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Abstract— In this paper, we study the problem of fault diag-
nosis under cyber attacks in the context of partially-observed
discrete event systems. An operator monitors the evolution
of a system through the received observations and computes
its current diagnosis state. The observation is corrupted by
an attacker which has the ability to edit a subset of sensor
readings by inserting or erasing some events. In this sense, the
attacker may induce the operator to draw incorrect diagnostic
conclusions based on the corrupted observation regarding the
fault occurrence. In particular, the attack is harmful if a
fault can be detected by the operator when looking at an
uncorrupted observation, while it is not detected when looking
at the corresponding corrupted observation. In addition, the
attacker must remain stealthy, i.e., its presence should not be
discovered by the operator. To this end, we propose a special
structure, called a stealthy joint diagnoser, which describes the
set of all possible stealthy attacks. We show how to use the
stealthy joint diagnoser to perform fault diagnosis under attack.
Finally, such a structure also allows one to establish if a stealthy
harmful attack may be implemented.

I. INTRODUCTION

Cyber-physical systems (CPS), such as intelligent trans-
portation systems, process control systems and advanced
communication networks, are characterized by the interaction
of computational and physical components [1]. In this work,
we use the formalism of discrete event systems to model
the behavior of CPS. Discrete event systems are dynamic
systems equipped with a discrete state space and an event-
driven transition structure [2]. The undesired behavior of
CPS arises from two possible phenomena, i.e., component
faults and cyber attacks.

A component fault is an endogenous phenomenon that
causes a deviation in the behavior of a system such that its
performance or throughput is degraded. For this reason, fault
diagnosis is a crucial task for an operator monitoring a CPS.
In the context of discrete event systems, the problem of fault
diagnosis is originally formalized by [3], where the fault is
an unobservable event whose occurrence is usually necessary
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to be detected based on the observation. In the past years,
robust fault diagnosis of discrete event systems has been a
topic of great interest due to its importance; see, e.g., [4] and
[5]. These works focus on the issue of the robust diagnosis
subject to sensor failures, i.e., permanent and intermittent
loss of communication between sensors and the diagnoser,
but they do not consider the impact of an attacker on the
physical parts of the system.

A cyber attack on the other hand is an exogenous phe-
nomenon that causes damage to the cyber-security of CPS
[6]. In the context of discrete event systems, cyber-security
has become a topical subject of increasing attention in the
last few years. Several aspects of cyber-security have been
explored in the literature of discrete event systems. The prob-
lem of attack detection is focused on modeling the attacker as
a fault behavior [7] and [8]. Some discrete frameworks have
been developed to handle adversarial attacks for resilient
supervisory control [9]–[11] and intelligent attack synthesis
[12]–[14].

Rather than passively detecting the existence of attacks or
deriving a supervisory control law that is robust to attacks,
relatively few works focus on synthesizing a successful
attack strategy satisfying the desired objective. Meira-Góes
et al. [13] address the problem of synthesizing stealthy
attacks that can induce the plant into a forbidden state
without being detected by an existing supervisor. A bipar-
tite discrete transition structure, called an Insertion-Deletion
Attack structure (IDA) is proposed to capture a game-like
relationship between the supervisor and the environment (the
plant and the attacker). Based on the IDA, three different
types of successful stealthy attack strategies can be derived.
Zhang et al. [14] investigate the problem of state estimation
in the presence of an attack. A novel discrete transition
structure, called a joint estimator, is proposed to capture
all possible attacks and the corresponding state estimation.
The joint estimator is applied to show how the possible
suitable choices of the attacker may affect the state estimate
of the operator. In [13] and [14], they study the effect of
an attacker on the state estimation of the supervisor and the
operator, respectively, without considering the impact on the
fault diagnosis process.

