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Abstract— This paper investigates the event-driven asyn-
chronous filter for positive Markov jump systems (PMJSs) by
employing hidden Markov model. Based on the output of sensor
measurement, a weighted event-driven threshold is established
in the form of 1-norm. The stability of the corresponding
augmented system is achieved by transforming the error signal
into interval uncertain form. Under the established driven
condition, an event-driven positive `1-gain asynchronous filter
is constructed for PMJSs. Then, the asynchronous filter design
for PMJSs with partial information of hidden Markov model
is further addressed. All conditions are described in the linear
programming (LP) form. Finally, one example is given to
illustrate the validity of the proposed design.

I. INTRODUCTION

In the real world, there are some important dynamic
processes which can be described by positive systems [1]
such as formation flying, electronic circuits, urban water
management, and so on. PMJSs composed of several positive
subsystems and a Markov process have attracted much
attention in the control filed. Different from Markov jump
systems [2]-[4], PMJSs have distinct research approaches. In
the literature [5], 1-moment stability, exponential mean and
almost-sure stability of PMJSs were addressed. Stochastic
stability and control synthesis of PMJSs were investigated
by virtue of an LP-based framework [6]. In [7], the issue
of `1-gain stability was explored and a positive `1-gain filter
was constructed using some special properties of the system
matrices of positive systems. The literature [8] considered
mean stability of PMJSs. More achievements on PMJSs can
be found in [9]-[14].

Event-driven mechanism is one of significant strategies
in practice. In [15], a distributed event-driven framework
was proposed for dealing with the cooperative control of
large scale multi-agents. A dynamic triggered threshold
was also introduced in [16]. The research status of event-
driven approach was further explored in [17], [18]. The
literature [19] presented a so-called hybrid-driven mechanism
for the stability of networked control systems. The hybrid-
driven mechanism introduces a stochastic signal that orches-
trates when and how the state/output and the corresponding
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sampling signal switch. It balances the time-triggered and
event-driven mechanisms by virtue of the stochastic signal.
Hybrid-driven mechanism was developed to investigate the
guaranteed cost control of networked systems in [20]-[22].
Some results have also been published for the event-driven
topics of positive systems [23]-[26]. It should be pointed
out that the error term between sampled state and real-time
state was assumed to keep decreasing in [24], [25] and the
weight of every sensor output was assumed to be the same
in [26]. However, few results on PMJSs with event-driven
mechanism are reported. This paper is to construct a new
framework on event-driven filter of PMJSs.

This paper is concerned with the `1-gain asynchronous
filter of PMJSs. The main contributions are as follows:
(i) A weighted event-driven linear threshold is established
for the systems, where the weighted coefficients of the
threshold are different for different sensors, (ii) An event-
driven asynchronous filter is proposed for PMJSs using a
filter matrix decomposition technique, and (iii) A hidden
Markov chain-based asynchronous filter is proposed for
PMJSs. The remainder of this paper is structured as follows:
Some preliminaries are given in Section II, main results are
presented in Section III, Section IV provides one example,
and Section V concludes this paper.

Notation: The symbols � 0,� 0,�,≺ hold for compo-
nents. A> represents the transpose of A. I stands for the
identity matrix. diag(x1, x2, . . . , xn) represents a diagonal
matrix with diagonal elements x1, x2, · · · , xn. 1n is an n-
dimensional vector whose elements are all 1. 1(ı)

n is a vector
whose ıth element is 1 and other elements are 0. E{·} stands
for the mathematical expectation operation.

II. PRELIMINARIES

Consider the Markov jump system:

x(k + 1) = Arkx(k) +Brkw(k),
y(k) = Crkx(k) +Drkw(k),
z(k) = Erkx(k) + Frkw(k),

(1)

where x(k) ∈ Rn, z(k) ∈ Rg, y(k) ∈ Rh, w(k) ∈ Rm+ are
the state, the controlled output, the measurable output, and
the exogenous disturbance, respectively; rk = i ∈ S1 =
{1, 2, . . . , N} is a homogeneous Markov process with the
transition probability: Pr(rk+1 = j | rk = i) = πij ,
where 0 ≤ πij ≤ 1 with

