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Abstract— While the connected automated vehicle (CAV)
has been applied in vehicle-based traffic control that aims to
stabilize a string of car-following human-driven vehicles (HV),
the safety impact of a CAV controller on the overall traffic flow
system is still an open question. In this paper, we propose a
Robust Safety-critical Traffic Control (RSTC) design to impart
safety for the mixed autonomy traffic system, in which the speed
disturbance from a leading HV and input delay of the stabilizing
CAV controller are considered. We employ Control Barrier
Function (CBF) to impose safety constraints on a nominal CAV
control input that achieves string stability. The key challenge
lies in incorporating effect of the input delay and external
disturbances into the CBF constraints. The predicted speed
and spacing gap in the robust CBF design is obtained using a
delay-compensating state predictor. The forward invariance of
the safe set is proved given the derivative of speed disturbance,
i.e., acceleration of the leading vehicle, is bounded. The safety
improvement of RSTC over the nominal controller is then
validated via numerical simulations.

Index Terms— Connected and automated vehicle, String
stability, Input delay, Disturbance, Control barrier function

I. INTRODUCTION

Connected automated vehicles (CAVs) have shown great
potential for improving traffic. Mix-autonomy traffic, in
which the CAV coexists with human-driven vehicles (HVs),
has received considerable attention. This is because a long
transition period is expected before fully automated traf-
fic becomes a reality. In particular, a number of recent
studies [19] have focused on stabilizing mixed autonomy
traffic and reducing stop-and-go waves with control strategies
designed for CAV. But research on their safety effect is
still insufficient. In fact, a stabilizing-traffic controller can
cause rear-end collisions in some scenarios [7]. Moreover,
safety is a major factor affecting the public acceptance of
autonomous driving, particularly regarding the possibility of
rear-end collisions [6]. Therefore, imparting safety on the
CAV-controlled traffic systems in an uncertain environment
is our main focus in this paper.

In the study of control systems under state constraints,
control barrier function defines safety as the forward invari-
ance of a given safe set, i.e., the system state always stays in
the safe set [3]. In comparison with model predictive control
(MPC) and classical optimal control that incorporate safety
constraints and may incur heavy computational cost, control
barrier function (CBF) [3], [12], [14] can directly synthesize
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a safety-critical controller from a wide selection of existing
unsafe nominal controllers. Due to its flexibility, the CBF has
been applied to multiple domains, such as bipedal robotic
walking [10], multi-robot systems [5], and quadrotors [26].

Although there have been various formulations of stabi-
lizing traffic controllers that focused on improving overall
traffic performance [13], only a few attempts have been
made in the application of CBF for traffic safety [18],
[25], [27]. Among them, previous work of the author [27]
proposed safety-critical traffic control (STC) framework that
guarantees safety and stability of longitudinal dynamics of
mixed autonomy traffic. The aforementioned studies assume
that control inputs are implemented by acceleration and
deceleration actions of CAV without delay. In practice,
however, CAV is subject to various sources of input delay,
including communication delay, processing delay, and pow-
ertrain delay [22]. The safety-critical design is significantly
impacted by the input delay of CAV, during which the safety
constraints could be violated.

For the controlled systems with input delay, predictor
feedback design is usually employed to eliminate the effect
of delay by predicting the future state over the delay interval
given the current and historical dynamics [1], [17]. Such a
predictor is integrated into safety-critical control by using
the predicted state to construct the CBF constraint and solve
the current input value. One main challenge of applying
predictor-based safety-critical control in traffic is the exis-
tence of external disturbances that evolve independently from
the control input, such as the speed of a leading vehicle ahead
of the controlled CAV. Future value of the speed disturbance
is unavailable, and only inaccurate estimation can be used to
design the controller. The naive combination of CBF and
inaccurate disturbance will fail to maintain safety of the
system [16].

Several recent efforts have been made for safety-critical
control under disturbances. The notion of input-to-state
safety is introduced in [2], [11], [15], which allows bounded
safety violation by ensuring the forward invariance of a
larger safe set than the original one without disturbances.
In [8], [16], the problem is formulated as a second-order
cone program with a non-smooth constraint, which precludes
existing methods for closed-form solutions.