The study of component faults and cyber attacks in
isolation has been extensively researched in various fields.
However, there is a crucial need to consider both phenomena
together since they are not always independent of each other
and can even interact to amplify their effects. In this context,
we study the problem of fault diagnosis under attack in
partially-observed discrete event systems. We utilize a similar
attack model that has been used in [13] and [14]. We assume
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that an attacker with full knowledge of the plant may corrupt
sensor readings available to an operator, by inserting certain
fake events that do not occur or erasing some observations
that have occurred. The goal of the attacker is to prevent
the operator from making the correct diagnostic conclusions
regarding the fault occurrence. The methodology developed
to derive a suitable attack policy from the attacker’s view-
point is inspired by the work in [13] and [14]. As in these
works, we propose a discrete structure to describe how an
attacker may affect the operator’s ability to perform the
correct fault diagnosis. We call this structure a stealthy joint
diagnoser. By construction, a stealthy joint diagnoser embeds
all and only stealthy attacks. Once constructed, a stealthy
joint diagnoser serves as the basis for solving the fault diag-
nosis problem under attack. The states of the stealthy joint
diagnoser can be classified according to the corresponding
diagnosis pairs. In particular, we define as harmful states of
the stealthy joint diagnoser those states corresponding to the
harmful attacks that can hide the occurrence of a fault during
the system evolution. Finally, we notice that such a structure
may also be used by the operator to establish if the diagnoser
is robust to certain possible attacks.

II. PRELIMINARIES

Let E be an alphabet. The set of all words over E is
denoted by E∗. Given a word σ ∈ E∗, (i) the length of σ is
denoted by |σ|; (ii) the number of occurrence of event e ∈ E
in σ is denoted by |σ|e; (iii) the support of σ, denoted by
‖σ‖ = {e ∈ E||σ|e > 0}, is the set of events that appear at
least once in the word.

Let G = (X,E, δ, x0) denote a deterministic finite state
automaton, where X is the finite set of states, E is the finite
set of events, δ : X × E → X is the partial transition
function, and x0 is the initial state. The transition function
can be extended to the domain X × E∗, denoted by δ∗ :
X × E∗ → X , such that δ∗(x, ε) = x, where ε denotes the
empty word, and δ∗(x, σe) = δ (δ∗(x, σ), e). The generated
language of G is defined as L(G) = {σ ∈ E∗ | δ∗ (x0, σ)
is defined}.

Assume that E is partitioned into E = Eo∪̇Euo, where
Eo and Euo denote, respectively, the sets of observable
and unobservable events. Based on the partition, the natural
projection function P : E∗ → E∗o is defined as [2]:

P (ε) = ε andP (σe) =

{
P (σ)e if e ∈ Eo,
P (σ) if e ∈ Euo.

(1)

The inverse projection P−1 : E∗o → 2E
∗

is defined as
P−1(s) = {σ ∈ E∗ : P (σ) = s}.

The evolution of the plant G is observed by an operator.
Assume that a plant G produces a word σ ∈ E∗. Due to
the natural projection, the operator observes an observation
s = P (σ) ∈ E∗o . When no attack occurs, s is called an
uncorrupted observation. We also define S(s) = P−1(s) ∩
L(G) the set of words consistent with observation s, i.e.,
the set of words in the language of G that produce the
observation s.

The unobservable reach of state x is defined by a set
of states x′ ∈ X reached from state x ∈ X by executing
an unobservable word σ ∈ E∗uo, namely, UR(x) = {x′ ∈
X | (∃σ ∈ E∗uo) δ∗(x, σ) = x′}.

Given a plant G = (X,E, δ, x0) with the set of observable
events Eo, the observer of G is Obs(G) = (B,Eo, δobs, b0),
where B ⊆ 2X is the set of states, Eo is the set of observable
events of G, δobs : B × Eo → B is the transition function
defined as δobs (b, eo) :=

⋃
x∈b UR ({x′ | δ (x, eo) = x′}),

and the initial state is b0 := UR (x0) (see [2] for details).
Given two automata G1 = (X1, E1, δ1, x01) and G2 =

(X2, E2, δ2, x02), their parallel composition is denoted as
G = G1 ‖ G2 = (X1 ×X2, E1 ∪E2, δ, (x01 × x02)), where
the transition function δ is defined as follows:
δ[(x1, x2), e]=(x′1, x

′
2) if δ1(x1, e)=x′1∧δ2(x2, e)=x′2,

δ[(x1, x2), e] = (x′1, x2) if δ1(x1, e) = x′1 ∧ e /∈ E2,
δ[(x1, x2), e] = (x1, x

′
2) if δ2(x2, e) = x′2 ∧ e /∈ E1,

undefined otherwise.

(2)

We notice that in the parallel composition, if there exist
unreachable states from the initial state, then such states
should be removed and only reachable states should be
considered.