∑N
j=1 πij = 1 for i, j ∈ S1;

Ark , Brk , Crk , Drk , Erk , and Frk are system matrices with
appropriate dimensions. Let Ai = Ark , Bi = Brk , Ci =
Crk , Di = Drk , Ei = Erk , and Fi = Frk for rk = i. In
the paper, it is assumed that Ai � 0, Bi � 0, Ci � 0, Di �
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0, Ei � 0, and Fi � 0.
Definition 1 ([1]) A system is positive if all its states and
outputs are nonnegative whenever initial condition and input
are nonnegative.
Lemma 1 ([1]) A system

x(k + 1) = Ax(k) +Bw(k),
y(k) = Cx(k) +Dw(k),
z(k) = Ex(k) + Fw(k),

is positive iff A � 0, B � 0, C � 0, D � 0, E � 0, and
F � 0.

By Lemma 1, it follows that the system (1) is a positive
Markov jump system.
Lemma 2 ([1]) Given a positive system x(k+ 1) = Ax(k),
the Schur property of A is equivalent to (A− I)>v ≺ 0 for
v � 0.

By Lemma 1 and the assumptions on the system matrices,
the system (1) is a positive Markov jump system.
Definition 2 ([9]) The system (1) with w(k) = 0 is stochas-
tically stable if for any initial mode r0 ∈ {1, 2, · · · , N} and
initial state x(0) � 0 it holds that:

lim
k→∞

E
{∑k

t=0 ‖x(t)‖1 | x(0), r0

}
≤ x>(0)%, (2)

where % � 0 with % ∈ Rn.
Definition 3 The system (1) is `1-gain stable, if it is
stochastically stable for w(k) = 0 and

‖y(k)‖`1 < γ‖w(k)‖`1 (3)

holds under the zero initial condition and w(k) 6= 0, where
γ > 0 is the gain value.

III. MAIN RESULTS

In this section, a positive event-driven `1-gain asyn-
chronous filter is designed for PMJSs such that the corre-
sponding error system is positive and stochastically stable
with an `1-gain performance. Then, hybrid-driven mecha-
nism is introduced into PMJSs to consider the issue of `1-
gain asynchronous filtering. Based on the hidden Markov
model, the positive asynchronous `1-gain filter design will be
investigated. For convenience of later development, denote
πj = max{πij , i ∈ S1}. Define a piecewise vector-valued
function y(k), where y(k) = y(kl), k ∈ [kl, kl+1), l ∈ N,
and kl is the lth event-driven time instant. Denote the error
ye(k) = y(k) − y(k). The event-driven condition can be
established as:

‖Λye(k)‖1 > β‖Λy(k)‖1, (4)

where 0 < β < 1, Λ = diag(ε1, ε2, . . . , εh), and
ε1, ε2, · · · , εh are positive known constants.
Remark 1 In (4), a linear weighted event-driven condition
is constructed by 1-norm. In [26], a linear triggering condi-
tion was also established, where the weight coefficients of
different sensor outputs were the same. This implies that the
triggering framework in [26] is a special case of (4). It is
also clear that one can replace (4) via a more general case
‖Λ1ye(k)‖1 > β‖Λ2y(k)‖1, where Λ1 may not be equal to
Λ2. The event-driven filter based on (4) to be proposed later

is easy to be developed for the corresponding filter based on
the more general case. Therefore, we only consider the case
(4).

In this paper, we establish an asynchronous filter frame-
work on PMJSs. A hidden Markov model approach is
employed to describe the phenomena between the filter and
the original system. An event-driven asynchronous filter is
constructed as:

xf (k + 1) = Afδkxf (k) +Bfδk ỹ(k),

zf (k) = Efδkxf (k) + Ffδk ỹ(k),
(5)

where the matrices Afδk , Bfδk , Efδk , and Ffδk are gain
matrices, xf (k) is the filter state, zf (k) is the estimation
of z(k), and ỹ(k) = y(k). The term δk = ρ ∈ S2 =
{1, 2, . . . ,M} is to describe the asynchronous phenomena. It
satisfies the conditional probability Pr{δk =  | rk = j} =
λj, which is subject to a hidden Markov model and follows∑M
=1 λj = 1, 0 ≤ λj ≤ 1. Let x̃(k) = (x>(k) x>f (k))>