To summarize, safety-critical control with input delay and
external disturbances has yet to be addressed. Motivated with
mixed-autonomy traffic control systems, the contribution of
this paper is both theoretical and applciation relevant. We
design a robust STC (RSTC) controller for traffic systems
under input delay and disturbances. The CBF-based RSTC
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is able to guarantee safety of CAV controlled traffic systems
in an uncertain and practical environment. Specifically, we
construct and validate the RSTC from the following aspects:

• To compensate for the input delay, we design a state
predictor and prove the upper bound of prediction error
when there is an external disturbance from unpredictable
leading vehicle speed. To guarantee safety with the
inaccurate prediction and disturbance, we design robust
CBF candidates with relative degree one for both CAV
and HVs. A Quadratic Programming (QP) is formulated
to synthesize a safe controller from a nominal controller
that achieves string stability.

• We prove the forward invariance of the safe set for
CAV and HV in Theorem 2 under the assumption of a
bounded derivative of the disturbance, which indicates
the bounded value of acceleration in practice. We also
run simulations to analyze the safety improvement of
the proposed RSTC in two safety-critical scenarios that
can cause rear-end collisions in real traffic.

The rest of this paper is organized as follows. Section II
formulates the mix-autonomy traffic model and introduces
a nominal feedback controller. Section III designs a state
predictor and then proposes CBF constraints to guarantee
safety under disturbances. Section IV provides numerical
simulation and safety improvement is validated.

II. NOMINAL CONTROL OF MIX AUTONOMY TRAFFIC
MODEL

In this section, we formulate the microscopic car-following
model to describe the longitudinal dynamics of mixed-
autonomy traffic. Then we give a nominal feedback con-
troller that achieves string stability for the system without
delay.

A. Mix-autonomy car-following traffic model

We employ a general formulation of car-following models
(e.g. intelligent driver’s model, optimal velocity model [20])
to describe longitudinal dynamics of mix-autonomy traffic
in which there are one leading CAV and N following HVs
as shown in Fig. 1. The CAV follows a Head HV (HHV)
and leads the HVs. For a HV i, its gap si and speed vi, are
governed by

ṡi(t) = vi−1(t)− vi(t), (1)
v̇i(t) = Fi (si(t), ṡi(t),vi(t)) , (2)

where vi−1 is the speed of its leading vehicle i− 1, and Fi
is the function describing the driver’s acceleration strategy
based on traffic states. The dynamics of the CAV are

ṡ0(t) = v−1(t)− v0(t), (3)
v̇0(t) = u(t − τ), (4)

with v−1(t) being the speed of the HHV, u being the control
input, and τ > 0 being the control input delay. In practice,
multiple types of delay exist for CAV control: the onboard
sensor measures environment state with detection delay;
the vehicle-to-vehicle or vehicle-to-infrastructure wireless

HV CAVHV

controller

HHV

Fig. 1. We consider the control of a platoon of one CAV, one head HV, and
N following HVs. The control input u is actuated to the CAV with delay
τ > 0. And the disturbance comes from the speed of HHV v−1, which
evolves independently from the control input u.

information exchange brings transmission delay; the engine
and brake actuator have response delay [4], [23], just to name
a few. These types of delay can be formulated as τ in the
control input [22].

The steady-state vehicles drive at the same equilibrium
speed v∗, and the equilibrium gap s∗i of each vehicle i is
decided by Fi(s∗i ,0,v

∗) = 0. Define state variations around
the equilibrium spacing s∗i and speed v∗,

s̃i(t) = si(t)− s⋆i , (5)
ṽi(t) = vi(t)− v⋆, (6)

the linearized dynamics for the HV are obtained from (1)-(2)
as

˙̃si(t) = ṽi−1(t)− ṽi(t), (7)
˙̃vi(t) = ai1s̃i(t)−ai2ṽi(t)+ai3ṽi−1(t), (8)

where

ai1 =
∂Fi

∂ si
, ai2 =

∂Fi

∂ ṡi
− ∂Fi

∂vi
, ai3 =

∂Fi

∂ ṡi
, (9)

are evaluated at the steady states (s∗i ,0,v
∗). And the lin-

earized dynamics for the CAV are

˙̃s0(t) = ṽ−1(t)− ṽ0(t), (10)
˙̃v0(t) = u(t − τ). (11)