Let Ef ⊆ Euo denote the set of fault events. For the sake
of simplicity, we do not distinguish among different fault
types. In the remainder of this paper, we will consider a
single fault class. The basic fault diagnosis problem is to
determine at run-time, based on the observation s ∈ E∗o , if
a fault has occurred or not in the past. Solving a diagnosis
problem requires constructing a diagnosis function.

Definition 1: Given a plant G with respect to set of fault
events Ef ⊆ Euo, a diagnosis function

γ : E∗o → {N,F,U}

associates any observation s ∈ E∗o to a diagnosis state γ(s) ∈
{N,F,U} as follows:
1) γ(s) = N , if for all σ ∈ S(s), it holds ‖σ‖ ∩ Ef = ∅;
2) γ(s) = F , if for all σ ∈ S(s), it holds ‖σ‖ ∩ Ef 6= ∅;
3) γ(s) = U , if there exist σ, σ′ ∈ S(s) such that ‖σ‖ ∩

Ef = ∅ and ‖σ′‖ ∩ Ef 6= ∅. �
A more efficient way of computing a diagnosis function

is by means of diagnosers [3]. Diagnosers are deterministic
automata whose alphabet is the set of observable events of
G, and their states have labels F and N attached to the states
of G. Formally, the diagnoser Diag(G) = (Xd, Eo, δd, xd,0)
is defined as

Diag(G) = Obs(Rec(G)) = Obs(G ‖ A`) (3)

where Rec(G) is the fault recognizer obtained by the parallel
composition of G and A`, in which A` is the fault monitor
on alphabet Ef shown in Fig. 1.

Fig. 1. Fault monitor A` on alphabet Ef .
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To each state xd of Diag(G) we associate a diagnosis
value γ(xd) in the following manner: (i) γ(xd) = F (certain
state), if ` = F for all (x, `) ∈ xd, (ii) γ(xd) = N (normal
state), if ` = N for all (x, `) ∈ xd, and (iii) γ(xd) = U
(uncertain state), if there exist (x, `), (x̃, ˜̀) ∈ xd, x not
necessarily distinct from x̃, such that ` = F and ˜̀= N . Thus
a diagnoser allows one to associate each observation s ∈ E∗o
to a diagnosis state γ(s) = γ(xd), where xd = δ∗d(xd,0, s) is
the state reached in Diag(G) by executing s. In this context,
fault diagnosis can be performed online by examining the
diagnoser states. Figs. 2(a) and 2(b) show, respectively, a
plant G, for which E = {a, b, c, d, e, ef}, Eo = {a, b, c, d, e}
and Ef = {ef}, and the corresponding diagnoser Diag(G).

(a) G

(b) Diag(G)

Fig. 2. (a) A plant G and (b) its diagnoser Diag(G).

III. ATTACK MODEL

First, we define the fault diagnosis system model under
attack, as depicted in Fig. 3. A plant G produces a word
σ and the observation is s = P (σ). The attacker intervenes
in the communication channels between the system’s sensor
and the operator. In particular, the attacker may corrupt
the observation s by inserting some events that do not
occur or erasing some events that have occurred. Such a
corrupted observation is denoted as s′. The operator is used
to recognize the corrupted observation s′ and compute its
diagnosis state γ(s′), where γ is the diagnosis function.

Fig. 3. A fault diagnosis system model under attack.

Then, let us recall some preliminary notations from [14].
The subset of events that can be corrupted by the attacker is
defined as the compromised event set and denoted by Ecom.

Without loss of generality, we assume that Ecom ⊆ Eo.
More specifically, the sets of events that can be inserted and
erased are denoted as Eins and Eera, respectively. Note that
Eins and Eera are not necessarily disjoint. Correspondingly,
we define two new sets of events to describe the permitted
actions of the attacker. The sets E+ = {e+ | e ∈ Eins} and
E− = {e− | e ∈ Eera} are defined as the sets of inserted
and erased events, respectively. We also define Ea = Eo ∪
E+ ∪E− as the attack alphabet. Note that Eo, E+, and E−
are disjoint.

