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Abstract— This paper studies the routing and charging be-
haviors of electric vehicles in a competitive ride-hailing market.
When the vehicles are idle, they can choose whether to continue
cruising to search for passengers, or move a charging station to
recharge. The behaviors of individual vehicles are then modeled
by a Markov decision process (MDP). The state transitions in
the MDP model, however, depend on the aggregate vehicle flows
both in service zones and at charging stations. Accordingly, the
value function of each vehicle is determined by the collective
behaviors of all vehicles. With the assumption of the large
population, we formulate the collective routing and charging
behaviors as a mean-field Markov game. We characterize the
equilibrium of such a game, prove its existence, and numerically
show that the competition among vehicles leads to “inefficient
congestion” both in service zones and at charging stations.

I. INTRODUCTION

The past decade has witnessed rapid growth in the electric
vehicle (EV) market. In 2021, global EV sales increased
by 109%, more than doubled in 2020, and maintained a
considerable growth rate of 55% in 2022 [1]. Governments
and local authorities play a critical role in promoting the
adoption of EVs. In 2021, the US announced its target of
50% share of EVs in new car sales by 2023, along with a
funding package of $7.5 billion for charging infrastructure
[2]. Early this year, EU gave the final approval to end the
sale of fossil fuel vehicles by 2035 [3].

Envisioning the wide adoption of EVs, recent research has
been devoted to modeling their coupled charging and routing
behaviors in the transportation system [4]. The early studies
mostly focus on the planning of charging stations [5], [6].
On the other hand, studies at the operational level often take
the perspective of grid operators. To induce a desirable EV
charging pattern, the grid operator either directly optimizes
the charging price [7], or indirectly designs the power
generation plan, which then gives the charging price via
the locational marginal pricing (LMP) mechanism [8], [9].
All these studies target private EVs and assume they must
recharge at least once during their trips. However, the current
battery capacity of most EV models is more than enough
for a single trip within the city. A recent report also shows
that most private EVs charge at home or at work [10]. In
contrast, routing and charging are indeed important decisions
for EVs in ride-hailing services (e.g., taxi and ride-sourcing).
These vehicles usually travel for a much longer distance
every day compared to private vehicles [11]. Moreover, ride-
hailing vehicles are driven by travel demand and move
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across different regions in the city. Hence, they are more
likely to charge at public charging stations. This routing and
charging problem is expected to be more prevailing given the
increasing popularity of shared mobility services [12] and the
fact that major players (e.g., Uber and Lyft) are electrifying
their fleets [13]. Research on this topic, however, is still
rare in the literature, with most existing studies assuming
that the vehicle routing and charging are centrally controlled
by the service operator [14], [15], [16]. Two exceptions are
[17] and [18], both of which consider the case where EVs
provide a transport service by ride-hailing and an energy
service by vehicle-to-grid. Yet, both models are static and
ignore charging behaviors.

In this paper, we extend our previous work [19] to study
the electric ride-hailing vehicle routing problem (eRIVER)
in a spatiotemporal market. Specifically, we assume that each
vehicle makes routing and charging decisions to maximize
its own profit over a single-day operation. We model each
vehicle’s behaviors by a Markov decision process (MDP)
and carefully design the state transition functions to reflect
the physical interactions among vehicles in each service
zones and at each charging station. We then show that the
value function of each vehicle depends on the collective
behaviors of all vehicles. When the fleet size is sufficiently
large, the impact of each vehicle on the aggregate vehicle
flows is negligible. This motivates us to formulate collective
vehicle behaviors as a mean-field game. In the remainder
of this paper, we first present the eRIVER model, define the
equilibrium and discuss its existence, then conduct numerical
experiments to explore the equilibrium vehicle flows in a
stylized network market.