and e(k) = zf (k) − z(k). Then, the corresponding error
system can be given as:

x̃(k + 1) = Ãrk,δk x̃(k) + B̃rk,δkw(k) + B̃fδkye(k),

e(k) = Ẽrk,δk x̃(k) + F̃rk,δkw(k) + Ffδkye(k),
(6)

where

Ãrk,δk =

(
Ark 0

BfδkCrk Afδk

)
, B̃fδk =

(
0

Bfδk

)
,

B̃rk,δk =

(
Brk

BfδkDrk

)
, F̃rk,δk = FfδkDrk − Frk ,

Ẽrk,δk =
(
FfδkCrk − Erk Efδk

)
.

For convenience, denote Afρ = Afδk , Bfρ = Bfδk , Efρ =
Efδk , and Ffρ = Ffδk for δk = ρ. Let Θi = {πij | j ∈
S1},Ωi = {λi |  ∈ S2}.
Theorem 1 If there exist constants τ > 0 and γ > 0, Rn
vectors v(i)

1 � 0, v(ρ)
2 � 0, ϕρl � 0, ϑρl � 0, ϕρ � 0,

ϑρ � 0, and Rh vectors φρl � 0, ψρl � 0, φρ � 0, ψρ � 0
such that ∑n

l=1 1
(l)
n ψ>ρl

(
I − βΛ−11hε

>)Ci � 0, (7a)∑n
l=1 1

(l)
n ψ>ρl

(
I − βΛ−11hε

>)Di � 0, (7b)∑g
l=1 1

(l)
g φ>ρl

(
I − βΛ−11hε

>)Ci − gEi � 0, (7c)∑g
l=1 1

(l)
g φ>ρl

(
I − βΛ−11hε

>)Di − gFi � 0, (7d)

ϕρ + ϑρ + τ1n − v(ρ)
2 ≺ 0, (7e)

C>i
(
I + βε1>h Λ−1

)
(ψρ + φρ)− E>i 1g + τ1n

+A>i
∑N
j=1 πijv

(j)
1 − v

(i)
1 ≺ 0,

(7f)

D>i
(
I + βε1>h Λ−1

)
(ψρ + φρ)− F>i 1g

+B>i
∑N
j=1 πijv

(j)
1 − γ1m � 0,

(7g)

ϕρl � ϕρ, ψρl � ψρ, l = 1, 2, · · · , n, (7h)

ϑρl � ϑρ, φρl � φρ, l = 1, 2, · · · , g, (7i)
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hold for i ∈ S1 and ρ ∈ S2, then a positive event-driven
`1-gain asynchronous filter can be designed as (5) with

Afρ =

∑n
l=1 1

(l)
n ϕ>ρl∑N

j=1 πj
∑M
=1 λj1

>
n v

()
2

,

Bfρ =
∑n
l=1 1(l)

n ψ>
ρl∑N

j=1 πj
∑M
=1 λj1

>
n v

()
2

,

Efρ =

∑g
l=1 1

(l)
g ϑ>ρl

g
, Ffρ =

∑g
l=1 1

(l)
g φ>ρl

g
,

(8)

and the system (6) is positive and stochastically stable.
Proof Give x(0) � 0 and xf (0) � 0, that is, x̃(0) � 0. By
Lemma 1, y(k) � 0. From the event-driven condition (4), it
follows −βΛ−11hε

>y(0) � ye(0) � βΛ−11hε
>y(0). Then,

the system (6) can be transformed into

x̃(1) � Ai,ρx̃(0) +Bi,ρw(0),
e(0) � Ei,ρx̃(0) + F i,ρw(0),

(9)

where

Ai,ρ =

(
Ai 0

Bfρ
(
I − βΛ−11hε

>)Ci Afρ

)
,

Bi,ρ =

(
Bi

Bfρ
(
I − βΛ−11hε

>)Di

)
,

Ei,ρ =
(
Ffρ
(
I − βΛ−11hε

>)Ci − Ei Efρ
)
,

F i,ρ =
(
Ffρ
(
I − βΛ−11hε

>)Di − Fi
)
.

