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Abstract— This article addresses the coverage control prob-
lems for heterogeneous mobile sensor networks (MSNs) in
an environment with unknown event density functions. In
contrast to existing works, unknown heterogeneous sensing
abilities of the mobile sensor network (MSN) are considered
by leveraging a weighted Voronoi diagram, namely, the Power
diagram. To guarantee that the time-varying Power diagram
converges to that defined by the true sensing weights, an online
weight learning law is designed. Moreover, to handle certain
applications such as forest fire investigation or nuclear radiation
leakage mapping where the density information for the events of
interest is not known to the MSN, an adaptive law is presented
so that the event density approximation of each sensor converges
to the real one along its trajectory. In addition, a move-to-
centroid control law is proposed to drive the MSN to a near-
optimal coverage configuration as time goes to infinity. Finally,
the effectiveness of the proposed approach is illustrated by an
example.

I. INTRODUCTION

Coverage control of mobile sensor networks (MSNs) has
attracted much attention in recent years due to its wide range
of applications, such as 3D structure surveillance, resilient
monitoring, and perimeter defense [1]–[3]. In coverage con-
trol, a group of mobile sensors is tasked to maximize the
likelihood of event detection with respect to their locations.
The events of interest represent certain features/phenomena
in the environment, such as forest fire temperature, chemical
amount, and nuclear radiation quantity. In most of these
applications, the density function of the concerned event
is not known to the MSNs a priori. Thus, considerable
effort has recently been devoted to achieving a near-optimal
coverage configuration in the presence of unknown event
density functions. One approach uses a mixture of Gaussian
processes to estimate this function [4], [5]. However, a
centralized master computational unit is needed to process all
collected samples. Another approach is to estimate the event
density function by a linear combination of known basis
functions, which is often referred to as adaptive coverage
control [6]–[9]. Compared with the first approach, this one
has the advantage of being fully distributed and can adapt
to a large-scale MSN. It is originally proposed in [6] for
sensors with single-integrator dynamics. It is then extended
to vehicles with unicycle dynamics in [7]. In [8], adaptive
coverage laws are proposed for differential-drive vehicles
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with not fully known dynamics. It is assumed in [6]–[8]
that the event density function can be exactly modeled by a
linear combination of basis functions. However, in practice,
such an assumption can be violated. For example, the event
of interest may be too complex to be modeled exactly by
a finite set of basis functions. In this case, a new adaptive
law based on the dead-zone function is proposed in [9] to
improve the robustness of the MSN.

Another typical assumption in most existing works on
coverage control is that each sensor has identical sensing
abilities. In practice, there exist different kinds of heterogene-
ity in sensors, such as service costs [10], [11], footprint size
differences [12], energy constraints [13], actuation variations
[14], or sensing performances [15]. In [10], [11], multi-
plicative weighted Voronoi diagrams are proposed to handle
different service costs for mobile sensors with integrator
and nonholonomic dynamics. In [12], Power diagrams are
used to tackle sensor footprint differences. Some results
mentioned above assume that the sensing differences in the
sensors are previously known to the MSNs [10]–[12]. In
real world applications, sensing abilities can degrade during
long-term deployment, which can lead to uncertainties of
these differences in the MSNs. Hence, it is important for
MSNs to learn these differences in an adaptive manner [13]–
[15]. In [13], a weight learning law is designed to handle
different energy constraints for integrator-type sensors. In
[14], actuation heterogeneity is considered with the coverage
control problem. In [15], sensing performance degradation
is estimated for team-based multiple MSNs. However, few
results have been reported to simultaneously consider the
MSN’s sensing heterogeneity and the event density uncer-
tainty for a coverage control problem.

Motivated by the above-mentioned observations, this work
investigates a coverage control problem for heterogeneous
mobile sensor networks in an unknown environment. The
main contributions of this work can be summarized as
follows. First, compared with [10]–[12], where the MSN is
assumed to have prior knowledge of their relative sensing
abilities, this work relaxes this assumption and an online
weight learning law is designed. Second, unlike previous
results [6]–[9], where no heterogeneity among sensors is con-
sidered, we propose a new adaptive law to compensate for the
influence of the time-varying learning weights. Third, a new
framework is proposed to deal with heterogeneous sensing
abilities and unknown density functions simultaneously. In
this framework, the weight learning process is integrated into
the basis function approximation scheme so that a move-to-
centroid control law can drive the MSN to a near-optimal
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coverage configuration.
Notations:Rn and Rm×n denote the space of all real n-

dimensional vectors and the space of all real m×n matrices,
respectively. For a vector x ∈ R2, ||x|| denotes its Euclidean
distance. 0n and 1n ∈ Rn represent vectors with all their
elements being 0 and 1, respectively. Im ∈ Rm×m is the
identity matrix. For a matrix M ∈ Rm×n, MT denotes its
transpose. Diag{k1, . . . , kN} ∈ RN×N represents a diagonal
matrix, whose diagonal elements are ki ∈ R, i = 1, . . . , N .
The symbol ⊗ represents the Kronecker product.

