
j,k+1|k, (14)

Σk+1|k =

2nz∑
j=0

ωjs
∗
j,k+1|k(s

∗
j,k+1|k)

T − ˆ̂xk+1|k ˆ̂x
T
k+1|k,

Measurement update: a∗
j,k+1|k = g(s∗j,k+1|k) ∀j = 0, 1, . . . , 2nz,

Measurement update (contd.): âk+1|k =

2nz∑
j=0

ωja
∗
j,k+1|k,

Σ
a
k+1 =

2nz∑
j=0

ωja
∗
j,k+1|k(a

∗
j,k+1|k)

T − âk+1|kâ
T
k+1|k +Σϵ,

Σ
xa
k+1 =

2nz∑
j=0

ωjs
∗
j,k+1|k(a

∗
j,k+1|k)

T − ˆ̂xk+1|kâ
T
k+1|k,

Kk+1 = Σ
xa
k+1

(
Σ

a
k+1

)−1

ˆ̂xk+1 = ˆ̂xk+1|k +Kk+1(ak+1 − âk+1|k),

Σk+1 = Σk+1|k −Kk+1Σ
a
k+1K

T
k+1.

Remark 1. The IUKF recursions follow from the augmented
state formulation of UKF for non-additive noise [16] so that
sigma points generated are in higher dimensional state space
(nz = nx + ny dimensional) as compared to those gener-
ated in forward UKF (nx dimensional). Whereas forward
UKF requires a new set for the measurement update, the
IUKF generates these points only once for the time update
considering the state transition’s process noise statistics.

Remark 2. Unlike IKF [7] and IEKF [11], the forward
gain matrix of IUKF Kk+1 is not treated as a time-varying
parameter of (11). In KF, the gain matrix is deterministic
and fully determined by the model parameters given the
initial covariance estimate Σ0. Similarly, in EKF, the gain
matrix, computed from the covariance estimates, depends on
the linearized model functions at the state estimate. But these
covariance estimates in UKF are obtained as the weighted
average of the generated sigma points, which are explicit
functions of the state estimates (x̂k and x̂k+1|k), prohibiting
the inverse filter from treating Kk+1 as a parameter of (11).

III. STABILITY GUARANTEES

We show that the IUKF’s error dynamics satisfy the
stability conditions of a general UKF under mild system
conditions if the forward UKF is stable. Therefore, we first
examine the stochastic stability of forward UKF. We consider
the general case of time-varying process and measurement
noise covariances Qk, Rk and Rk instead of Q, R and
Σϵ, respectively. Recall the definition of exponential-mean-
squared-boundedness of a stochastic process.

Definition 1 (Exponential mean-squared boundedness). [22]
The stochastic process {ζk}k≥0 is said to be exponentially
bounded in the mean-squared sense if there exist real num-
bers η > 0, ν > 0 and 0 < λ < 1 such that E

[
∥ζk∥22

]
≤

ηE
[
∥ζ0∥22

]
λk + ν holds for every k ≥ 0.

Forward UKF: Denote the forward UKF’s state predic-
tion, state estimation, and measurement prediction errors by
x̃k+1|k

.
= xk+1 − x̂k+1|k, x̃k

.
= xk − x̂k and ỹk+1

.
=

yk+1 − ŷk+1|k, respectively. From (1) and (6), we have
x̃k+1|k = f(xk) + wk −

∑2nx

i=0 ωis
∗
i,k+1|k, which on sub-

stituting s∗i,k+1|k = f(si,k) yields x̃k+1|k = f(xk) +wk −∑2nx

i=0 ωif(si,k). Using the first-order Taylor series expansion
of f(·) at x̂k, we have x̃k+1|k ≈ f(x̂k)+Fk(xk−x̂k)+wk−∑2nx

i=0 ωi(f(x̂k) +Fk(si,k − x̂k)), where Fk
.
= ∂f(x)

∂x |x=x̂k
.
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The sigma points {si,k}0≤i≤2nx
are chosen symmetrically

about x̂k. Substituting for si,k in terms of x̂k and Σk

using (5) simplifies the state prediction error to x̃k+1|k ≈
Fkx̃k +wk. Similar to [17], [23], we introduce an unknown
instrumental diagonal matrix Ux

k ∈ Rnx×nx to account for
the linearization errors and obtain

x̃k+1|k = Ux
kFkx̃k +wk. (15)

