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Abstract— This paper presents a fully distributed algorithm
for scheduling electric vehicle (EV) charging and discharging to
flatten the total load of the grid, while considering constraints
on grid transmission capacity. As a fully distributed solution,
the proposed algorithm operates without the need for a central
unit. Instead, each agent only communicates a single dual
variable with its neighboring agents based on a communication
graph, and thus no private information is shared. In particular,
the algorithm does not rely on initial conditions, ensuring ro-
bustness in online changes of operational conditions. Simulation
results verify the effectiveness of the proposed algorithm.

I. INTRODUCTION

The advent of vehicle-to-grid (V2G) technology enables
electric vehicles (EVs) to serve as controllable loads and
distributed energy resources within the power grid. V2G
facilitates a bidirectional exchange of electricity between
EVs and the grid, positioning EVs as key components in
managing intermittent renewable energy sources like wind
and solar power [1]. As the EV population grows, their
charging and discharging behavior significantly impacts grid
operations, making effective scheduling essential for main-
taining grid stability and preventing load peaks. This strategy
could minimize operational costs, enhance system efficiency,
and benefit EV users [2].

This paper focuses on EV scheduling to flatten the grid’s
load profile. We also consider battery degradation for each
EV user, as frequent charging and discharging can reduce
battery lifespan. Furthermore, grid capacity constraints are
considered to prevent overloading of transmission lines.
Roughly speaking, load flattening aims to evenly spread
power consumption over a given time horizon T . The main
objective is to minimize the function represented by

T−1∑
k=0

(
D[k] +

N∑
i=1

ui[k]

)2

(1)

where ui[k] ∈ R represents a charging and discharging
power for each EV i ∈ {1, 2, . . . , N} at a time slot k ∈
{0, 1, . . . , T − 1}, and D[k] denotes a forecasted base load
of the grid at time slot k. Note that the objective function
(1) does not directly decompose into individual functions
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for each agent i, and the considerations of grid transmission
yield global coupling constraints among agents.

Centralized algorithms for solving this problem encounter
challenges as the number of EVs increases, including privacy
concerns and computational overhead on a central infras-
tructure [3]. For this reason, distributed methods [4], [5]
have been developed to alleviate these burdens by enabling
EVs to optimize their charging schedules in response to an
external price signal from the center known as an aggregator.
Specifically, in [4], a dual-splitting method is introduced
to decompose the coupled variables in the objective (1) to
parallelize the optimization problem. However, since they
still need the center, we categorize them as “semi-distributed”
in this paper. Unfortunately, this framework continues to
suffer from computational burdens and privacy concerns.

Meanwhile, fully distributed algorithms [6], [7] have been
introduced to tackle constraint-coupled optimization prob-
lems, addressing the difficulty of handling global constraints
without the central unit. However, they require a specific
initialization process, which leads to another challenge when
agents join or leave the network during the operation,
therefore, the plug-and-play operation is not guaranteed. In
particular, the states of all remaining agents in the network
must be re-initialized for each change in operational con-
dition, which is difficult to achieve in a fully distributed
manner. Consequently, these algorithms have limitations in
addressing the dynamic nature of EV arrivals and departures
in real-world applications.

In this paper, we propose a fully distributed continuous-
time algorithm based on the blended dynamics approach
[8]–[11] for load flattening while satisfying grid constraints.
Notably, the algorithm is initialization-free, ensuring re-
silience to real-time changes in grid constraints or network
topology. Moreover, it is center-free and preserves privacy,
as each agent exchanges only a single dual variable with its
neighbors, rather than each EV being directly connected to
the aggregator. In our framework, the aggregator is treated as
one of the agents within a communication network and holds
global information, such as grid constraints. This allows for
a decentralized design where newly participating EVs can
design their dynamics using only local information.

The remaining sections are organized as follows. Section
II introduces the problem formulation and a semi-distributed
solution is presented in Section III. Section IV introduces the
blended dynamics theorem and proposes a fully distributed
algorithm. Simulation results are shown in Section V and the
paper concludes in Section VI.