Definition 2: Given a plant G with the set of compro-
mised events Ecom = Eins ∪ Eera, an attack function is
f : P (L(G))→ E∗a satisfying the following constraints:
a) f(ε) ∈ E∗+,
b) ∀se ∈ P (L(G)) with s ∈ E∗o :{

f(se) ∈ f(s){e}E∗+ if e ∈ Eo\Eera,

f(se) ∈ f(s) {e−, e}E∗+ if e ∈ Eera.
(4)

�
Condition a) in Definition 2 indicates that the attacker may

insert an arbitrary word t ∈ E∗+ at the initial state before any
generated word of G is observed. Condition b) means that
the attacker cannot erase e when e does not belong to Eera.
However, the attacker may insert an arbitrary word t ∈ E∗+
after e. If an event e ∈ Eera occurs, the attacker may either
erase e or leave it intact, and then insert any arbitrary word
t ∈ E∗+.

The existence of an attack function induces a new lan-
guage, called an attack language. The attack language is
defined as L(f,G) = f(P (L(G))). A word ω ∈ L (f,G)
is called an attack word. Then, we define the operator mask
P̂ : E∗a → E∗o that treats the attack word ω as follows:
(i) P̂ (ε) = ε; (ii) P̂ (ωe+) = P̂ (ω)e, if e+ ∈ E+; (iii)
P̂ (ωe−) = P̂ (ω), if e− ∈ E−; (iv) P̂ (ωe) = P̂ (ω)e,
if e ∈ E. Given an attack word ω, an observation s is
said to be consistent with the attack word ω if ω = f(s)
or s = P̂ (ω) holds. In addition, the corrupting function
φ : E∗o → E∗o is defined as φ(s) = P̂ (f(s)) taking an
uncorrupted observation s as input and producing a corrupted
observation s′ as output, as in Fig. 3. Similarly, the corrupted
language induced by the corrupting function is defined as
L(φ,G) = φ(P (L(G))). Finally, we point out that in
this paper, the corrupting function φ is used to model the
capabilities of the attacker to temper with sensor readings.

IV. PROBLEM SETTING: DIAGNOSIS UNDER ATTACK

In this section, we first describe the stealthiness and
harmfulness of a corrupting function and then formalize
the problem statement. Stealthiness implies that the attack
remains undetected by the operator. This can be formalized
as follows.

Definition 3: Let G be a plant with the set of observable
events Eo. A corrupting function φ is said to be stealthy if
L(φ,G) ⊆ P (L(G)). �

The stealthiness is guaranteed provided that any corrupted
observation is contained in the set of uncorrupted observa-
tions that the plant may generate when no attack occurs. In
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this sense, the operator does not realize that the system is
under attack. We additionally define the notion of harmful
attacks.

Definition 4: Let G be a plant with the set of observable
events Eo. Let γ : E∗o → {N,F,U} be a diagnosis
function. A corrupting function φ is harmful if there exists
an observation s ∈ P (L(G)) generated by the plant, such
that s can be corrupted into a word s′ = φ(s) ∈ P (L(G)),
and (γ(s), γ(s′)) ∈ {(F,N), (F,U)}. �

According to the above definition, a corrupting function
is harmful if an uncorrupted observation s which allows the
operator to detect a fault (diagnosis state F ) can be altered
into a corrupted observation s′ corresponding to the absence
of fault or to the uncertain situation (diagnosis state N or U ).
In simple words, a harmful attack may prevent the operator
from detecting the occurrence of the fault during the system
evolution.

Given a plant G with the set of compromised events Ecom,
the main contribution of this paper is that of providing a
diagnoser, called a stealthy joint diagnoser, which contains
all possible stealthy attack actions that an attacker is able to
execute. Then, it is shown how such a structure allows one to
determine if there exist stealthy attacks which are harmful,
thus allowing the operator to establish if the diagnoser is
robust to attacks in the considered setting.

V. STEALTHY JOINT DIAGNOSER
A. Attacker Diagnoser and Operator Diagnoser

In this subsection, we introduce two special diagnosers,
called Attacker Diagnoser and Operator Diagnoser, which
serve to compute Joint Diagnoser used to solve the consid-
ered diagnosis problem under attack. In [14], given a plant G,
the notions of attacker observer Obsatt(G), operator observer
Obsopr(G) and their construction algorithms are proposed
to solve the state estimation problem in the presence of an
attack. Given a plant G, due to the fact that the diagnoser
of G is equivalent to the observer of Rec(G), we define the
attacker diagnoser and the operator diagnoser as follows.