Linearizing h(·) in (2) and introducing unknown diagonal
matrix Uy

k ∈ Rny×ny in (8) yields

ỹk+1 = Uy
k+1Hk+1x̃k+1|k + vk+1, (16)

where Hk+1
.
= ∂h(x)

∂x |x=x̂k+1|k . Using (9), we have x̃k =
x̃k|k−1 − Kkỹk, which when substituted in (15) with (16)
yields the forward UKF’s prediction error dynamics as

x̃k+1|k = Ux
kFk(I−KkU

y
kHk)x̃k|k−1 −Ux

kFkKkvk +wk.
(17)

Denote the true prediction covariance by Pk+1|k =

E
[
x̃k+1|kx̃

T
k+1|k

]
. Define δPk+1|k as the difference of

estimated prediction covariance Σk+1|k and the true
prediction covariance Pk+1|k, while ∆Pk+1|k is the error
in the approximation of the expectation
E
[
Ux

kFk(I−KkU
y
kHk)x̃k|k−1x̃

T
k|k−1(I−KkU

y
kHk)

TFT
k U

x
k

]
by Ux

kFk(I − KkU
y
kHk)Σk|k−1(I − KkU

y
kHk)

TFT
kU

x
k .

Denoting Q̂k = Qk +Ux
kFkKkRkK

T
kF

T
kU

x
k + δPk+1|k +

∆Pk+1|k and using (17) similar to [17], [24], we have

Σk+1|k = Q̂k

+Ux
kFk(I−KkU

y
kHk)Σk|k−1(I−KkU

y
kHk)

TFT
k U

x
k. (18)

Similarly, we have

Σy
k+1 = Uy

k+1Hk+1Σk+1|kH
T
k+1U

y
k+1 + R̂k+1, (19)

Σxy
k+1 =

{
Σk+1|kU

xy
k+1H

T
k+1U

y
k+1, nx ≥ ny

Σk+1|kH
T
k+1U

y
k+1U

xy
k+1, nx < ny

, (20)

where R̂k+1 = Rk+1 + ∆Py
k+1 + δPy

k+1 with δPy
k+1

and ∆Py
k+1, respectively, accounting for the difference in

true and estimated measurement prediction covariances, and
error in the approximation of the expectation. Also, Uxy

k+1 is
an unknown instrumental matrix introduced to account for
errors in the estimated cross-covariance Σxy

k+1.
The prediction error dynamics (17) and the various covari-

ances (18)-(20) have the same form as that for forward EKF
given by [12, Sec. V-B-1]. Hence, [12, Theorem 2] is also
applicable for forward UKF stability. This is formalized in
the following Theorem 1.

Theorem 1 (Stochastic stability of forward UKF). Consider
the non-linear stochastic system given by (1) and (2) and the
forward UKF. Let the following hold true.
C1. There exist positive real numbers f̄ , h̄, ᾱ, β̄, γ̄, σ, σ̄, q̄,
r̄, q̂ and r̂ such that the following are fulfilled for all k ≥ 0.

∥Fk∥ ≤ f̄ , ∥Hk∥ ≤ h̄, ∥Ux
k∥ ≤ ᾱ, ∥Uy

k∥ ≤ β̄, ∥Uxy
k ∥ ≤ γ̄,

Qk ⪯ q̄I, Rk ⪯ r̄I, q̂I ⪯ Q̂k, r̂I ⪯ R̂k, σI ⪯ Σk|k−1 ⪯ σ̄I.

C2. Ux
k and Fk are non-singular for every k ≥ 0.

C3. The constants satisfy the inequality σ̄γ̄h̄2β̄2 < r̂.

Then, the prediction error x̃k|k−1 and hence, the estimation
error x̃k of the forward UKF are exponentially bounded in
mean-squared sense and bounded with probability one.

Remark 3. The UKF stability is discussed in [17, Theo-
rem 1] for only linear measurements while our case is non-
linear. Interestingly, [17, Theorem 1] requires a lower bound
on measurement noise covariance Rk and also, an upper
bound on Q̂k. But Q̂k is not upper bounded in Theorem 1.
We require upper (lower) bounds on noise covariances Qk

(Q̂k) and Rk (R̂k). Both Q̂k and R̂k may be made positive
definite to satisfy the lower bounds by enlarging the noise
covariance matrices Qk and Rk, respectively. This enhances
the stability of the filter [17], [25]. In practical systems,
where a reasonable estimate of the state xk is available
because of the process’s constraints, the bounds on unknown
matrices Ux

k and Uy
k are estimated using functions f(·) and

h(·)[23].