The remainder of this article is organized as follows.
The preliminaries and problem formulation are introduced
in Section II. A weight learning law, a distributed controller,
an adaptive law, and analysis of the closed-loop system are
presented in Section III. A simulation example is provided in
Section IV. Finally, some conclusions are stated in Section
V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph theory

Let Gw = {V,W} define an undirected weight-balanced
communication graph of the MSN, where V = {1, . . . , N}
is a set of nodes that represent the set of N sensors in the
network and W is a symmetric matrix called the weight
matrix, such that wij ≥ 0 for all i, j ∈ V , and wii = 0
for i ∈ V . We say that a set (i, j) is an edge if and only if
wij > 0. The Laplacian matrix Lw of the weighted graph
Gw is a N ×N matrix whose element is defined as follows,

Lw
ij =


−wij , if i ̸= j and wij > 0,∑
s∈V\i

wis, if i = j,

0, otherwise.

(1)

Laplacian matrix Lw is positive semi-definite and its simple
eigenvalue 0 is associated with the eigenvector c1N ,∀c ∈ R.

B. Problem formulation

Consider a group of N sensors moving in a mission space
Q ∈ R2. Assume that each sensor has first-order dynamics
described by

ṗi(t) = ui(t), (2)

where pi(t) ∈ R2 denotes the position of the sensor and
ui denotes its control input. The position of any point in
Q is denoted by q ∈ R2. The mission space contains an
event of interest, whose distribution can be modeled by a
density function ϕ(q). Suppose that the MSN has no prior
information of the density function. Let K : Q 7→ Rm

+

be a vector of bounded, continuous basis functions that
are available to the MSN. A basis function approximation
scheme is adopted by each sensor to estimate the density
function, that is,

ϕ̂i(q) = K(q)Tâi(t), (3)

where âi(t) ∈ Rm is the parameter vector that needs to be
updated in an adaptive manner. To facilitate the analysis for

density function estimation, the following standard assump-
tion is introduced [6]–[9].

Assumption 1: There exists an ideal parameter vector a ∈
Rm such that

ϕ(q) = K(q)Ta, (4)

where a is unknown to the MSN. Moreover,

a(j) ≥ amin,∀j = 1, . . . ,m, (5)

where a(j) denotes the jth element of the vector a, and
amin ∈ R>0 is a positive lower bound known to the MSN.
Under this assumption, the estimation error of the event
density function is defined as

ϕ̃i(q) = ϕ̂i(q)−ϕ(q) = K(q)Tâi(t)−K(q)Ta = K(q)Tãi(t),
(6)

with ãi(t) := âi(t) − a, which denotes the estimation error
of the parameter vector. The choices of basis functions in
Assumption 1 vary from Gaussian basis functions to other
local basis functions, such as the wavelets, sigmoids, and
splines. In the simulation part, we choose a set of Gaussian
basis functions, which is a common choice for a coverage
control problem [6]–[9].

The heterogeneous sensing abilities of the MSN are also
considered and are handled by a Power diagram. Specifically,
suppose that the sensing ability is described as follows,

γi(q, pi(t)) = −(||q − pi(t)||2 − αi), (7)

where αi ∈ R+ defines the sensing weight of sensor i.
Note that Euclidean distance is a commonly used metric for
coverage control problems under consideration of a convex
environment. Intuitively, (7) reflects the phenomenon that as
the distance of a point to a sensor increases and as the value
of the sensing weight decreases, the value of γi decreases.
The resulting Power diagram is now defined as follows,

V α
i = {q ∈ Q : γi(q, pi(t)) ≥ γj(q, pj(t)),∀j ∈ V \ {i}}, (8)

which implies that environmental points will be partitioned
to a sensor with a larger value of the sensing function γi.