Notation: We let 0n and 1n be the n× 1 column vectors
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consisting of all zeros and ones, respectively, and denote the
n × n identity matrix by In. For given vectors or matrices
a and b, we denote [a⊤, b⊤]⊤ by [a; b]. For a vector x
and a matrix A, ∥x∥ and ∥A∥ denote the Euclidean norm
and the induced matrix 2-norm, respectively. The operation
defined by the symbol ⊗ is the Kronecker product. Let Rn

+

denote nonnegative real vector space. For a vector x =
[x1; . . . ;xn] ∈ Rn, (x)+ = [max(0, x1) ; . . . ; max(0, xn)] ∈
Rn

+. For a set Ξ ⊂ Rn, ∥x∥Ξ denotes the distance between
the vector x ∈ Rn and Ξ ; i.e., ∥x∥Ξ := infy∈Ξ ∥x− y∥.

II. PROBLEM FORMULATION

We consider a situation where a fleet of N vehicles
participates in an electricity distribution network. Each EV,
denoted by i ∈ N := {1, . . . , N}, has a charging and
discharging power ui[k] ∈ R for a given time slot k ∈
T := {0, . . . , T − 1}. This section formulates an optimiza-
tion problem for load flattening and provides a mathematical
representation to design an optimal charging and discharging
schedule ui := [ui[0]; . . . ;ui[T − 1]] ∈ RT .

A. Constraints

1) Local Constraints: Let ei[k] represent the battery en-
ergy level of EV i at time slot k, and ∆T denote the duration
of time intervals. The local constraints for each EV i are
expressed as follows:

Umin
i ≤ ui[k] ≤ Umax

i (2a)

ei[0] = Einit
i (2b)

ei[k + 1] = ei[k] + ∆Tui[k] (2c)

ei[T ] ≥ Eref
i (2d)

Emin
i ≤ ei[k] ≤ Emax

i (2e)

where Umax
i ≥ 0 and Umin

i ≤ 0 are the bounds on charging
and discharging power; Einit

i and Eref
i represent the initial

and reference energy, respectively; Emin
i and Emax

i are the
battery energy capacity limits.

The constraints (2a)–(2e) can be simplified into the follow-
ing matrix forms, solely in terms of charging and discharging
schedule ui. From (2a), we have

U i ≤ ui ≤ U i (3)

where U i =
[
Umin
i ; . . . ;Umin

i

]
, U i = [Umax

i ; . . . ;Umax
i ],

and the inequalities between vectors are understood in a
component-wise sense. Furthermore, considering (2c) for all
time slot k ∈ T , equations (2b)–(2e) can be expressed as

Emin
i ≤ Einit

i +∆Tui[0] ≤ Emax
i

Emin
i ≤ Einit

i +∆T (ui[0] + ui[1]) ≤ Emax
i

...

Eref
i ≤ Einit

i +∆T

T−1∑
k=0

ui[k] ≤ Emax
i

resulting in the following matrix representation:

Ei ≤ Lui ≤ Ei (4)

where

L = ∆T


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

 ∈ RT×T ,

Ei =


−Einit

i + Emin
i

...
−Einit

i + Emin
i

−Einit
i + Eref

i

 , Ei =


−Einit

i + Emax
i

...
−Einit

i + Emax
i

−Einit
i + Emax

i

 .

2) Global Constraints: There are limits on the total
delivery power for the grid to avoid congestion. Therefore,
the aggregate charging and discharging power of EVs should
be bounded within the grid capacity limits, as given by

P ≤
N∑
i=1

ui ≤ P (5)

where P =
[
Pmin; . . . ;Pmin

]
and P = [Pmax; . . . ;Pmax].

B. Objective

The objective is to flatten the total load of the grid consid-
ering prevention of battery degradation for each EV user. We
denote a forecasted base load by D = [D[0]; . . . ;D[T − 1]].
Then, the overall optimization problem with constraints (3),
(4), and (5) is formulated as follows:

min
u

J(u) =

T−1∑
k=0

(
D[k] +

N∑
i=1

ui[k]

)2

+

N∑
i=1

σi∥ui∥2 (6a)

s.t. P ≤
N∑
i=1

ui ≤ P (6b)

Aui ≤ bi, i ∈ N (6c)

where u = [u1; . . . ;uN ] ∈ RNT . Here, the matrices A :=
[−IT ; IT ;−L;L] ∈ R4T×T and bi := [−U i;U i;−Ei;Ei] ∈
R4T are obtained from the constraints (3) and (4).