Definition 5: Given a plant G with set of observable
events Eo and set of fault events Ef , let Rec(G) be its fault
recognizer. We define the attacker diagnoser as

Diagatt(G) = Obsatt(Rec(G)), (5)

and the operator diagnoser as

Diagopr(G) = Obsopr(Rec(G)). (6)

Given a plant G, one can compute Diagatt(G) (resp.
Diagopr(G)) by applying Algorithm 1 (resp. Algorithm 2) in
[14] to its fault recognizer Rec(G). Note that a non-stealthy
attack may transform an observation s into a corrupted
observation s′ that cannot be generated by the plant when no
attack occurs. In this case, the operator diagnoser receives
an attack word that is not consistent with any uncorrupted
observation and yields a dummy state, denoted as xd,∅.

Based on an attack word ω, Diagatt(G) and Diagopr(G)
make their diagnostic decisions γatt(ω) and γopr(ω), respec-
tively, where γatt : E∗a → {N,F,U} and γopr : E∗a →

{N,F,U} are the attack diagnosis function and the operator
diagnosis function, respectively. The computation of their
diagnostic decisions will be discussed in Section VI.

Example 1: Consider the plant G in Fig. 2(a). Let Eins =
{b} and Eera = {c}. Figs. 4(a) and 4(b) show Diagatt(G)
and Diagopr(G), respectively. We have self-loop transitions
labeled with the inserted event b+ at all the states of
Diagatt(G) since the attacker knows that the inserted event
is fictitious. Analogously, we have self-loop transitions la-
beled with the erased event c− at all the states of Diagopr(G)
since the event has been erased by the attacker and the
operator receives no information regarding such an event
occurrence. There exists a transition labeled with the erased
event c− from state {2N} to {5N, 6F} in Diagatt(G) since
the attacker knows that the event c has occurred. There exists
a transition labeled with the inserted event b+ from state
{2N} to {3N} in Diagopr(G) since the Diagopr(G) cannot
distinguish between b+ and the corresponding event b.

(a) Diagatt(G)

(b) Diagopr(G)

Fig. 4. (a) Attacker diagnoser and (b) operator diagnoser.

B. Joint Diagnoser and Pruning Process

Definition 6: A joint diagnoser J-Diag(G) =
(R,Ea, δa, r0) with respect to G and Ecom is defined
as J-Diag(G) = Diagatt(G) ‖Diagopr(G). �

A joint diagnoser J-Diag(G) is obtained by performing
the parallel composition of Diagatt(G) and Diagopr(G).
The joint diagnoser is an extension of the joint estimator
proposed in [14] where we append to every state pair the fault
diagnosis information. We notice that the joint diagnoser
generates the same language as the joint estimator; thus all
the results that put in relationship the language of the joint
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diagnoser and the language of the joint estimator are omitted
here due to the limited space.

In general, J-Diag(G) includes the non-stealthy attacks,
i.e., attacks that reveal the attacker’s presence to the operator.
Therefore, J-Diag(G) must be pruned, in the sense that
some particular diagnosis states must be withdrawn. The
states of J-Diag(G) are defined by pairs, i.e., r = (xd, x̄d).
We define the set of exposing states as Re := {r ∈ R |
r = (xd, x̄d), x̄d = xd,∅}. Each time the joint diagnoser
reaches an exposing state, the attack is no longer stealthy.
Furthermore, there may exist some weakly exposing states
defined as Rwe from which an exposing state is necessarily
reached. Then we define R̄e = Re ∪ Rwe as the weakly
exposing region. At the weakly exposing state r ∈ Rwe,
neither the firing of a legitimate event e, the erasure of this
event (if it is possible), nor the insertion of some e′+ ∈ Eins

can lead the joint diagnoser outside the weakly exposing
region R̄e. One can recursively compute R̄e in J-Diag(G)
following the algorithm in [15].

Definition 7: Given a joint diagnoser J-Diag(G) =
(R,Ea, δa, r0), the stealthy joint diagnoser of J-Diag(G)
is defined as SJ-Diag(G) = (Rs, Ea, δsa, r0), where Rs =
R \ R̄e, δsa = δa|Rs×Ea→Rs

. �
The notation δa|Rs×Ea→Rs

means that we are restricting
δa to the smaller domain of the stealthy states Rs. The
stealthy joint diagnoser SJ-Diag(G) can be obtained from
J-Diag(G) by removing all states in R̄e and their corre-
sponding input and output arcs. As a result, SJ-Diag(G)
includes all the possible stealthy actions that an attacker may
implement during the system evolution.