Since the MSN has no prior information of the relative
sensing weights in this work, it cannot partition the envi-
ronment using the real sensing weights in (7). To this end,
sensors are assigned some random initial weights and the
corresponding Power diagram is defined as

Vi = {q ∈ Q : ||q − pi(t)||2 − wi(t) ≤ ||q − pj(t)||2 − wj(t),

∀j ∈ V \ {i}},
(9)

where wi(t) and wj(t) represent the estimated sensing
weights of sensor i and sensor j, respectively. The estimation
errors of the sensing weights are defined by

ei(t) = wi(t)− αi,∀i ∈ V. (10)

To facilitate the following analysis, some definitions are
introduced as follows. The estimated mass, first moment, and
centroid of each Power cell Vi are defined as

M̂Vi
=

∫
Vi

ϕ̂(q)dq, L̂Vi
=

∫
Vi

qϕ̂(q)dq, ĈVi
=

L̂Vi

M̂Vi

, (11)
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respectively. Furthermore, the following definitions of a
near-optimal coverage configuration and locally true density
function approximation are adapted for this work from [6].

Definition 1 (Near-optimal coverage configuration):
An MSN is said to be in a near-optimal coverage config-

uration if each sensor is positioned at the estimated centroid
of its Power cell, pi(t) = ĈVi

,∀i ∈ V .
Definition 2 (Locally true density approximation):
A sensor i is said to have a locally true approximation of

the density function over a subset Ωi := {pi(τ) ∈ Q : τ ≥
0}, if its approximation is equal to the true density function at
every point in the subset, ϕ̂i(pi(τ)) = ϕ(pi(τ)),∀pi(τ) ∈ Ωi.

Now, the coverage control problem considered in this work
can be formally stated as follows.

Problem 1: Consider an adaptive coverage control prob-
lem by a group of N heterogeneous sensors with unknown
sensing abilities [γ1, . . . , γN ] in an environment Q ∈ R2 ,
where an event density function is modeled by ϕ(q) : Q 7→
R+, design a weight learning law, a distributed control law
and an adaptive law such that the following control objectives
can be achieved.

i. The estimation errors of the sensing weights among
the sensors can reach consensus, that is, lim

t→∞
ei(t) =

lim
t→∞

ej(t),∀i, j ∈ V .
ii. The MSN converges to a near-optimal coverage config-

uration, that is, lim
t→∞

||pi(t)− ĈVi
|| = 0,∀i ∈ V .

iii. Each sensor converges to a locally true density approx-
imation over the set Ωi = {pi(τ) ∈ Q : 0 ≤ τ ≤ t},
made up of all points on the sensor’s trajectory, that is,
lim
t→∞

||ϕ̂i(q, t)− ϕ(q)||2 = 0, ∀q ∈ Ωi, ∀i ∈ V .

III. MAIN RESULTS

We begin this section by establishing an online weight
learning law such that the estimation errors of the sensing
weights among the sensors can reach consensus. Next, a dis-
tributed control law and an adaptive law are proposed so that
each sensor in the MSN converges to a locally true density
function approximation over its trajectory while reaching a
near-optimal coverage configuration. Finally, we present an
analysis of convergence properties for the concerned MSN.
For the simplicity of notations, the time index t is omitted
in the following analysis.

A. Online weight learning law

When the MSN has no prior information of the relative
sensing weights, a weight learning law is proposed as fol-
lows,

ẇi =
kw

M̂Vi

∑
j∈Ni

∫
q∈∂Vij

(γi(q, pi)− γj(q, pj))dq, (12)

where kw > 0 is the weight learning gain, Ni represents
the neighbor set of sensor i, q ∈ ∂Vij represents all points
located on the Power cell boundary between neighboring
sensors i and j, and M̂Vi

is the estimated mass of Power
cell Vi, defined in (11). An intuitive interpretation of this
design in (12) is that the estimated weight of sensor i should

be updated in a gradient-descent way such that the sensing
differences at the Power cell boundaries among neighboring
sensors are equal to zero.

Lemma 1: Under the proposed weight learning law (12),
the estimation errors of the sensing weights among MSN can
reach consensus, that is,

lim
t→∞

ei = lim
t→∞

ej ,∀i ̸= j. (13)

Proof: This lemma can be proved by using the proper-
ties of stable linear filter theory. First, observe that for any
q ∈ ∂Vij , the following relationship holds,

||q − pj ||2 − ||q − pi||2 = wj − wi.

Then, substituting the sensing model (7) into the designed
weight learning law (12) yields

ẇi = − kw

M̂Vi

∑
j∈Ni

∫
q∈∂Vij

[(wi − αi)− (wj − αj)] dq.