The first term in the objective function J(u) reflects the
variance of the total load over the time horizon T , indicating
the extent of fluctuations in the load profile. The second
term represents the battery degradation cost, including a
degradation parameter σi selected by each EV user. This term
addresses the impact of charging and discharging power on
battery degradation, using a simplified model in this paper.

III. A SEMI-DISTRIBUTED SOLUTION

In this section, we introduce a semi-distributed solution to
solve the problem (6), serving as the foundation for a fully
distributed one will be discussed in Section IV. We develop a
dual-splitting method specifically tailored from the result of
[4] to handle coupled variables within the objective function
(6a) and to address the global constraints (6b).

To begin, let us define a new variable z[k] = D[k] +∑N
i=1 ui[k] for k ∈ T , and let z = [z[0]; . . . ; z[T − 1]].
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Accordingly, we modify the constraints (6b) to D + P ≤
z ≤ D + P . Then, the problem (6) can be rewritten as

min
z, u

∥z∥2 +
N∑
i=1

σi∥ui∥2 (7a)

s.t. z = D +
∑N

i=1 ui (7b)

D + P ≤ z ≤ D + P (7c)
Aui ≤ bi, i ∈ N . (7d)

Define the feasible sets as Z := {z ∈ RT : D+P ≤ z ≤ D+
P}, Ui := {ui ∈ RT : Aui ≤ bi}, and U := U1 × · · · × UN .
It is noted that if the constraint (7b) is removed, the problem
(7) can be separated into subproblems that can be solved
independently. By introducing the Lagrange multiplier λ =
[λ[0]; . . . ;λ[T − 1]] for (7b), the dual function g : RT → RT

is obtained as

g(λ) = min
z∈Z
u∈U

∥z∥2+ λ⊤

(
D +

N∑
i=1

ui − z

)
+

N∑
i=1

σi∥ui∥2

= min
z∈Z

(
∥z∥2+ λ⊤(D − z)

)
+

N∑
i=1

min
ui∈Ui

(
σi∥ui∥2 + λ⊤ui

)
which clearly decouples into separate minimization subprob-
lems with respect to the variables z and ui.

Now, we express the first term in g(λ) as the sum of T
minimization problems for z[k] and obtain its explicit form
as follows:

T−1∑
k=0

min
z[k]

(z[k])
2 − λ[k]z[k] + λ[k]D[k]

s.t. D[k] + Pmin≤ z[k] ≤ D[k] + Pmax


=

T−1∑
k=0

(
(θk(λ[k]))

2 − λ[k]θk(λ[k]) + λ[k]D[k]
)
=: Θ(λ)

where θk(λ[k]) : R → R is the closed-form solution of the
quadratic programming for z[k], defined as

θk(λ[k]) =


D[k] + Pmin, λ[k]

2 < D[k] + Pmin

D[k] + Pmax, D[k] + Pmax < λ[k]
2

λ[k]
2 , otherwise.

(8)

Next, for the second term in g(λ), the subproblem

min
ui

σi∥ui∥2 + λ⊤ui

s.t. Aui ≤ bi
(9)

has a strongly convex function over a convex set, which guar-
antees a unique solution, denoted by ϕi(λ). By substituting
the expressions derived above, the dual problem becomes

max
λ

g(λ)

= max
λ

{
Θ(λ) +

N∑
i=1

(
σi∥ϕi(λ)∥2+λ⊤ϕi(λ)

)}
.

(10)

Finally, the gradient ascent algorithm for (10) is derived
using the gradient of g(λ), which is verified in [12, Prop.

(a) semi-distributed (b) fully distributed

Fig. 1: Illustration of the communication network.

7.1.1]. The resulting algorithm is given by

λ̇ = ∇g(λ) = −θ(λ) +D +

N∑
i=1

ϕi(λ) (11)

where θ(λ) is a T -dimensional vector with components
θk(λ[k]). In the following, we demonstrate that an optimal
solution of (6) can be obtained from (11).