The state of the linearized mixed autonomy traffic model
is

x = [s̃0, ṽ0, s̃1, ṽ1, · · · , s̃N , ṽN ]
⊤ ∈ Rn, (12)

with n = 2N+1. The linearized system model with actuation
delay is

ẋ(t) = Ax(t)+Bu(t − τ)+Dr(t), (13)

with the disturbance r(t) = ṽ−1(t), and the coefficients being

A=


P0
Q1 P1

. . . . . .
QN PN

,B=


b0

02×1
...

02×1

,D=


d0

02×1
...

02×1

, (14)

where

P0=

[
0, −1
0, 0

]
,Pi=

[
0, −1

ai1, −ai2

]
, Qi=

[
0, 1
0, ai3

]
,b0=

[
0
1

]
,d0=

[
1
0

]
.
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B. Nominal feedback controller without input delay

A nominal controller for the platoon (13) without delay
is given by the feedback law considering the states of both
leading and following vehicles [21],

u0(t) =a1s̃0(t)−a2ṽ0(t)+a3ṽ−1(t)+
N

∑
i=1

(µis̃i(t)+kiṽi(t))

=Kx(t)+a3r(t), (15)

with a feedback gain K = [α1,−α2,µ1,k1, · · · ,µN ,kN ].
The string stability of a platoon is introduced to describe

the attenuation of perturbations from the leading vehicle to
the following vehicle. The definition is given as follows.

Definition 1 ( [21] Head-to-tail string stability ). A platoon
is head-to-tail string stable if and only if

|Γ( jω)|2 ≤ 1, ω ≥ 0, (16)

where the head-to-tail transfer function is

Γ(s) =
ṼN(s)

Ṽ−1(s)
, (17)

with ṼN(s) and Ṽ−1(s) being the Laplace transform of speed
perturbation of tail HV-N and head HV −1 respectively.

For the system (13) with the feedback controller in (15),
by choosing the feedback gain K to satisfy (16), the platoon
is string stable. But this nominal controller can violate
safety (15), namely causing rear-end collisions. We design
a safety-critical controller to guarantee safety in the next
section.

III. DELAY-COMPENSATING SAFETY-CRITICAL TRAFFIC
CONTROL

In this section, we introduce the proposed RSTC controller
to guarantee safety under input delay and disturbances. We
present and prove the safety constraints in Theorem 2.

A. State predictor and delay compensation

Given the mixed autonomy traffic model (13), the state at
t + τ is decided by the state at t, the historical input u from
t − τ to t, and the disturbance r from t to t + τ as

x(t + τ) =eAτ x(t)+
∫

τ

0
eA(τ−θ)Bu(t +θ − τ)dθ

+
∫

τ

0
eA(τ−θ)Dr(t +θ)dθ . (18)

The future speed of HHV is typically unavailable, and thus
we design a predictor to get the predicted state xp(t) as

xp(t) =eAτ x(t)+
∫

τ

0
eA(τ−θ)Bu(t +θ − τ)dθ

+
∫

τ

0
eA(τ−θ)Dr(t)dθ . (19)

To compensate for the input delay, we use the predicted
state xp(t) in (19) to get the nominal controller as

u0(t) = Kxp(t)+a3r(t). (20)

Since we mainly focus on safe guarantee of the delayed con-
trol, the string stability of the controller (20) with inaccurate
prediction and disturbance is beyond the scope of this paper
and can be found in [9].