Using (7h), (7i), and (8), it gives Afρ � 0, Bfρ � 0, Efρ �
0, and Ffρ � 0. By (7a), (7b), (7c), (7d), and (8), it can be
obtained that Ai,ρ � 0, Bi,ρ � 0, Ei,ρ � 0, and F i,ρ � 0.
According to Lemma 1, we have x̃(1) � 0 and e(0) � 0.
By mathematical production, we obtain that x̃(k) � 0 and
e(k) � 0 hold for k = 0, 1, 2, · · · . This implies that the
system (6) is positive.

Construct a linear stochastic Lyapunov function as

V (x̃(k), rk = i, δk = ρ) = x̃>(k)v(i), (10)

where v(i) =
(
v

(i)>
1 v

(ρ)>
2

)>
. Using (4) gives

x̃(k + 1) � Ai,ρx̃(k) +Bi,ρw(k),
e(k) � Ei,ρx̃(k) + F i,ρw(k),

(11)

where

Ai,ρ =

(
Ai 0

Bfρ
(
I + βΛ−11hε

>)Ci Afρ

)
,

Bi,ρ =

(
Bi

Bfρ
(
I + βΛ−11hε

>)Di

)
,

Ei,ρ =
(
Ffρ
(
I + βΛ−11hε

>)Ci − Ei Efρ
)
,

F i,ρ =
(
Ffρ
(
I + βΛ−11hε

>)Di − Fi
)
.

Then,

E{∆V (x̃(k), rk = i, δk = ρ)}

≤E{x̃>(k)
(
A
>
i,ρv

(rk+1) + E
>
i,ρ1g

)
+ w>(k)

(
F
>
i,ρ1g +B

>
i,ρv

(rk+1)
)

− e>(k)1g | rk = i, δk = ρ} − x̃>(k)v(i).

(12)

By (7h), (7i) and (8), the following relations hold:

E{A>i,ρv(rk+1) | rk = i, δk = ρ}

�

(
A>i

∑N
j=1 πijv

(j)
1 + C>i

(
I + βε1hΛ−1

)
ϕρ

ϕρ

)
,

E{B>i,ρv(rk+1) | rk = i, δk = ρ}
�
(
B>i

∑N
j=1 πijv

(j)
1 +D>i

(
I + βε1>h Λ−1

)
ψρ

)
,

E{E>i,ρ1g | rk = i, δk = ρ}

�
(
C>i
(
I + βε1>h Λ−1

)
φρ

ϑρ

)
,

E{F>i,ρ1g | rk = i, δk = ρ}
� D>i

(
I + βε1>h Λ−1

)
φρ − F>i 1g.

Then, it gives

E{A>i,ρv(rk+1) + E
>
i,ρ1g | rk = i, δk = ρ}

�

(
A>i

∑N
j=1 πijv

(j)
1 + C>i

(
I + βε1hΛ−1

)
(ϕρ + φρ)

ϕρ + ϑρ

)
and

E{B>i,ρv(rk+1) + F
>
i,ρ1g | rk = i, δk = ρ}

� D>i
(
I + βε1>h Λ−1

)
(ψρ + ψρ)

+B>i
∑N
j=1 πijv

(j)
1 − F>i 1g.

By (7g), we have

E{B>i,ρv(rk+1) + F
>
i,ρ1g | rk = i, δk = ρ} � γ1m. (13)

Therefore, (12) can be transformed into (14). Using (7e) and
(7f), it yields that

E{∆V (x̃(k), rk = i, δk = ρ)}
≤ − τ x̃>(k)12n + γw>(k)1m − e>(k)1g.

(15)

Then, ∑∞
k=0 E{∆V (x̃(k), rk = i, δk = ρ)}

≤
∑∞
k=0 E{−τ x̃>(k)12n + γw>(k)1m − e>(k)1g}.