Proposition 1. Suppose that the optimization problem (6)
is feasible. Let Λ∗ be the set of dual optimal solutions
of the problem (10). Then, Λ∗ is nonempty and we have
limt→∞ λ(t) = λ∗ for some λ∗ ∈ Λ∗ by the gradient ascent
algorithm (11). Moreover, an optimal solution u∗

i ∈ RT of
the problem (6) satisfies

u∗
i = ϕi(λ

∗), i ∈ N . (12)

Proof. In the primal problem (7), the objective function is
convex and quadratic, the equality constraint (7b) is affine,
and the sets Z and U are polyhedral. Thus, the primal prob-
lem (7) and the dual problem (10) have optimal solutions and
there is no duality gap under feasible conditions [12, Prop.
6.2.2]. This implies that the set of dual optimal solutions Λ∗

is nonempty. Therefore, based on the strong duality and the
definition of ϕi(λ), it follows that an optimal solution u∗

i of
the problem (6) is obtained from any dual optimal solution
λ∗ ∈ Λ∗, i.e., u∗

i = ϕi(λ
∗).

Consider the gradient ascent algorithm (11) for the func-
tion g(λ). Due to the concavity of g(λ) [12], the algorithm
converges to a dual optimal solution λ∗ of (10), satisfying
the optimality condition ∇g(λ∗) = 0T . ■

Note that the algorithm (11) requires the central aggre-
gator, as illustrated in Fig. 1(a). In this semi-distributed
framework, each EV solves its subproblem (9) in parallel,
while exchanging the updated values with the aggregator
running (11). In the next section, we will introduce a fully
distributed setting in which the aggregator no longer needs a
direct connection to each EV. Additionally, the algorithmic
details for solving the subproblem (9) will be provided.

Remark 1. The proposed approach improves upon the dual-
splitting method in [4], by reducing the size of commu-
nication vectors, thereby decreasing memory usage. This
improvement is achieved through a reformulation of grid
constraints with the variable z as in (7c) and obtaining
a closed-form solution (as shown in (8)). In contrast, the
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method in [4] requires 3T -dimensional communication in-
formation, whereas our approach reduces this to T . □

IV. A FULLY DISTRIBUTED SOLUTION

In this section, we propose a fully distributed, continuous-
time algorithm for all EVs in a network to determine their
optimal charging schedules for the optimization problem
(6). The proposed algorithm leverages the blended dynamics
approach [8]–[11], which is a useful tool to construct dis-
tributed optimization algorithms. Moreover, we introduce a
Karush-Kuhn-Tucker (KKT) based algorithm for solving the
problem (9), which is inspired by [13].

A. Preliminary: Blended Dynamics Theorem

This subsection briefly summarizes the result of [9], [10],
tailored for a time-invariant system specified to our case.
Consider the following heterogeneous multi-agent systems
under diffusive output coupling as

ẋi = hi(xi, yi)

ẏi = fi(yi, xi) + κ
∑
j∈Ni

(yj − yi) (13)

for all i ∈ N , where xi ∈ Rm represents the private state
which is not shared with other agents, yi ∈ Rn represents the
output communicated among agents, and κ is the coupling
gain. The vector fields hi and fi are assumed to be globally
Lipschitz with respect to xi and yi. The set of neighbors
connected to agent i is denoted by Ni. Under an undirected
and connected graph, with a sufficiently large coupling gain
κ, the synchronized behavior of the multi-agent systems (13)
is characterized as

˙̂xi = hi(x̂i, s), i ∈ N

ṡ =
1

N

N∑
i=1

fi(s, x̂i)
(14)

which is called the blended dynamics of (13). Given the sta-
bility of (14), the behavior of the multi-agent system (13) can
be approximated by the blended dynamics (14) regardless of
initial conditions. This is summarized as follows.

Lemma 1 ([10, Theorem 4]). Assume that there is a
nonempty compact set Ab that is asymptotically stable for
the blended dynamics (14). Let Db ⊃ Ab be an open subset
of the domain of attraction of Ab, and let

Ax := {[x̂1; . . . ; x̂N ; 1N ⊗ s] : [x̂1; . . . ; x̂N ; s] ∈ Ab},
Dx := {[x̂1; . . . ; x̂N ; s1; . . . ; sN ]

: [x̂1; . . . ; x̂N ; s] ∈ Db such that 1
N

∑N
i=1 si = s}.

Then, for any compact set K ⊂ Dx and for any η > 0,
there exists κ∗ > 0 such that, for each κ > κ∗ and
[x1(0); . . . ;xN (0); y1(0); . . . ; yN (0)] ∈ K, the solution to
(13) exists for all t ≥ 0, and satisfies

lim sup
t→∞

∥[x1(t); . . . ;xN (t); y1(t); . . . ; yN (t)]∥Ax
≤ η.