II. THE ERIVER MODEL

Consider a spatiotemporal ride-hailing market that is dis-
cretized into N zones containing L charging stations, and T
time steps with equal length ∆. For simplicity, we assume
all charging stations are homogeneous with capacity C and
charging efficiency e. Let N and L be the sets of service
zones and charging stations, respectively. The travel time
from zone i ∈ N to zone j ∈ N (station l ∈ L) is
denoted by τ tij (τ til) and is measured in units of ∆. Similarly,
the vehicle charging time is measured in units of ∆ as
well. Consider a fleet of M self-interested and homogeneous
electric vehicles operating in the market, each with battery
capacity B. To be consistent with other variables, the state
of charge (SOC) is also discretized and measured in units of
∆ and the battery consumption rate is ξ per time step. We
further assume vehicles do not leave the charging station until
they are fully charged. Hence, a vehicle that starts charging
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at SOC b = 0, . . . , B−1 will leave the charging station after
τ̂b = ⌈(B − b)/e⌉ time steps.

While the fleet size M is finite, we consider it is suffi-
ciently large such that the aggregate behaviors of vehicles
can be represented by continuous flows. This is a common
assumption in transportation research [20] and closely related
to mean-field game [21], the game theoretical framework
adopted in eRIVER. Specifically, two vehicle flows are
defined as follows:

• yti,b: idle vehicles in zone i at time t with SOC b.
• ztl,b: vehicles arriving at station l at time t with SOC b.

A. Matching in zones

Let qti be the number of passengers arriving in zone i
at time t. Assume passengers can only be matched with
vehicles in the same zone, and they leave the ride-hailing
market for an alternative travel mode after one period of wait.
Meanwhile, each idle vehicle can only be matched with one
passenger (i.e., no ride-pooling). Then, for each idle vehicle
in the same zone, the probability of successfully picking up
a passenger after one period of search is given by

mt
i = f(qti , y

t
i ; θ

t
i), (1)

where yti =
∑

b>0 y
t
i,b and θti denotes the time and location-

specific parameter (e.g., road density, travel speed). In what
follows, mt

i is referred to as the meeting probability. To
ensure the model is realistic, we assume that the function f
increases with passenger demand (df/dq ≥ 0) and decreases
with vehicle supply (df/dy ≤ 0).

Accordingly, after one period of search, mt
i of the idle

vehicles in zone i successfully pick up a passenger. They
will start delivering their trips from the next time step and
become idle again after several time steps (depending on the
trip duration). The other vehicles are going to make a new
routing and charging decision in zone i at time t+ 1.

B. Charging at stations

When a vehicle arrives at a charging station, some vehicles
could already be there, either charging or waiting to charge.
Besides, there could be a group of other vehicles arriving
at the same time. Hence, the waiting time till the vehicle
starts charging, denoted by ω, is probabilistic depending on
both vehicles arriving at time t and those arriving earlier,
which are collectively represented by z≤t,l = {zt′l,b}t′≤t,b.
The probability mass function of the waiting time ω for a
vehicle arriving at station l at time t is characterized as

wt
l (ω) = g(z≤t,l, ω). (2)

By definition, wt
l (ω) ∈ [0, 1],∀ω ∈ N and

∑
ω w

t
l (ω) = 1.

Accordingly, a newly arrived vehicle with SOC b first waits
for ω time steps with probability wt

l (ω) and then charges for
τ̂b time steps before leaving with a full battery.

C. MDP for individual vehicle

Now, we are ready to specify the finite-horizon Markov
decision process (MDP) for each vehicle.

1) State s ∈ S: Given by the time step t, location k ∈
N ∪L∪{0}, and SOC b. Here, location 0 denotes an offline
state when the vehicle runs out of battery.

2) Action a ∈ A: The set of feasible actions depends
on the vehicle’s state. When the vehicle is in zone i, it can
choose either to continue cruising or move to a charging
station. Hence, the action set is given by Ni ∪ L, where
Ni includes zone i itself and its neighbor zones. When the
vehicle is about to leave station l, it can choose one of the
neighbor zones for cruising and thus the action belongs to
the set of neighbor zones of station l, denoted by Nl. Once
the vehicle runs out of battery, it can do nothing but stay
offline.