B. Safe spacing policy

To avoid rear-end collisions, we adopt the straightforward
and common Constant Time Headway (CTH) spacing policy.
For each vehicle i, its gap should satisfy

si ≥ ψivi, ∀i = 0,1, · · · ,N, (21)

with ψi > 0 being the time headway. The safe set for each
vehicle is

Ci = {x ∈ Rn : hi(x)≥ 0} , (22)

with

hi(x) = si −ψivi = s̃i −ψiṽi + s∗−ψiv∗. (23)

To meet the safety constraints (21), we adopt the control
barrier function.

Definition 2 ( [3]Control barrier function). Consider an
affine control system

ẋ = f (x)+g(x)u, (24)

with x ∈ D ⊂ Rn1 , u ∈ U ⊂ Rn2 , f and g locally Lipschitz,
let C be the superlevel set of a continuously differentiable
function h : D →R, the function h is called a control barrier
function for the system (24) on C if there exists an extended
class K∞ function α such that

sup
u∈U

L f h(x)+Lgh(x)u ≥−α(h(x)), ∀x ∈ D , (25)

with L f h = ∇h(x) · f (x) and Lgh = ∇h(x) ·g(x) being the Lie
derivatives.

The safety constraint is guaranteed by CBF in Theorem 1.

Theorem 1. [3] If h is a control barrier function and ∂h
∂x ̸= 0

for all x ∈ ∂C , then any Lipschitz continuous controller u
satisfies

L f h(x)+Lgh(x)≥−α(h(x)), (26)

renders the set C forward invariant, i.e, for all x(0) ∈ C ,
x(t) ∈ C .

When there is no input delay in the mixed autonomy
model (13), i.e., τ = 0, CBF guarantees safety with f (x) =
Ax +Dr and g(x) = B. When there is an input delay, we
derive safety constraints in the next section.

C. Safety by robust CBF under prediction error

We first make the following assumptions.

Assumption 1. The system is safe before the control input
u(0) is actuated, i.e., x(t)∈Ci holds for all t ∈ [0,τ) and for
all i = 0,1, · · · ,N.

Assumption 2. For the disturbance r(t), its derivative ṙ(t)
is bounded

a ≤ ṙ(t)≤ ā, ∀t ≥ 0. (27)
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Since r(t) is the speed perturbation of the leading vehicle,
Assumption 2 indicates the accelerations and decelerations
of the leading vehicle are physically bounded by ā and a,
which always hold in practice.

Theorem 2 (Safety for mixed autonomy). Under Assumption
1 and Assumption 2, for the mixed autonomy system (13), if
a Lipschitz continuous controller u(t) satisfies

L f h0(xp(t))+Lgh0(xp(t))u(t)≥−α0(h0(xp(t)))+M0(t),
(28)

where f (x(t)) = Ax(t), g(x(t)) = B, xp (t) is the predicted
state by (19), α0 is an extended class K∞ function, the
function M0(t) : R+ → R reflects the effect of delay τ and
disturbances on safety and is defined as

M0(t) =α0(h0(xp(t)))−α0(h0(xp(t))+aτ
2/2)

− (r(t)+aτ), (29)

then the safe set for CAV C0 (22) is forward invariant. If u
also satisfies

L f hr
i(xp(t))+Lghr

i(xp(t))u(t)≥−αi(hr
i(xp(t)))+Mi(t),

(30)

where αi is an extended class K∞ function, the function hr
i :

Rn → R is defined as:

hr
i(x) = hi(x)−ηih0(x)−ηiaτ

2/2, (31)

with ηi > 0, and the function Mi(t) : R+ → R is defined as

Mi(t) =αi(hr
i(xp(t)))−αi(hr

i(xp(t))−aηiτ
2/2)

+ηi(r(t)+ āτ), (32)

then the safe set for HV-i Ci (22) is forward invariant.