Inverse UKF: Similar to the forward UKF, we introduce
unknown matrices U

x

k and U
a

k to account for the errors in
linearization of functions f̃(·) and g(·), respectively, and
U

xa

k for the errors in cross-covariance matrix estimation.
Also, Q̂k and R̂k denote the counterparts of Q̂k and
R̂k, respectively, in the IUKF’s error dynamics. Define
F̃k

.
= ∂f̃(x,Σk,xk+1,0)

∂x

∣∣∣
x=ˆ̂xk

and Gk
.
= ∂g(x)

∂x

∣∣∣
x=ˆ̂xk|k−1

. In

approximating Σk by Σ∗
k in IUKF, we ignore any errors.

Assume that the forward gain Kk+1 computed from ˆ̂xk is
approximately same as that computed from x̂k in forward
UKF. Additionally, these approximation errors are bounded
by positive constants because Σk and Kk+1 can be proved to
be bounded matrices under the IUKF’s stability assumptions.
The bounds required on various matrices for forward UKF’s
stability are also satisfied when these matrices are evaluated
by IUKF at its own estimates, i.e.,

∥∥∥∂f(x)
∂x

∥∥∥ ≤ f̄ and∥∥∥∂h(x)
∂x

∥∥∥ ≤ h̄ where x is any sigma-point of the forward
or inverse UKF. We state the stability conditions of IUKF in
the following theorem.

Theorem 2 (Stochastic stability of IUKF). Consider the
adversary’s forward UKF that is stable as per Theorem 1.
Additionally, assume that the following hold true.
C4. There exist positive real numbers ḡ, c̄, d̄, ϵ̄, ĉ, d̂, p and p̄
such that the following bounds are fulfilled for all k ≥ 0.

|Gk∥ ≤ ḡ, ∥Ua
k∥ ≤ c̄, ∥Uxa

k ∥ ≤ d̄, Rk ⪯ ϵ̄I, ĉI ⪯ Q̂k,

d̂I ⪯ R̂k, pI ⪯ Σk|k−1 ⪯ p̄I.

C5. There exist a real constant y (not necessarily positive)
such that Σy

k ⪰ yI for all k ≥ 0.
C6. The functions f(·) and h(·) have bounded outputs i.e.
∥f(·)∥2 ≤ δf and ∥h(·)∥2 ≤ δh for some δf , δh > 0.
C7. For all k ≥ 0, F̃k is non-singular and its inverse satisfies
∥F̃−1

k ∥ ≤ ā for some positive real constant ā.
Then, IUKF’s state estimation error is exponentially bounded
in mean-squared sense and bounded with probability one if
the constants satisfy the inequality p̄d̄ḡ2c̄2 < d̂.
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Proof. Because of the paucity of space, we omit the proof
and refer the reader to [20, Appendix A]. ■

Note that, while there are no constraints on the constant
y in C5, Theorem 2 requires an additional lower bound
on Σy

k which was not needed for forward UKF’s stability.
Also, y ̸= 0 because (Σy

k)
−1 exists for forward UKF to

compute its gain. C5 and C6 are necessary to upper-bound
the Jacobian F̃k. The bounds ∥f(·)∥2 ≤ δf and ∥h(·)∥2 ≤
δh help to bound the magnitude of the propagated sigma
points {s∗i,k+1|k} and {q∗

i,k+1|k}, respectively, generated
from a state estimate, which in turn, upper bounds the
various covariance estimates computed from them. Also, the
computation of gain matrix Kk involves (Σy

k)
−1, which is

upper-bounded under the lower bound assumed in C5.

IV. NUMERICAL EXPERIMENTS

We demonstrate the proposed IUKF’s performance con-
sidering different example systems and comparing the state
estimation error with the corresponding RCRLB. CRLB is a
widely used performance measure for an estimator providing
a lower bound on mean-squared error (MSE). For discrete-
time non-linear filtering, we employ RCRLB. Denote the
state vector series by Xk = {x0,x1, . . . ,xk} while the
noisy observations series by Y k = {y0,y1, . . . ,yk}. The
joint probability density of pair (Y k, Xk) is p(Y k, Xk).