3) State transition P : S×A×S → [0, 1]: The probability
of transitions between every pair of states under each action.
The meeting probability mt

i and the waiting time distribution
wt

l play a critical role here. For instance, a transition from
state s = (t, i, b) to state s′ = (t + 1, j, b − 1) means the
vehicle starting from zone i fails to find a passenger in zone
j and thus the transition probability is given by P (s′|s, a) =
1 −mt

j . If the same vehicle picks up a passenger traveling
from zone j to zone k and the vehicle has sufficient battery
to finish the trip, then s′ = (t + 1 + τjk, k, b − 1 − τjk)
and P (s′|s, a) = mt

jα
t
jk, where αt

jk denote the fraction of
passengers in zone j traveling to zone k at time t. After
making a charging decision, the vehicle first travels to the
station and then waits for a while if there is a queue. If the
waiting time is ω, the next state becomes s′ = (t + τil +
ω+ τ̂b−τil , l, B). The corresponding transition probability is
P (s′|s, a) = wt+τil

l (ω).
4) Reward r : S × A × S → R: The immediate reward

associated with each state transition. Its value is non-zero in
three cases: (i) picking up a passenger, (ii) starting to charge,
(iii) being offline. The first case induces a positive reward
pjk defined as the trip fare between zones j and k, while
the other two lead to a negative reward. The reward in (ii)
is clτ̂b where cl is the charging price per unit of time. That
in (iii) is an arbitrarily large penalty κ for running out of
battery during the day.

5) Discount factor γ ∈ (0, 1]: express how much future
rewards are taken into consideration in the current time step.
In this study, γ is set to be 1 because we study a single-
day operation. The notation is thus omitted in the equations
hereafter for simplicity.

The objective of each vehicle is to maximize its cumulative
reward over time under a policy π : S → ∆(A) and initial
state distribution ρ, which is given by

Vρ(π|y, z) =

Es0∼ρ

Ea∼π(·|s),(s,a,s′)∼P (·|y,z)

 ∑
(s,a,s′)

r(s, a, s′)

∣∣∣∣∣∣ s0
 .

(3)

The key difference of the value function (3) from a classic
MDP is the conditioning on the aggregate vehicle flows
y = {yti,b}t,i,b and z = {ztl,b}t,l,b. When these are fixed, one
can solve for the optimal policy via dynamic programming.
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However, as will be shown in the next section, y and z are
induced by the mean policy among the vehicles. Therefore,
vehicles are not solving independent MDP problems but
playing a mean-field Markov game.

D. Mean-field equilibrium of eRIVER

Since the vehicles are homogeneous and the fleet size is
sufficiently large, we may use the mean policy among all
vehicles to represent their collective routing strategies. Let
δ(π) be the probability density function of policies among
the vehicles and Ω be the set of feasible policies, the mean
policy is given by

π̄ =

∫
π∈Ω

πδ(π)dπ. (4)

Note that vehicles do not necessarily share the same policy
even though they are homogeneous. In what follows, we
show how the vehicle flows y and z can be fully determined
by π̄ and the initial vehicle distribution ρ. To this end, we
introduce xtk,b, k ∈ N ∪L to denote the vehicle flow in each
zone and at each station before making the next routing and
charging decision. Accordingly, we have

yti =
∑
k∈Ni

∑
b>0

xtk,bπ̄(a = i|s = (t, k, b)) (5)

+
∑
k∈Li

xtk,Bπ̄(a = i|s = (t, k, B)),

ztl =
∑
k∈N

∑
b≥τkl

xt−τkl

k,b π̄(a = l|s = (t− τkl, k, b). (6)

On the other hand, xtk,b can also be written as a function of
y and z. Specifically, for k ∈ N ,

xtk,b = (1−mt−1
k )yt−1

k,b+1 +

t∑
t′=1

∑
i∈N (k,t,t′)

αt′

ikm
t′

i y
t′

i,b+τik
,

(7)

where N (k, t, t′) = {i ∈ N : t = t′+1+ τik}. Likewise for
k ∈ L,

xtk,B =
∑
b

∑
ω

wt−ω−τ̂b
k (ω)zt−ω−τ̂b

k,b . (8)

Finally, the initial vehicle flows are determined by the initial
state distribution, i.e., x0k,b =Mρ(s = (0, k, b)).

Accordingly, we introduce a mapping µ such that (y, z) =
µ(π̄) and define the mean-field equilibrium as follows.