Together with w(k) = 0 and e(k) � 0 derives that∑∞
k=0 E{∆V (x̃(k), rk = i, δk = ρ)}
≤ −τ

∑∞
k=0 E{x̃>(k)12n},

which implies that
∑∞
t=0 ‖x̃(k)‖1 ≤ 1

τ x̃
>(0)v(r0). By Defi-

nition 2, the system (6) is stochastically stable. When w(k) 6=
0 and x̃(0) = 0, we can obtain
∞∑
k=0

e>(k)1g ≤
∞∑
k=0

{
γw>(k)1m − τ x̃>(k)12n

− E{∆V (x̃(k), rk = i, δk = ρ)}
}

≤ γ
∑∞
k=0 w

>(k)1m.

(16)

By Definition 3, γ is the `1-gain performance value of the
system (6). �
Remark 2 A time-triggering strategy was employed for
designing the filter and controller in [14]. Theorem 1 address-
es a linear approach to the asynchronous filter of PMJSs.
The linear approach refers to linear copositive Lyapunov
functions and LP computation conditions. It has been stated
in the literature [1], [6], [7], [10]-[12] that such a linear
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E{∆V (x̃(k), rk = i, δk = ρ)} ≤x̃>(k)

(
A>i

∑N
j=1 πijv

(j)
1 + C>i

(
I + βε1hΛ−1

)
(ϕρ + φρ)− v(i)

1

ϕρ + ϑρ − v(ρ)
2

)
+ γw>(k)1m − e>(k)1g.

(14)

approach is more suitable for dealing with the issues of
positive systems. Moreover, Theorem 1 constructs a new
filter framework (5). Under such a framework, the filtering
issues of PMJSs are easily solved. It should be pointed
out that the framework (5) can be directly applied for the
filter design of other hybrid positive systems. Let β = 0,
which implies that the even-driven condition (4) is changed
as time-driven one. The design in Theorem 1 is reduced to
the corresponding design in the literature.

In industrial applications, the probability parameters πij
and λj are usually partly known. The following theorem will
develop the filter framework (5) for the system (1) with partly
known probabilities. Denote Θ1 = {πij | rk = i, rk+1 = j ∈
S1, πij is known}, Θ2 = {πij | rk = i, rk+1 = j ∈ S1, πij
is unknown}, Ω1 = {λj | rk = j, δk = ,  ∈ S2, λj is
known}, and Ω2 = {λj | rk = j, δk = ,  ∈ S2, λj is
unknown}. This reveals that Θ1 ∪ Θ2 = Θ and Ω1 ∪ Ω2 =

Ω. Let πij =

{
πij , if πij ∈ Θ1,

1−
∑N
l=1 πil, πil ∈ Θ1, if πij ∈ Θ2,

λj =

{
λj, if λj ∈ Ω1,

1−
∑M
l=1 λjl, λjl ∈ Ω1, if λj ∈ Ω2.

Set π̃j =

max{πij , i ∈ S1}.
Theorem 2 If there exist constants γ > 0, ε > 0, Rn vectors
v

(i)
1 � 0, v(ρ)

2 � 0, u1 � 0, u2 � 0, u3 � 0, ϕρl � 0,
ϑρl � 0, ϕρ � 0, ϑρ � 0, and Rh vectors φρl � 0, ψρl � 0,
φρ � 0, ψρ � 0 such that∑g

l=1 1
(l)
g φ>ρl

(
I − βΛ−11hε

>)Ci − gEi � 0, (17a)∑n
l=1 1

(l)
n ψ>ρl

(
I − βΛ−11hε

>)Ci � 0, (17b)∑g
l=1 1

(l)
g φ>ρl

(
I − βΛ−11hε

>)Di − gFi � 0, (17c)∑n
l=1 1

(l)
n ψ>ρl

(
I − βΛ−11hε

>)Di � 0, (17d)

ϕρ + ϑρ + τ1n − v(ρ)
2 ≺ 0, (17e)

A>i
(∑

j∈Θ1
πijv

(j)
1 + (1−

∑
j∈Θ1

πij)u1

)
+C>i

(
I + βε1>h Λ−1

)
(ψρ + φρ)

−E>i 1g − v
(i)
1 + τ1n ≺ 0,

(17f)

B>i
(∑

j∈Θ1
πijv

(j)
1 + (1−

∑
j∈Θ1

πij)u1

)
+D>i

(
I + βε1>h Λ−1

)
(ψρ + φρ)