□

B. Proposed Fully Distributed Algorithm

We present a charging scheduling algorithm, utilizing the
concept of blended dynamics to achieve a fully distributed
solution. To this end, let us consider the aggregator as one
of the agents, labeled as 0, which always participates in the
network. We assume the entire communication graph, includ-
ing the aggregator and EVs, is undirected and connected, as
shown in Fig. 1(b). Agent 0 runs the following dynamics:

λ̇0 = −θ(λ0) +D + κ
∑
j∈N0

(λj − λ0) (16)

while all the other agents of i ∈ N run

ui = − 1

2σi

(
λi +A⊤νi

)
(17a)

ν̇i = −νi + (νi +Aui − bi)
+ (17b)

λ̇i = ui + κ
∑
j∈Ni

(λj − λi) (17c)

where νi ∈ R4T is the private state, and λi ∈ RT is a
local version of λ, which is the only variable exchanged
with its neighbors. Note that the proposed algorithm (16)–
(17) is fully distributed, as each agent communicates its local
variable λi with its neighbors. Since the overall network has
N + 1 agents, the blended dynamics of (16)–(17) becomes

ûi = − 1

2σi

(
s+A⊤ν̂i

)
(18a)

˙̂νi = −ν̂i + (ν̂i +Aûi − bi)
+, i ∈ N (18b)

ṡ =
1

N + 1

(
−θ(s) +D +

N∑
i=1

ûi

)
(18c)

which is derived as (14). Here, (18c) is inspired by the
gradient ascent algorithm (11) with the scaling of 1/(N + 1),
which can be compensated by scaling (16) and (17c).

Next, we explain that (18a) and (18b) are derived from
the KKT conditions of the problem (9). To do this, we
introduce the Lagrange multiplier ν̂i ∈ R4T for the inequality
constraint of (9). Then, the dual problem is obtained as

max
ν̂i

min
ui

(
σi∥ui∥2+λ⊤ui + ν̂⊤i (Aui − bi)

)
s.t. ν̂i ≥ 04T .

(19)

Note that strong duality holds if the problem (9) is feasible
with the affine constraint. For a given λ, the KKT conditions
for the primal solution ϕi(λ) of (9) and the dual solution
ν̂∗i (λ) of (19) are as follows:

ϕi(λ) = − 1

2σi

(
λ+A⊤ν̂∗i (λ)

)
(stationarity) (20a)

ν̂∗i (λ) = (ν̂∗i (λ) +Aϕi(λ)− bi)
+
. (20b)

It is easy to verify that the expression (20b) is equivalent
to (ν̂∗i (λ))

⊤(Aϕi(λ) − bi) = 0 (complementary slackness),
Aϕi(λ)− bi ≤ 0 (primal feasibility), and ν̂∗i (λ) ≥ 04T (dual
feasibility), as addressed in [13], [14]. As a result, equations
(20a) and (20b) contribute to the design of the dynamics
(18a) and (18b) (and hence (17a) and (17b)), respectively.
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Remark 2. Each EV independently constructs its dynamics
using only local information. This decentralized design is
allowable because the aggregator holds global information,
such as D, Pmin, and Pmax, which are included in θ of (16)
as defined in (8). Unlike other distributed algorithms [4], [6],
the proposed algorithm does not need prior knowledge of the
total number of agents N , which can be difficult to obtain in
a distributed way. Moreover, the algorithm ensures privacy
by only exchanging the variable λi between agents. Each EV
preserves its sensitive data such as charging schedule, energy
demand, and battery degradation parameter. □

Now, the convergence of the proposed algorithm (16)–(17)
will be analyzed in the remainder of this section. We first
show the asymptotic stability of the blended dynamics (18).

Lemma 2. Suppose that the optimization problem (6) is
feasible. Let Λ∗ be the set of dual optimal solutions of the
problem (10) and define

Υ∗
i :=

{
ν̂i : ν̂i = (ν̂i +Au∗

i − bi)
+
}
, i ∈ N

where u∗
i ∈ RT is an optimal solution of (6). For any initial

conditions, the trajectory [ν̂1(t); . . . ; ν̂N (t); s(t)] associated
with the blended dynamics (18) satisfies

lim
t→∞

∥[ν̂1(t); . . . ; ν̂N (t); s(t)]∥Ab
= 0

where Ab is a compact subset of Υ∗
1 × · · · ×Υ∗

N × Λ∗.