(14)
Rewrite (14) in terms of the estimation error ei, one has

ėi = − kw

M̂Vi

∑
j∈Ni

lij(ei − ej), (15)

where lij =
∫
q∈∂Vij

dq denotes the length of the boundary
∂Vij . Define e = [e1, . . . , eN ]T, then the compact form of
(15) can be obtained as

ė = −MLwe, (16)

where M = Diag{ kw

M̂V1

, . . . , kw

M̂VN

}, and Lw is a positive
semi-definite weighted Laplacian matrix whose element is
defined by

Lw
ij =


−lij , if i ̸= j and j ∈ Ni,∑
s∈Ni

lis, if i = j,

0, otherwise.

(17)

It can be proved that the product MLw has non-negative
eigenvalues. Then, by properties of stable linear filter theory,
lim
t→∞

Lwe = 0N . Furthermore, since Lw is a Laplacian
matrix and zero is its simple eigenvalue, one has e =
c11N ,∀c1 ∈ R. Therefore, lim

t→∞
ei = lim

t→∞
ej .

B. Distributed control law and adaptive law

The control law is designed to drive each sensor to the
estimated centroid of its Power cell as follows,

ṗi = kc(ĈVi
− pi), (18)

where kc > 0 is the control gain and ĈVi is the estimated
centroid of Power cell Vi, defined in (11).
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Before presenting the adaptive law, some quantities are
introduced as follows,

Λi(t) =

∫
q∈Ωi(t)

K(q)K(q)Tdq ∈ Rm×m, (19a)

λi(t) =

∫
q∈Ωi(t)

K(q)ϕ(q)dq ∈ Rm×1, (19b)

Fi =

∫
Vi

K(q)(q − pi)
Tdq

∫
Vi
(q − pi)K(q)Tdq

M̂Vi

∈ Rm×m,

(19c)

Si =

∫
Vi

K(q)dq

M̂Vi

∈ Rm×1. (19d)

It can be observed from (19) that each sensor is able to
compute these quantities along its trajectory without knowing
the true parameter a. Inspired by the approach in [6], we
propose the following adaptive law to update the estimated
parameter âi.

˙̂aprei =− kcFiâi +
kw
2
Si ·

∑
j∈Ni

∫
∂Vij

(γi(q, pi)− γj(q, pj))dq

− γ(Λiâi − λi)− ζ
∑
j∈Ni

lij(âi − âj),

(20a)
˙̂ai = Γ−1( ˙̂aprei − Iproji

˙̂aprei), (20b)

where kc > 0 and kw > 0 are the control gain and the
weight learning gain, respectively; γ > 0 and ζ > 0 represent
the adaptive gain and the consensus gain of the estimated
parameter âi, respectively, Γ ∈ Rm×m is a diagonal positive-
definite matrix, and Iproji ∈ Rm×m denotes a diagonal
matrix defined as in [6].The adaptive law in (20) contains
two parts. The first part (20a) is often referred to as the
main adaptive law. Specifically, the first two terms in (20a)
compensate for uncertainties in the centroid estimation and
the Power cell weight learning, respectively; the third term
carries out a gradient descent for density function approxima-
tion error ϕ̃i accumulated along the trajectory of each sensor;
and the last consensus term enables neighboring sensors
to exchange their estimated parameters âi to one another.
The second part (20b) is often called the projection law,
which eliminates the singularity point of ĈVi

at âi = 0 by
preventing it from dropping below amin.

C. Convergence analysis of the MSN

Consider a candidate Lyapunov function as follows,

V = H1(wi, pi) +H2(ãi)

=

N∑
i=1

∫
Vi

1

2
(∥q − pi∥2 − wi)ϕi(q)dq +

N∑
i=1

1

2
ãT
i Γãi,

(21)

where H1(wi, pi) is a standard locational cost function in
the coverage control problem with heterogeneous MSNs,
and H2(ãi) is added to analyze the adaptive law for density
function estimation.