Example 2: Consider again the plant in Fig. 2(a). The
joint diagnoser J-Diag(G) is shown in Fig. 5, where ex-
posing states are highlighted in gray and weakly expos-
ing states are highlighted in yellow. Consider the state
({2N}, {3N}). Since there exists a transition labeled b ∈
Eo\Eera that yields from ({2N}, {3N}) to the expos-
ing state ({3N}, {xd,∅}) in R̄e, and there does not exist
a transition in E+ yielding to a state not in R̄e, the
state ({2N}, {3N}) is added to R̄e. Note that the state
({5N, 6F}, {2N}) is not a weakly exposing state. The
attacker can perform the insertion action b+ before the
execution of the event d ∈ Eo\Eera, thus leading the joint
diagnoser outside the set R̄e.

Herein we provide the following result that characterizes
the transition function of SJ-Diag(G).

Theorem 1: Consider a plant G with set of observable
events Eo and set of fault events Ef , and its diagnoser
Diag(G) = (Xd, Eo, δd, xd,0). Let φ : E∗o → E∗o be a
corrupting function. Given attack alphabet Ea, let SJ-
Diag(G) = (Rs, Ea, δsa, r0) be its stealthy joint diagnoser.
For all uncorrupted observations s ∈ P (L(G)) with
the corresponding attack word ω = f(s) and corrupted
observation s′ = φ(s), it holds that:
[δ∗sa(r0, ω)=(xd, x̄d)⇐⇒δ∗d(xd,0, s)=xd, δ

∗
d(xd,0, s

′)= x̄d] .
The result follows from arguments similar to those in

[14] (Theorem 1 therein). The state pair (xd, x̄d) reached
in SJ-Diag(G) by an attack word ω describes the joint

Fig. 5. Joint diagnoser J-Diag(G) in Example 2.

diagnosis state estimate. The first element xd represents the
correct diagnosis state estimate of the operator, denoted as
xd = δ∗d(xd,0, s), as seen by the attacker for the uncorrupted
observation s consistent with the attack word ω. The second
element x̄d represents the corrupted diagnosis state estimate
of the operator, denoted as x̄d = δ∗d(xd,0, s

′), which is
the current state of its realization based on the corrupted
observation s′ that it receives. As desired, a state pair in SJ-
Diag(G) embeds the necessary information for the operator
to draw diagnostic conclusions based on the uncorrupted
and the corrupted observations, respectively, which will be
further discussed in the next section.

VI. FAULT DIAGNOSIS UNDER ATTACK

Recall how the attacker compromises a system. Assume
that the system generates an observation s. The attacker
may corrupt the observation s, resulting in the corrupted
observation s′ = φ(s), where φ is the corrupting function. In
more detail, this function φ proceeds in two steps: first, the
observation s is transformed into an attack word ω = f(s)
via the attack function f . Subsequently, the attack word ω
is transformed into the corrupted observation s′ = P̂ (ω)
using the operator mask P̂ . The attacker aims to mislead the
operator to make an incorrect diagnostic decision based on
the corrupted observation that it receives.

Problem 1: Given a plant G with Eo, Ef and Ecom,
and given an attack word ω ∈ E∗a , the fault diagnosis
problem under attack consists in determining if the operator
takes consistent diagnostic decisions based on an uncorrupted
observation s and the corresponding corrupted observation
s′, respectively.

In this section, we show that the stealthy joint diagnoser
SJ-Diag(G) can provide a solution to Problem 1. Let us
first define the diagnosis pair function whose purpose is to
classify the diagnosis state of SJ-Diag(G).