The RCRLB at k-th time instant for the esti-
mate x̂k (a function of Y k) of the true state xk

is defined as E
[
(xk − x̂k)(xk − x̂k)

T
]

⪰ J−1
k , where

Jk = E
[
−∂2 ln p(Y k,Xk)

∂x2
k

]
, is the Fisher information

matrix [19]. Here, ∂2(·)
∂x2 denotes the Hessian compris-

ing of the second order partial derivatives. The se-
quence {Jk} are computed recursively as Jk = D22

k −
D21

k (Jk−1+D11
k )−1D12

k , where D11
k = E

[
− ∂2 ln p(xk|xk−1)

∂x2
k−1

]
,

D12
k = E

[
− ∂2 ln p(xk|xk−1)

∂xk∂xk−1

]
= (D21

k )T , and D22
k =

E
[
− ∂2 ln p(xk|xk−1)

∂x2
k

]
+ E

[
− ∂2 ln p(yk|xk)

∂x2
k

]
[19]. For the non-

linear system (1) and (2) with Gaussian noises, the {Jk}
recursions simplifies to Jk = Q−1 + HT

kR
−1Hk −

Q−1Fk(Jk−1 + FT
kQ

−1Fk)
−1FT

kQ
−1, where Fk

.
=

∂f(x)
∂x |x=x̂k

and Hk
.
= ∂h(x)

∂x |x=x̂k
[17]. Similarly, we can

compute the posterior information matrix Jk for the inverse
filter’s estimate ˆ̂xk. Throughout all experiments, the initial
information matrices J0 and J0 for the forward and inverse
filters were set to Σ−1

0 and Σ
−1

0 , respectively.
FM demodulation: To compare IUKF’s performance with
IEKF [11], we consider FM demodulator system [26,
Sec. 8.2] with state transition xk+1

.
=

[
λk+1

θk+1

]
=[

exp (−T/β) 0
−β exp (−T/β)−1 1

] [
λk

θk

]
+
[

1
−β

]
wk and observations yk =

√
2
[
sin θk
cos θk

]
+vk and ak = λ̂2

k+ϵk, where wk ∼ N (0, 0.01),
vk ∼ N (0, I2), ϵk ∼ N (0, 5), T = 2π/16 and β = 100.
Here, λ̂k is the forward filter’s estimate of λk. The initial
state x0

.
= [λ0, θ0]

T and its estimate for the forward EKF
and UKF were set randomly with λ0 ∼ N (0, 1) and θ0 ∼
U [−π, π]. For the inverse filters, the initial state estimate was

Fig. 1. (a) Time-averaged RMSE and RCRLB for FM demodulator system;
(b) As in (a) but for the vehicle reentry system.

chosen as x0. The initial covariance estimates Σ0 and Σ0

were set to 10I2 and 5I2, respectively. Also, for forward and
inverse UKF, κ and κ both were set to 1, but IUKF assumed
the forward UKF’s κ to be 2.

Fig. 1a shows the time-averaged root MSE (RMSE) and
RCRLB for state estimation for forward and inverse EKF and
UKF (IEKF-1 and IUKF-1), averaged over 500 runs. We also
consider inverse filters, which assume a forward filter that is
not the same as the true forward filter. In particular, IEKF-
2 and IUKF-2, respectively, assume the forward filter to be
EKF and UKF when the true forward filters are UKF and
EKF, respectively. As compared to forward EKF, forward
UKF has a higher estimation error for the FM demodulator
system. Note that the performance and RCRLBs of EKF and
UKF also depend on the system itself such that UKF may
not necessarily provide better estimates. Although IUKF’s
error is higher than that of IEKF, IUKF estimates its state
more accurately than forward UKF. On the contrary, IEKF’s
error is more than its corresponding forward filter.