Proof. See the Appendix. ■

We now have the main result of this paper. The following
theorem states that the optimal solution u∗

i can be approx-
imated by ui(t) with an arbitrarily small error when κ is
large. We will use the same notation as in Lemma 2.

Theorem 1. Suppose that the optimization problem (6) is
feasible. For any compact set K ⊂ R(5N+1)T and for any
η > 0, there exists κ∗ > 0 such that, for each κ > κ∗ and
[ν1(0); . . . ; νN (0);λ0(0); . . . ;λN (0)] ∈ K, the solutions to
(16) and (17) satisfy

lim sup
t→∞

∥[ν1(t); . . . ; νN (t);λ0(t); . . . ;λN (t)]∥Ax
≤ η (21)

where

Ax := {[ν1; . . . ; νN ; 1N+1 ⊗ s] : [ν1; . . . ; νN ; s] ∈ Ab}

and Ab is a compact subset of Υ∗
1 × · · · ×Υ∗

N × Λ∗.
Moreover, we have, for all i ∈ N ,

lim sup
t→∞

∥ui(t)− u∗
i ∥ ≤ ∥A∥

σ
η

where σ := mini∈N σi.

Proof. For a given compact set K, we reconstruct the sets
Dx, Db, and Ab to apply Lemma 1 as follows. We define
compact sets Kν ⊂ R4NT and K ′

s ⊂ R(N+1)T satisfying
K ⊂ Kν ×K ′

s. There exists a bounded set

Ks =

{
s ∈ RT : s =

1

N + 1

N∑
i=0

si, [s0; . . . ; sN ] ∈ K ′
s

}
.

Let Db be an open and bounded set containing Kν × Ks.
By inspecting Lemma 2 and its proof, we find a nonempty
compact set Ab where Db is an open subset of its domain
of attraction. By the construction, K is a compact subset of
Dx. Then, (21) immediately follows from Lemma 1.

Now we analyze the behavior of the trajectory of
ui(t). From combining (12) with (20), we have u∗

i =
−(1/2σi)(λ

∗+A⊤ν∗i ) for any λ∗ ∈ Λ∗ and ν∗i ∈ Υ∗
i . Using

this, we have, for all i ∈ N ,

∥ui(t)− u∗
i ∥

= inf
λ∗∈Λ∗

ν∗
i ∈Υ∗

i

∥∥∥∥− 1

2σi

(
λi(t) +A⊤νi(t)

)
+

1

2σi

(
λ∗ +A⊤ν∗i

)∥∥∥∥
≤ inf

λ∗∈Λ∗

ν∗
i ∈Υ∗

i

1

2σ
(∥λi(t)− λ∗∥+ ∥A∥∥νi(t)− ν∗i ∥)

≤ ∥A∥
σ

∥[λ0(t); ν1(t);λ1(t); . . . ; νN (t);λN (t)]∥Ax

where the last inequality comes from the fact that ∥A∥ ≥ 1
and the definition of Ax.

Therefore, we obtain, for all i ∈ N and κ > κ∗,

lim sup
t→∞

∥ui(t)− u∗
i ∥ ≤ ∥A∥

σ
η

which completes the proof. ■

Remark 3. A notable feature of the proposed algorithm is its
initialization-free nature, as demonstrated in Theorem 1. This
allows for plug-and-play operation where EVs can freely join
or leave the network while the algorithm is running, without
resetting the initial conditions for the remaining agents. Then,
the algorithm can adapt to real-time changes in operational
conditions, as shown in Section V. □

Remark 4. We emphasize again that the proposed algorithm
is designed to obtain the optimal solution u∗

i ∈ RT for
(6). While the solution ui(t) obtained from the algorithm
approximates u∗

i , it may not be exact. However, with a suf-
ficiently high κ, the solution’s error can be made arbitrarily
small. Additionally, we desire to achieve an exact solution
asymptotically employing the proportional-integral protocol
[11], [14], which is part of our future work. □

V. SIMULATION

This section provides numerical simulation to evaluate
the effectiveness of the proposed algorithm (16)–(17). We
consider EV scheduling over a day with hourly intervals,
i.e., T = 24 and ∆T = 1 hour. The base load D is scaled
from real-world hourly load data from the Republic of Korea
on April 1, 2023 [15]. All EVs have a 50 kWh battery
capacity, with maximum discharging and charging powers
of −5 kW and 5 kW, respectively. Energy capacity limits
are set to 0 kWh and 50 kWh, with the initial energy level
randomly set from 10% to 20%, and the reference energy
level chosen between 25% and 35% of battery capacity. The
battery degradation parameter σi is randomly set between
1 and 50. We choose the coupling gain κ = 20 for the
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proposed algorithm (16)–(17). The forward Euler method of
this algorithm is used for implementation, with a sampling
time of 0.002 seconds.