Definition 8: Let SJ-Diag(G) = (Rs, Ea, δsa, r0) be a
stealthy joint diagnoser. Given a state rs reached in SJ-
Diag(G) by the attack word ω ∈ E∗a , the diagnosis pair
function

d : Rs → {N,F,U} × {N,F,U}
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associates each state rs to a diagnosis pair d(rs) =
(γatt(ω), γopr(ω)), where γatt : E∗a → {N,F,U} and
γopr : E∗a → {N,F,U} are the attack diagnosis function
and the operator diagnosis function, respectively. �

According to Theorem 1, based on an attack word ω,
the diagnostic decision γatt(ω) of Diagatt(G) is equivalent
to that of the nominal diagnoser Diag(G) based on the
uncorrupted observation s consistent with the word ω, i.e.,
γatt(ω) = γ(s). Likewise, Diagopr(G) makes its diagnostic
decision γopr(ω) = γ(s′), where s′ is the corrupted obser-
vation consistent with the word ω. Therefore, SJ-Diag(G)
shows the joint diagnostic decision of the operator composed
by the correct diagnostic decision based on s without attack
and the corrupted diagnostic decision based on s′ in the
presence of an attack. Once the stealthy joint diagnoser
has been constructed, fault diagnosis under attack can be
performed by tracking the current stealthy joint diagnoser
state in response to the attack word ω.

Then we define the set of all diagnosis pairs as D =
{N,F,U} × {N,F,U} that can be classified as

D = Dcorr ∪Dwrng ∪Dharm,

where
• Dcorr = {(N,N), (U,U), (F, F )} is the set of correct

diagnosis pair;
• Dwrng = {(N,U), (N,F ), (U,N), (U,F )} is the set of

wrong diagnosis pair;
• Dharm = {(F,N), (F,U)} is the set of harmful diag-

nosis pair.
Definition 9: Let SJ-Diag(G) = (Rs, Ea, δsa, r0) be a

stealthy joint diagnoser. A state rs ∈ Rs is correct if d(rs) ∈
Dcorr, wrong if d(rs) ∈ Dwrng, and harmful if d(rs) ∈
Dharm. �

The state set Rs of SJ-Diag(G) can be partitioned
into correct state set Rs,corr, wrong state set Rs,wrng, and
harmful state set Rs,harm according to their diagnosis pairs.
First, when the SJ-Diag(G) is in a correct state, either
the attack does not corrupt the system’s observation, or the
operator makes the correct diagnostic decisions even if an
attack has occurred. In this case, we say that the attack is
ineffective.

Then, when the SJ-Diag(G) reaches a wrong state,
the operator makes wrong diagnostic decisions based on
the corrupted observation, which are inconsistent with the
decisions based on the uncorrupted observation. In this case,
due to the attack, the fault diagnosis result is degraded but
does not pose a real danger.

Finally, we define as harmful states of the stealthy joint
diagnoser those states that correspond to a harmful attack,
namely those states that correspond to the detection of the
fault in the case of uncorrupted observation, and no detection
in the case of corrupted observation. The set of harmful
states can be partitioned into two classes (the state with
d(rs) = (F,N) and d(rs) = (F,U)) in which the attacker
has been able to hide the occurrence of a fault during the
system evolution, thus thwarting the operator’s effort. The

stealthy joint diagnoser can be used to identify if an attack
is harmful according to the presence of the harmful states.

Proposition 1: Given a plant G = (X,E, δ, x0) with
the set of compromised events Ecom, let Dharm =
{(F,N), (F,U)} be the harmful diagnosis pair set, and SJ-
Diag(G) = (Rs, Ea, δsa, r0) be the stealthy joint diagnoser.
There exists a stealthy corrupting function that is harmful iff
Rs,harm 6= ∅, i.e., the SJ-Diag(G) may reach a harmful
state.
Proof: (If) Assume that there exists a harmful state rs =
(xd, x̄d) in SJ-Diag(G) by executing the attack word
ω such that d(rs) = (γatt(ω), γopr(ω)) ∈ Dharm. By
Definition 2, there exists an uncorrupted observation s ∈
P (L(G)) such that ω = f(s). By Theorem 1, we have
rs = δ∗sa(r0, ω) = (xd, x̄d) such that δ∗d(xd,0, s) = xd and
δ∗d(xd,0, s

′) = x̄d with s′ = φ(s), where φ is the corrupt-
ing function. Therefore, there exists a stealthy corrupting
function φ transforming the observation s into s′ such that
(γ(s), γ(s′)) = (γatt(ω), γopr(ω)) = d(rs) ∈ Dharm, i.e.,
(γ(s), γ(s′)) ∈ {(F,N), (F,U)}. According to Definition 4,
we conclude that the corrupting function φ is harmful.