Now, we are ready to give the main result of this work.
Theorem 1: Under Assumption 1, the MSN (2) under the

weight learning law (12), the distributed controller (18),

and the adaptive law (20) will converge to a near-optimal
coverage configuration, that is,

lim
t→∞

||pi(t)− ĈVi
|| = 0,∀i ∈ V. (22)

Meanwhile, each sensor converges to a locally true density
approximation over the set Ωi = {pi(τ) ∈ Q : 0 ≤ τ ≤ t},
made up of all points on the sensor’s trajectory, that is,

lim
t→∞

||ϕ̂i(q, t)− ϕ(q)||2 = 0, ∀q ∈ Ωi, ∀i ∈ V. (23)

Furthermore, the estimated parameter vector âi for all i ∈
V by the MSN reaches consensus, that is, lim

t→∞
âi(t) =

lim
t→∞

âj(t),∀i, j ∈ V .
Proof: First, we show that the time derivative of the

candidate Lyapunov function (21) satisfies that V̇ ≤ 0.
Taking the time derivative of V yields

V̇ = Ḣ1(wi, pi) + Ḣ2(ãi)

=

N∑
i=1

(
∂H1

∂wi
ẇi +

∂H1

∂pi
ṗi +

dH2

dãi
˙̃ai

)
.

(24)

The terms ∂H1

∂wi
ẇi and ∂H1

∂pi
ṗi can be computed using the

proposed weight learning law (12) and the control law (18)
as follows,

∂H1

∂wi
ẇi = −1

2

∫
Vi

ϕ̂i(q)dqẇi +
1

2

∫
Vi

ϕ̃i(q)dqẇi

=
kw
2

∑
j∈Ni

lij(ei − ej)−
kw
2
ãT
iSi

∑
j∈Ni

lij(ei − ej),

(25a)
∂H1

∂pi
ṗi = −

∫
Vi

(q − pi)
Tϕ̂i(q)dqṗi +

∫
Vi

(q − pi)
Tϕ̃i(q)dqṗi

= −kcM̂Vi ||ĈVi − pi||2 + kcã
T
iFiâi.

(25b)

Substituting the partial derivatives obtained in (25) and the
adaptive law (20) into (24) results in

V̇ =

N∑
i=1

[
kw
2

∑
j∈Ni

(ei − ej)lij − kw
2
ãT
iSi

∑
j∈Ni

(ei − ej)lij

]

+

N∑
i=1

(−kcM̂Vi ||ĈVi − pi||2) +
N∑
i=1

[
kcã

T
iFiâi + ãT

i Γ ˙̂ai

]
=

N∑
i=1

[
− kw

2
ãT
iSi

∑
j∈Ni

(ei − ej)lij − kcM̂Vi ||ĈVi − pi||2
]

+

N∑
i=1

[
kcã

T
iFiâi + ãT

i Γ ˙̂ai

]
=

N∑
i=1

[
− kcM̂Vi ||ĈVi − pi||2 − γ

∫
q∈Ωi

||K(q)Tãi||2dq

− ζãT
i

∑
j∈Ni

lij(ãi − ãj)− ãT
i Iproji

˙̂aprei

]
.

(26)

where the second equality holds because the underlying
communication topology is undirected weight-balanced.
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(a) Initial configuration of the MSN. (b) Trajectories of the MSN.
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(c) Final configuration of the MSN.

Fig. 1: Evolution of the MSN at initial and final time instant.

Define Ã =
[
ãT1 , . . . , ã

T
N

]T ∈ RmN , then one can rewrite

the term
N∑
i=1

ãTi
∑
j∈Ni

lij(ãi − ãj) in (26) as ÃTLw ⊗ ImÃ.

Furthermore, it can be verified that each element in the last
term of (26), that is, ãTi (s)Iproji(s) ˙̂aprei(s), is non-negative
under the projection law (20b). Therefore, the following
inequalities hold,

V̇ ≤
N∑
i=1

−kcM̂Vi ||ĈVi − pi||2 − γ

∫
q∈Ωi

||K(q)Tãi||2dq


− ÃTLw ⊗ ImÃ ≤ 0.

(27)

Note that ÃTLw⊗ImÃ ≥ 0 due to that matrix Lw is positive
semi-definite. Then, by La Salle’s Invariant Set theory, one
can conclude that lim

t→∞
V̇ = 0, which further implies that

(22), (23) hold, and lim
t→∞

ÃTLw⊗ImÃ = 0. It is known that
0 is a simple eigenvalue of matrix Lw and the corresponding
eigenvector is c21N ,∀c2 ∈ R. Then, one can obtain that
lim
t→∞

âi(t) = lim
t→∞

âj(t), i, j ∈ V .

IV. SIMULATION RESULTS

In this section, simulations are conducted to illustrate
that the proposed approach can solve the coverage control
problem for a group of mobile sensors with heterogeneous
sensing abilities in an unknown environment.