We examine the following scenarios to demonstrate how
the proposed algorithm works against the online changes of
grid capacity limits and network topology:

S1) For 0 ≤ t < 1200 s, the network consists of 50 EVs,
with grid capacity limits of Pmax, Pmin = ±250 kW.

S2) At t = 1200 s, the grid capacity limits are changed to
Pmax, Pmin = ±150 kW.

S3) At t = 2000 s, four EVs leave the network.
S4) At t = 2800 s, two new EVs join the network.

Simulation results are presented in Fig. 2 and Fig. 3.
Fig. 2(a) shows the trajectory of the cost J(u(t)) from (6a)
approximates the optimal cost J∗ obtained by a centralized
solver. In Fig. 2(b), each blue curve represents the trajectory
of aggregated power (

∑N
i=1 ui[k])(t) for a given time slot

k ∈ T . A total of T = 24 curves are displayed. This

demonstrates that the aggregated power eventually satisfies
the grid capacity constraints. The solution ui(t) is obtained
from the algorithm once t = 3600 s and is then applied for
day-ahead scheduling. Using this solution, Fig. 3 compares
the total load profile over a day with that obtained from the
centralized solver, showing a close match while satisfying
the grid capacity limits.

VI. CONCLUSION

In this paper, we propose a fully distributed EV scheduling
algorithm that operates without requiring a central unit. By
using the blended dynamics, the algorithm is initialization-
free, enabling plug-and-play operation while preserving pri-
vacy. Our future work will focus on applying the algorithm
in a receding horizon framework for real-world scenarios.

APPENDIX

A. Proof of Lemma 2 (Stability of the Blended Dynamics)

We first consider the following functions:

V u
i = σi∥ûi − u∗

i ∥
2
, V ν

i =
1

2
∥νi − ν∗i ∥

2
, i ∈ N ,

V s =
N + 1

2
∥s− λ∗∥2

where ν∗i ∈ Υ∗
i and λ∗ ∈ Λ∗. Let us take the derivatives of

V u
i , V ν

i , and V s along (18). We have

V̇ u
i = (ûi − u∗

i )
⊤
{
−A⊤

(
−ν̂i + (ν̂i +Aûi − bi)

+
)

+
1

N + 1

(
θ(s)−D −

N∑
i=1

ûi

)}
=− 2σi∥ûi − u∗

i ∥2 − (ûi − u∗
i )

⊤(s− λ∗)

− (ûi − u∗
i )

⊤A⊤
(
(ν̂i +Aûi − bi)

+ − ν∗i

)
+

1

N + 1

{
(ûi − u∗

i )
⊤(θ(s)− θ(λ∗))

− (ûi − u∗
i )

⊤
( N∑

i=1

ûi −
N∑
i=1

u∗
i

)}
.

For this, one uses ûi = −(1/2σi)(s + A⊤ν̂i) (similarly,
u∗
i = −(1/2σi)(λ

∗ + A⊤ν∗i )) and θ(λ∗) = D +
∑N

i=1 u
∗
i ,

as derived from (20) and Proposition 1. Next,

V̇ ν
i = (ν̂i − ν∗i )

⊤
(
−ν̂i + (ν̂i +Aûi − bi)

+
)

=−
∥∥∥ν̂i − (ν̂i +Aûi − bi)

+
∥∥∥2

−
(
ν̂i −(ν̂i +Aûi − bi)

+
)⊤(

(ν̂i +Aûi − bi)
+− ν∗i

)
≤−

∥∥∥ν̂i − (ν̂i +Aûi − bi)
+
∥∥∥2

−(Aûi − bi)
⊤(ν∗i − (ν̂i +Aûi − bi)

+
)
.