Proof. We first prove the safety constraint for the CAV (28).
For the predictor (18), the prediction error is

xe = x(t + τ)− xp(t)

=
∫

τ

0
eA(τ−θ)D(r(t +θ)− r(t))dθ . (33)

From the model coefficients in (14), we have

eA(τ−θ)D = D = [1,0, · · · ,0]⊤, (34)

which indicates that there is only a prediction error for the
CAV’s gap. Denote s0,p(t) and v0,p(t) as the predicted gap
and speed for CAV, we have from Assumption 2:

s0(t + τ)− s0,p(t) =
∫

τ

0
(r(t +θ)− r(t))dθ ≥ aτ2

2
, (35)

v0(t + τ)− v0,p(t) = 0. (36)

By the prediction error (35)-(36), we see that to meet the
safe gap condition in (21), it is sufficient to satisfy

s0,p (t)+aτ
2/2 ≥ ψ0v0,p (t) , (37)

If we define a robust safety function h0R(x) : Rn → R as

h0R(x) = h0(x)+aτ
2/2, (38)

then we have h0R(xp(t))≥ 0 =⇒ h0(x(t + τ))≥ 0.

The dynamics of the predictor is

ẋp(t) = Axp(t)+Bu(t)+Dr(t)+Dτ ṙ(t). (39)

By the definition of h0R(x) and h0(x), we have

∂h0R(xp)

∂xp
=

∂h0(xp)

∂xp
=
[
H0 01×2 · · ·01×2

]⊤
, (40)

with H0 = [1,−ψ0]. So the time derivative of h0R(xp(t)) is:

ḣ0R(xp(t)) =L f h0(xp(t))+Lgh0(xp(t))u(t)

+
∂h0(xp(t))

∂xp
D(r(t)+ τ ṙ(t)). (41)

To guarantee h0R(xp(t))≥ 0, the controller should satisfy

ḣ0R(xp(t))≥−α0(h0R(xp(t))). (42)

However, since ṙ(t), the acceleration of the head vehicle
is unknown, ḣ0R(xp(t)) is also unknown. From the model
coefficient D in (14), we have

∂h0(xp(t))
∂xp

D = 1 > 0. (43)

So we have

ḣ0R(xp(t))≥L f h0(xp(t))+Lgh0(xp(t))u(t)

+ r(t)+ τa, (44)

where a is a bound on ṙ in Assumption 2. To meet (42), it
is sufficient to have (28).

Now we prove the safety constraints for HVs (30). By the
prediction error derived in (33) and (34), we have that there is
no prediction error for HV-i’s gap and speed, and hi (xp (t))≥
0 =⇒ hi(x(t + τ)) ≥ 0. For hi, it has a relative degree i+
1 with respect to the control input. While high-order CBF
can be designed [24], it usually requires a more complex
formulation that is sensitive to parameters [3]. To avoid this,
we design a reduced-order CBF candidate with a relative
degree one for the HV as hr

i in (31). It is straightforward
that if h0R(xp) ≥ 0 and hr

i(xp) ≥ 0, then hi(xp) ≥ 0, which
implies that the original safe criterion hi(x(t + τ)) is met.

The time derivative of hr
i(xp(t)) is

ḣr
i(xp(t)) =L f hr

i(xp(t))+Lghr
i(xp(t))u(t)

+
∂hr

i(xp)

∂xp
D(r(t)+ τ ṙ(t)). (45)

where
∂hr

i(xp)

∂xp
=
[
−ηiH0 01×2 · · · Hi · · · 01×2

]⊤
, (46)

with Hi = [1,−ψi]. To guarantee hr
i(xp(t)) ≥ 0, the control

input u should satisfy

ḣr
i (xp (t))≥−αi (hr

i (xp (t))) . (47)

We note that
∂hr

i(xp)

∂xp
D =−ηi < 0, (48)

so a sufficient condition for (47) is (30). ■
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TABLE I
ACCELERATION OF VEHICLES

Scenario 1 Scenario 2

HHV
aH if t ∈ [5,5+ tH ];
−aH if t ∈ (5+ tH ,5+2tH ];
0 otherwise

0

CAV (20) for nominal controller
(49) RSTC

(20) for nominal controller
(49) RSTC

HV1 (2) (2)