Interestingly, while IEKF’s performance is adversely af-
fected by the incorrect forward filter assumption (IEKF-2
case), IUKF-2 has a smaller estimation error than all other
inverse filters. This suggests that the unscented transform
approach is more robust to the (non-linear) inverse filter’s
dynamics than the linearization used in IEKF. We further
conclude that assuming a forward UKF and using IUKF
may provide estimation accuracy better than IEKF. Note that
IUKF-2 outperforms IUKF-1 as well because the former’s
forward EKF is estimating the state more accurately than the
latter’s forward UKF. Furthermore, assuming forward UKF’s
κ in IUKF to be different from its true value does not affect
the estimation performance. The forward and inverse filters
are compared only to highlight relative estimation accuracy.
Vehicle reentry: Consider tracking reentry of a vehicle by
a radar using range and bearing measurements. The vehicle
reentry problem is used widely to illustrate UKF’s perfor-
mance [15], [27], [28]. With [xk]1 and [xk]2 representing the
position of the vehicle at k-th time instant, [xk]3 and [xk]4
denoting its velocity, and [xk]5 its constant aerodynamic pa-
rameter, the continuous-time evolution of the vehicle’s state
follows [ẋk]1 = [xk]3, [ẋk]2 = [xk]4, [ẋk]3 = dk[xk]3 +
gk[xk]1 +w1, [ẋk]4 = dk[xk]4 + gk[xk]2 +w2, [ẋk]5 = w3,
where [ẋk]i is the first-order partial derivative of [xk]i with
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respect to time, and w1, w2 and w3 represent the zero-mean
Gaussian process noise [15]. We consider the discretized
version of this system with a time step of 0.1 sec in our
experiment. The quantities dk = βk exp ((ρ0 − ρk)/h0)Vk

and gk = −Gm0ρ
−3
k where βk = β0 exp ([xk]5), Vk =√

[xk]23 + [xk]24 and ρk =
√

[xk]21 + [xk]22 with ρ0, h0, G,
m0 and β0 as constants. The radar’s range and bearing
measurements are [yk]1 =

√
([xk]1 − ρ0)2 + [xk]22+v1, and

[yk]2 = tan−1
(

[xk]2
[xk]1−ρ0

)
+ v2, where v1 and v2 represent

the zero-mean measurement noise [28].
For the inverse filter, we consider a linear

observation ak = [[x̂k]1, [x̂k]2]
T

+ ϵk, where
ϵk ∼ N (0, 3I2). The initial state was x0 =
[6500.4, 349.14,−1.8093,−6.7967, 0.6932]T . The initial
state estimate ˆ̂xk for IUKF was set to actual x0 with initial
covariance estimate Σ0 = diag(10−5, 10−5, 10−5, 10−5, 1).
For forward UKF, κ was chosen as 2.5 such that the weight
for 0-th sigma point at x̂k is 1/3 and all other sigma points
have equal weights. Similarly, κ of IUKF was set to 3.5.

Fig. 1b shows the (root) time-averaged error (over 100
runs) in position estimation and its RCRLB (also, time-
averaged) for forward and inverse UKF (IUKF-1), includ-
ing forward EKF and IUKF-2 (which incorrectly assumes
the forward filter to be UKF when the adversary’s actual
forward filter is EKF). Here, the RCRLB is computed as√

[J−1]1,1 + [J−1]2,2 with J as the corresponding informa-
tion matrix. The IUKF’s error is lower than that of forward
UKF, as is the case with their corresponding RCRLBs.
Further, incorrect forward filter assumption (IUKF-2 case)
does not affect the IUKF’s estimation accuracy because
forward UKF and EKF have similar estimation error. For
the vehicle re-entry example, the IEKF’s error (IEKF-1 and
IEKF-2 cases of FM demodulation) was similar to IUKF and
hence, omitted in Fig. 1b.

V. SUMMARY

With the proposed IUKF, the defender is able to learn
an estimate of the adversary’s inference by observing the
latter’s actions. The IUKF is guaranteed to be stochastically
stable if the forward UKF is stable under mild conditions
on the system model. The proposed IUKF assumes that the
adversary employs a forward UKF. However, our numerical
experiments suggest that IUKF provides reasonable estimates
and outperforms IEKF even when the former assumes an
incorrect forward filter. When the system dynamics are not
known to both agents, then this information may be learned
through observations. In particular, RKHS-based function
approximation coupled with EKF and UKF was employed
to learn the unknown system parameters in [13], [20].
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[28] S. Lü and R. Zhang, “Two efficient implementation forms of unscented
Kalman filter,” Control and Intelligent Systems, vol. 39, no. 1, p. 1,
2011.

7660