−F>i 1g − γ1m ≺ 0,

(17g)

v
(i)
1 � u1, v

(ρ)
2 � u2,

∑
∈Ω1

λjv
()
2

+(1−
∑
∈Ω1

λj)u2 � u3,
(17h)

0 � ϕρl � ϕρ, 0 � ψρl � ψρ, l = 1, 2, · · · , n, (17i)

0 � ϑρl � ϑρ, 0 � φρl � φρ, l = 1, 2, · · · , g, (17j)

hold for i ∈ S1, ρ ∈ S2, then a positive event-driven
asynchronous filter can be constructed as (5) with (18) and
the system (6) is positive and stochastically `1-gain stable.
Proof The positivity can be obtained by Theorem 1. Choose
a linear Lyapunov function as (10). Then,

∆V (x̃(k), rk = i, δk = ρ)

≤ x̃>(k)

(
A>i C>i (I + βε1>h Λ−1)B>fρ
0 A>fρ

)
×

(
v

(rk+1)
1

v
(δk+1)
2

)
− x̃>(k)

(
v

(i)
1

v
(ρ)
2

)

+w>(k)(B>i D>i (I + βε1>h Λ−1)B>fρ)

(
v

(rk+1)
1

v
(δk+1)
2

)
.

(19)
For rk = i, we have

E{v(rk+1)
1 | rk = i}

=
∑
j∈Θ1

πij(
∑
∈Ω1

λjv
()
2 +

∑
∈Ω2

λjv
()
2 )

+
∑
j∈Θ2

πij(
∑
∈Ω1

λjv
()
2 +

∑
∈Ω2

λjv
()
2 ).

By (17h),
∑
j∈Θ2

πij = 1 −
∑
j∈Θ1

πij , and
∑
∈Ω2

λj =
1−

∑
∈Ω1

λj, it yields that

E{v(rk+1)
1 | rk = i}

�
∑
j∈Θ1

πijv
(j)
1 + (1−

∑
j∈Θ1

πij)u1,

E{v(δk+1)
2 | rk = i}

�
∑
j∈Θ1

πij(
∑
∈Ω1

λjv
()
2

+(1−
∑
∈Ω1

λj)u2) + (1−
∑
j∈Θ1

πij)u3.

(20)

Denote ξ1 =
∑
j∈Θ1

πijv
(j)
1 + (1 −

∑
j∈Θ1

πij)u1 and
ξ2 =

∑N
j=1 π̃j

(∑
∈Ω1

λj1
>
n v

()
2 +(1−

∑
∈Ω1

λj)1
>
n u2 +

1>n u3

)
. Combining (19) and (20), it derives (21). By (17i)

and (17j), we obtain∑n
l=1 ψρl1

(l)>
n

1>n ξ2
ξ2 � ψρ + φρ − φρ

� ψρ + φρ −
∑g
l=1 φρl1

(l)>
g 1g

g
,∑n

l=1 ϕρl1
(l)>
n

1>n ξ2
ξ2 � ϕρ + ϑρ − ϑρ

� ϕρ + ϑρ −
∑g
l=1 ϑρl1

(l)>
g 1g

g
.

(22)

Together with (17e), (17f), and (17g) follows that
E{∆V (x̃(k), rk = i, δk = ρ)} ≤ −τ x̃>(k)12n− e>(k)1g +
γw>(k)1m. The remainder of the proof can be obtained by
Theorem 1 and is omitted. �
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Afρ =

∑n
l=1 1

(l)
n ϕ>ρl∑N

j=1,π̃j∈Θ1
π̃j
(∑

∈Ω1
λj1>n v

()
2 + (1−

∑
∈Ω1

λj)1>n u2

)
+
∑N
j=1,π̃j∈Θ2

π̃j1>n u3

, Efρ =

∑g
l=1 1

(l)
g ϑ>ρl

g
,

Bfρ =

∑n
l=1 1

(l)
n ψ>ρl∑N

j=1,π̃j∈Θ1
π̃j
(∑

∈Ω1
λj1>n v

()
2 + (1−

∑
∈Ω1

λj)1>n u2

)
+
∑N
j=1,π̃j∈Θ2

π̃j1>n u3

, Ffρ =

∑g
l=1 1

(l)
g φ>ρl

g
.