HV2 (2) aF if t ∈ [5,5+ tF ]
(2) otherwise RSTC

We note that there could be a conflict between safety
constraints for CAV (28) and for HVs (30). To make the
problem feasible, we prioritize safety for the CAV by setting
(28) as a hard constraint and (30) as soft constraints. This
can be justified by the following three reasons: the controller
carries primary responsibility for CAV safety; a collision on
CAV also affects HVs but not vice versa; human drivers will
take active actions to avoid collisions in risky scenarios. We
formulate the QP (49) to solve a safety-critical control input:

u = argmin
u∈R,σi≥0

|u−u0|2 +
N

∑
i=1

piσ
2
i (49)

s.t.
L f h0(xp)+Lgh0(xp)u+α0(h0(xp))+M0 ≥ 0,
L f hr

1(xp)+Lghr
1(xp)u+α1(hr

1(xp))+M1 +σ1 ≥ 0,
...

L f hr
N(xp)+Lghr

N(xp)u+αN(hr
N(xp))+MN +σN ≥ 0,

with xp = xp(t) being the predicted state by (19), σi being
slack variables, and pi being penalty coefficients.

In (49) although we include slack variable σi for HVs, the
safety constraint for the CAV is satisfied. In the related work
[8], [15], the safety constraint for the CAV is also relaxed,
which means there can be safety violations for the CAV.

IV. SIMULATION

In this section, we run numerical simulations to demon-
strate the safety guarantee of the RSTC controller.

A. Simulation setting

We consider a platoon of N = 4 HVs. For the car-following
model F(s, ṡ,v) in (2), we use the Optimal Velocity Model
(OVM),

Fi(si, ṡi,vi) = a(V (si)− vi)+bṡi, (50)

where V (s) is the desired speed-gap relationship as

V (s) =


0, s ≤ sst,
vmax

2

(
1− cos

(
π

s−sst
sgo−sst

))
, sst < s < sgo,

vmax, s ≥ sgo,

.

(51)
We take the parameters as a= 0.6, b= 0.9, sst = 5 m, sst = 40
m, and vmax = 35 m/s. We set the equilibrium speed as v∗ =
20 m/s, and the the equilibrium gap is decided by V (s∗) = v∗

as s∗ = 24 m.
We set the delay as τ = 0.4 s. For the nominal con-

troller (20), we set the feedback gain as µi =−2 and ki = 0.2.
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Fig. 2. Profile of gap, speed, and acceleration of the nominal controller
and RSTC controller in Scenario 1.

For the safe spacing policy CTH (21), we take the time
headway as ψ0 = 0.5 s for the CAV and ψi = 1 s for following
HVs.

We consider two practical safety-critical traffic scenarios
that can cause rear-end collisions in practice:

• Scenario 1: The HHV suddenly decelerates. This hap-
pens when there is cut-in behavior or obstacles on the
road.

• Scenario 2: The HV suddenly accelerates. This can
cause due to fatigue driving or wrong operations of the
human driver.

The acceleration of the four vehicles is listed in Table I.

B. Safety improvement

For Scenario 1, we set the deceleration of HHV as aH =
5 m/s2 with a duration of tH = 3.6 s. In Fig. 2, we plot
the gap s, speed v, and acceleration a of the platoon got
by the nominal controller (20) and the proposed RSTC
controller (49). We see that when the HHV decelerates, the
nominal controller gives smaller deceleration, which makes
the platoon string stable but causes a collision, i.e., s0 < 0
as in Fig. 2(a). The proposed RSTC controller gives a
larger deceleration to avoid the collision. In Fig. 3, we give
the gap, speed, and acceleration profile in Scenario 2 with
aF = 5 m/s2 and tF = 2.6 s. Similarly, the RSTC controller
improves safety and avoids the rear-end collision.

V. CONCLUSION

In this paper, we propose a robust safety-critical traffic
controller for mixed autonomy with input delay and external
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Fig. 3. Profile of gap, speed, and acceleration of the nominal controller
and RSTC controller in Scenario 2.

disturbance. A state predictor is adopted to predict the system
state with bounded error. The CBF is utilized to construct
safety constraints for CAV and HVs. By simulation, we show
that the proposed RSTC controller avoids rear-end collision
and allows for a larger safe range of speed perturbation in the
platoon. Future work of interest includes considering state
delay and the safe controller with multiple CAVs.
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