To derive the second equality, adding and subtracting
(ν̂i +Aûi − bi)

+ to (ν̂i − ν∗i ) may be helpful. For the last
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inequality, we apply the following inequality obtained from
the property of the max operator1, that is,

−
(
ν̂i − (ν̂i +Aûi − bi)

+
)⊤(

(ν̂i +Aûi − bi)
+ − ν∗i

)
≤ − (Aûi − bi)

⊤(
ν∗i − (ν̂i +Aûi − bi)

+
)
.

We also have

V̇ s = (s− λ∗)⊤
(
− θ(s) +D +

N∑
i=1

ûi

)

= (s− λ∗)⊤
( N∑

i=1

ûi −
N∑
i=1

u∗
i

)
− (s− λ∗)⊤(θ(s)− θ(λ∗))

using θ(λ∗) = D +
∑N

i=1 u
∗
i again.

Now we consider the Lyapunov function candidate V :=∑N
i=1 (V

u
i + V ν

i ) + V s. Note that

− (ûi − u∗
i )

⊤A⊤
(
(ν̂i +Aûi − bi)

+ − ν∗i

)
− (Aûi − bi)

⊤(
ν∗i − (ν̂i +Aûi − bi)

+
)

=
(
(ν̂i +Aûi − bi)

+
)⊤
(Au∗

i − bi)− (ν∗i )
⊤(Au∗

i − bi)

=
(
(ν̂i +Aûi − bi)

+
)⊤
(Au∗

i − bi) ≤ 0

where we use the complementary slackness and primal
feasibility of the KKT conditions, as discussed below (20b).
With this in mind, taking the derivative of V along (18) gives

V̇ ≤−
N∑
i=1

2σi∥ûi − u∗
i ∥2 −

N∑
i=1

∥∥ν̂i − (ν̂i +Aûi − bi)
+
∥∥2

− N

N + 1
(s− λ∗)⊤(θ(s)− θ(λ∗))

− 1

N + 1

{
(s− λ∗)⊤(θ(s)− θ(λ∗))

− (w − w∗)⊤(θ(s)− θ(λ∗)) + (w − w∗)⊤(w − w∗)
}

where w :=
∑N

i=1 ûi and w∗ :=
∑N

i=1 u
∗
i . From the

component-wise non-decreasing property of θ (which can be
verified from (8)), we have (s−λ∗)⊤(θ(s)− θ(λ∗)) ≥ 0. In
the remaining, we assert that the last term enclosed in braces
is also non-negative. Within this proof, each component
of T -dimensional vectors is denoted with an index k. For
k ∈ T , if |θk(s[k]) − θk(λ

∗[k])| ≤ |w[k] − w∗[k]|, then
(w[k] − w∗[k])2 − (w[k] − w∗[k])(θk(s[k]) + θk(λ

∗[k])) ≥
0. Otherwise, we show that (θk(s[k])− θk(λ

∗[k])) (s[k] −
λ∗[k] − w[k] + w∗[k]) ≥ 0 holds. For the case where
s[k] ≤ λ∗[k], we have (θk(s[k])− θk(λ

∗[k])) ≤ 0 from the
non-decreasing property of θk. Therefore,

s[k]− λ∗[k]− w[k] + w∗[k]

< s[k]− λ∗[k] + θk(s[k])− θk(λ
∗[k]) ≤ 0.

The proof for the case where s[k] > λ∗[k] is analogous,
hence omitted. By combining all these facts, we conclude
that V̇ ≤ 0.

1For any x ∈ Rn and y ∈ Rn
+,

(
(x)+ − x

)⊤(
y − (x)+

)
≥ 0. Let

x = ν̂i +Aûi − bi and y = ν∗i .

Since V is positive definite and radially unbounded,
the solution of (18) is bounded. By LaSalle’s invari-
ance principle [16], it is guaranteed that the trajectory
[ν̂1(t); . . . ; ν̂N (t); s(t)] converges to the set such that V̇ = 0
whose component satisfies that ûi = u∗

i , ν̂i = (ν̂i + Aûi −
bi)

+, and θ(s) = θ(λ∗). In other words, the trajectory
converges to Υ∗

1×· · ·×Υ∗
N×Λ∗. Consequently, the bounded

solution converges to the compact subset of Υ∗
1×· · ·×Υ∗

N×
Λ∗ denoted by Ab. This completes the proof.
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