Consider a group of N = 14 robots with single inte-
grator dynamics deployed in a unit square mission space,
which is divided into 3 × 3 grids. The coordinate origin is
located at the bottom left corner of the unit square. The
unknown event density function is parameterized according
to (4), where the true parameter vector is chosen to be
a = [100, amin, . . . , amin, 100]

T with amin = 0.1. In this work,
the basis functions K(q) = [K1(q), · · · ,K9(q)]

T are chosen
to be nine radially symmetric Gaussian functions, whose
element is defined as Kj(q) =

1
2πσ2 exp{−∥q−µj∥2

2σ2 }, with a
fixed width σ = 0.18 and a fixed center µj being the center
position of each grid. The estimated parameter vectors âi are
initialized as âi = amin19 for all 14 sensors. In this work,
it is assumed that each sensor has no prior knowledge of
other sensors’ sensing abilities. The sensing weights αi that
represent the heterogeneity among the sensors are given by a

set of random numbers drawn from the uniform distribution
over [0, 0.01]. The estimated sensing weights wi used to
generate the Power cells are initialized as 0.1 for all sensors.

Fig. 2: Time responses of the learning weight errors.

The above-mentioned values and coordinate frame are
illustrated in Fig. 1(a). The two Gaussian peaks of the
density function are shown in red stars. The sensors are
initially positioned at the middle part of the mission space,
represented by the black squares. The initial Power diagram
that is generated using the positions of the sensors and the
weights at t = 0 is illustrated by the straight lines in Fig.
1(a). The weight learning gain kw is selected to be a large
value that equals 850000 due to that the denominator term
M̂Vi

in (12) tends to be a large value during the evolution of
the MSN, which results in a very slow convergence speed for
the weight learning process. The control gain kc, the adaptive
gain γ, the consensus gain ζ, and matrix Γ are chosen to be
1, 10, and 18, and I9, respectively. The adaptive gain and
the consensus gain are selected by trial and error in this
simulation example.

Figs. 1(b) and 1(c) shows the trajectories and the final
configuration of the MSN, respectively. In Fig. 1(b), the
black squares and green circles correspond to the initial
positions and the final positions of the MSN, respectively.
It can be observed that more sensors are driven to the
two Gaussian peaks under the proposed move-to-centroid
controller in Fig. 1(c).

The time responses of the sensing weights errors for all
sensors are shown in Fig. 2. It can be seen that the errors
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(a) Time response of the distance of each sen-
sor’s current position to its estimated centroid
averaged over all sensors.

(b) Time responses of local event density
function approximation errors.
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(c) Consensus of estimated parameters âi
among sensors.

Fig. 3: Time responses of the MSN to assert Theorem 1.

ei = wi − αi of all sensors converge to the same value of
0.0934 as time goes to infinity, which implies that the weight
learning errors among the MSN achieve consensus under the
proposed weight learning law (12).

The effectiveness of the decentralized control law (18) and
the adaptive law (20) are also verified. Fig. 3(a) illustrates
the time response of the distance of each sensor’s current
position pi to its estimated centroid ĈVi

averaged over all
sensors, that is, Mean∥ĈVi

− pi∥ = 1
14

∑14
i=1 ∥ĈVi − pi∥.

It can be observed that as time goes to infinity, this value
converges to zero, which implies that each sensor arrives
at the estimated centroid of its Power cell. Therefore, the
MSN achieves a near-optimal coverage configuration as time
goes to infinity, as asserted in Theorem 1. Fig. 3(b) shows
that the density function estimation error averaged along
the trajectory Ωi of each sensor converges to zero, which
implies that lim

t→∞
||ϕ̂i(q, t) − ϕ(q)||2 = 0, ∀q ∈ Ωi, ∀i ∈

V . Finally, the consensus of the estimated parameter âi
among the sensors are evaluated by the time response of
the value ÃTLw ⊗ ImÃ, shown in Fig. 3(c). It can be
observed that lim

t→∞
ÃTLw ⊗ ImÃ = 0, which implies that

the estimated parameter âi by the MSN achieves consensus,
that is, lim

t→∞
âi(t) = lim

t→∞
âj(t),∀i, j ∈ V .

V. CONCLUSIONS

In this article, the coverage control problem for a group
of mobile sensors subject to heterogeneous sensing abilities
in an unknown environment has been investigated. A new
framework that can handle heterogeneous sensing weight
learning and unknown event density function estimation
simultaneously has been designed. It has been shown that
the MSN will achieve a near-optimal coverage configuration
and that each sensor converges to a locally true density
function approximation along its trajectory as time goes to
infinity under the proposed approach. In the future, it would
be interesting to extend current results to achieve optimal
coverage configurations with an exponential rate.
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