(Only if) Assume that there exists a corrupting function φ
that is harmful. By Definition 4, there exists an observation
s ∈ P (L(G)), such that s can be corrupted into a word s′ =
φ(s) ∈ P (L(G)), and (γ(s), γ(s′)) ∈ {(F,N), (F,U)}.
By s, s′ ∈ P (L(G)), we have δ∗d(xd,0, s) = xd and
δ∗d(xd,0, s

′) = x̄d. Since the stealthy joint diagnoser SJ-
Diag(G) includes all the possible stealthy attacks, according
to Theorem 1, there necessarily exists a state rs = (xd, x̄d)
in SJ-Diag(G) by executing word ω = f(s) such that
δ∗d(xd,0, s) = xd and δ∗d(xd,0, s

′) = x̄d. By d(rs) =
(γatt(ω), γopr(ω)) = (γ(s), γ(s′)) ∈ {(F,N), (F,U)}, i.e.,
d(rs) ∈ Dharm, and Definition 9, we conclude that the state
rs is harmful, i.e., Rs,harm 6= ∅.

Thus, the existence of a harmful state in the stealthy
diagnoser is a necessary and sufficient condition for the
existence of a stealthy harmful attack that can hide the
occurrence of a fault.

Example 3: Recall the plant G in Fig. 2(a) and the joint
diagnoser J-Diag(G) in Fig. 5. The stealthy diagnoser
SJ-Diag(G) is shown in Fig. 6, where correct states are
highlighted in brown, wrong states are highlighted in blue,
and harmful states are highlighted in green.

Fig. 6. Stealthy diagnoser SJ-Diag(G) in Example 3.

Table I presents the performance of fault diagnosis during
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the occurrence of the attack word ω1 = ac−ccc
n(n ∈

N). When the SJ-Diag(G) reaches the harmful state
({6F}, {5N, 6F}) by executing ac−c as seen in the second
row of Table I, the system generates the observation acc and
the operator may identify the corrupted observation ac. In
the absence of an attack, the operator is able to detect the
occurrence of a fault. However, due to the erasure of event
c by the attack, the operator is no more sure if the fault has
occurred or not. Indeed, as seen in the third row of Table
I, the fault occurrence cannot be detected by the operator
until the plant produces the third c, i.e., the uncorrupted
observation is accc.

Table II presents the performance of fault diagnosis during
the occurrence of the attack word ω2 = ac−b+de

n(n ∈
N). When the SJ-Diag(G) yields the harmful state
({7F}, {4N}) by executing ac−b+d as seen in the second
row of Table II, the observation acd has been transformed
into the corrupted observation abd by a harmful attack. As
a result, the harmful attack induces the operator to draw
the incorrect conclusion that the fault has not occurred
based on the corrupted observation abd. Finally, the harmful
attack can be implemented by first erasing the occurrence of
event c, and then inserting b+ when the plant generates the
uncorrupted observation ac. We notice that the SJ-Diag(G)
will remain in a cycle formed with harmful states associated
with the attack word ω2 = ac−b+de

n(n ∈ N).

TABLE I
FAULT DIAGNOSIS DURING THE OCCURRENCE OF WORD

ω1 = ac−cccn(n ∈ N)

ω rs s s′ d(rs)

ac− ({5N, 6F}, {2N}) ac a (U,N)

ac−c ({6F}, {5N, 6F}) acc ac (F,U)

ac−cc ({6F}, {6F}) accc acc (F, F )

TABLE II
FAULT DIAGNOSIS DURING THE OCCURRENCE OF WORD

ω2 = ac−b+den(n ∈ N)

ω rs s s′ d(rs)

ac−b+ ({5N, 6F}, {3N}) ac ab (U,N)

ac−b+d ({7F}, {4N}) acd abd (F,N)

ac−b+de ({7F}, {4N}) acde abde (F,N)

VII. CONCLUSIONS AND FUTURE WORK

In the presence of an attack, we have considered the fault
diagnosis of discrete event systems, where sensor readings
may be corrupted by the attack in the form of insertions and
erasures. In this context, we propose a stealthy joint diag-
noser with the purpose to show how an attacker may affect
the operator to perform the correct online fault diagnosis. Our
future research in this framework will focus on diagnosability
analysis under attack. We plan to first formalize the notion
of system diagnosability under attack and and then provide

its verification method. Second, we plan to use the stealthy
joint diagnoser to synthesize suitable attacks that can avoid
detection from the operator and result in a violation of system
diagnosability.
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