(18)

E {∆V (x̃(k), rk = i, δk = ρ)} ≤x̃>(k)

A>i ξ1 + C>i (I + βε1>h Λ−1)
∑n
l=1 ψρl1

(l)>
n

1>
n ξ2

ξ2 − v(i)
1∑n

l=1 ϕρl1
(l)>
n

1>n ξ2
ξ2 − v(ρ)

2


+ w>(k)×

(
B>i ξ1 +D>i (I + βε1>h Λ−1)

∑n
l=1 ψρl1

(l)>
n

1>
n ξ2

ξ2

)
.

(21)

IV. ILLUSTRATIVE EXAMPLE

In [27], the traffic in a circle road was modeled via a
positive switched system. In the traffic systems, the traffic
participants: vehicles and people entering the traffic road are
uncertain, abrupt changing, and random. Therefore, it is more
effective and practical to describe such a traffic problem in
terms of a stochastic system. Here, system (1) is introduced
for modeling the traffic problem, where there are three main
roads and two branch roads at the intersection. The number
of vehicles passing through each black spots is denoted as x1,
x2, and x3, respectively. The terms w1 and w2 represent the
exogenous inputs which may affect the traffic conditions. The
ιth row ℘th column element of the system matrix Ai stands
for the coefficient of the number of vehicles flowing from
one road to another one, the ιth row =th column element
of the system matrix Bi is the coefficient of the number of
vehicles from one road to one branch, Ci and Di are the
sensor coefficient matrices, and Ei and Fi are the system
output matrices.

Consider system (1) with three subsystems, where

A1 =

0.31 0.25 0.22
0.15 0.33 0.26
0.25 0.22 0.38

 ,

B1 =

0.25 0.22
0.17 0.26
0.24 0.20

 , C1 =

0.60 0.64
0.56 0.58
0.52 0.56

> ,
D1 =

(
0.49 0.51
0.52 0.47

)
, E1 =

0.22
0.21
0.19

> , F1 =

(
0.17
0.15

)>
,

A2 =

0.32 0.15 0.23
0.25 0.43 0.26
0.25 0.12 0.32

 ,

B2 =

0.16 0.16
0.20 0.16
0.15 0.17

 , C2 =

0.60 0.59
0.65 0.59
0.53 0.60

> ,
D2 =

(
0.63 0.63
0.60 0.61

)
, E2 =

0.20
0.21
0.21

> , F2 =

(
0.16
0.18

)>
,

and

A3 =

0.35 0.31 0.22
0.25 0.33 0.26
0.25 0.22 0.32

 ,

B3 =

0.17 0.21
0.15 0.18
0.22 0.22

 , C3 =

0.63 0.71
0.71 0.71
0.63 0.61

> ,
D3 =

(
0.56 0.63
0.60 0.54

)
, E3 =

0.19
0.21
0.22

> , F3 =

(
0.16
0.15

)>
.

Choose β = 0.11, Λ = diag{0.32, 0.85}, and the transition
probability and corresponding condition probability matrices:

Π1 =

0.80 0.10 0.10
0.10 0.70 0.20
0.08 0.12 0.80

 ,Π2 =

0.60 0.10 0.30
0.20 0.70 0.10
0.10 0.10 0.80

 .

By Theorem 1, the filter gain matrices are shown as (23) and
γ = 0.8077. Fig. 1 gives the simulations of the measurable
output and the filter output. Fig. 2 gives the event-triggered
time instants and release intervals. Fig. 3 provides the
simulation results of the measurable output and the filter
output under different initial conditions.

V. CONCLUSION

This paper investigates the event-driven `1-gain asyn-
chronous filter of PMJSs. Based on 1-norm, a weighted
event-triggered threshold is established. The asynchronous
filter framework with event-driven mechanism was construct-
ed by transforming the error term into interval uncertainty.
Moreover, an asynchronous filter is explored for PMJSs
with partial information measurement. All conditions are
formulated in the form of LP.
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