Definition 1 (Mean-field equilibrium in eRIVER): A
mean policy π̄∗ is called a mean-field equilibrium (MFE)
of eRIVER if it satisfies

π̄∗ ∈ argmax
π

Vρ(π|µ(π̄∗)). (9)
Classically, MFE for a Markov game is usually defined

on a tuple of stationary policy and state (or state-action)
distribution. See, for example, [22], [23]. The notion of
stationarity is required due to the infinite-horizon setting.
Since eRIVER is modeled in a finite horizon, the mean-field
distribution is determined by the mean policy. Besides, all
information required for the routing problem is expressed by

the aggregate flow (y, z), which can also be seen as an inte-
grated version of state-action distribution when normalized
by the fleet size M .

Under mild conditions, one can show that an MFE of
eRIVER is guaranteed to exist.

Proposition 1 (Existence of equilibrium in eRIVER): If f
and g are continuous in (y, z), there exists at least one MFE
for the eRIVER problem.

Proof: Note that (9) can be written as a fixed point
π̄∗ ∈ ϕ(π̄∗), where ϕ is a set-valued function and can be
decomposed as ϕ = ψ ◦ µ. Specifically, ψ maps from the
aggregate vehicle flow to the set of optimal policies and µ
maps from a mean policy to the aggregate vehicle flows. As
shown in [19], the existence of this fixed point can be proved
by Kakutani’s fixed point theorem [24, Theorem 8.6]. The
only non-trivial condition is that ϕ has a closed graph. In
our setting (i.e., the feasible set of policies Ω is a compact
set in a Hausdorff space), this is equivalent to proving ϕ is
upper hemicontinuous. Following [19], we first show µ is
single-valued and continuous with π̄, and then prove ψ is
hemicontinuous.

By (5) and (6), y and z are continuous in x = {xtk,b}t,k,b
and π̄. In turn, (7) and (8) suggest that x is continuous in y
and z given that f and g are continuous functions of (y, z).
Therefore, µ is continuous in π̄ and the mapping is single-
valued. The remaining task is to show ψ is hemicontinuous.
This is done by invoking Berge’s maximum theorem [25,
Theorem 3.5] with observations: (i) Ω is independent of the
aggregate vehicle flows (y, z), and (ii) the value function (3)
is continuous due to continuous state transition P (s′|a, s).
The latter also results from the continuity of f and g.

We note that the assumption imposed in Proposition 1
often holds. In the online version [26], we show how f and
g can be designed to be continuous in y and z. It is also worth
noting that Proposition 1 does not guarantee uniqueness, thus
the obtained equilibrium depends largely on the initial point
and the solution algorithm (i.e., evolutionary dynamics of the
market).

III. NUMERICAL ANALYSIS
A. Settings and solution algorithm

We analyze the equilibria of eRIVER on a stylized net-
work, shown in Figure 1. The default values of exogenous
model parameters are reported in Table I.

1

6

2

3

4

5

0

A D

F E

B C

Fig. 1: Stylized network with seven service zones N =
{0, 1, . . . , 6} and six charging stations L = {A,B, . . . , F}.
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TABLE I: Default values of exogenous variables.

Notation Unit Value Notation Unit Value
N 7 τij ∆ 1 j ∈ Ni

L 6 2 j /∈ Ni

T 12 τil ∆ 1 l ∈ Li

∆ hr 0.25 2 l ∈ LNi

M veh 500 3 otherwise
B ∆ 4 pij $ 1 τij = 1
C veh 20 2 τij = 2
e ∆ 3 cl $ 0.5 l ∈ L
ξ ∆ 1 κ $ -10
Note: Li denotes the set of charging stations at the boundary of zone i,
and LNi

denotes the set of charging stations at the boundary of
neighbor zones of zone i.

The meeting probability and charging waiting time distri-
bution are specified according to Appendices A and B. All
vehicles are idle at the beginning of the study horizon and, in
the first set of experiments, they are evenly distributed over
service zones with a full battery, i.e., ρ(s0 = (0, i, B)) =
1/N, i ∈ N .

We apply the Frank-Wolfe algorithm [27] to compute the
equilibrium. In each iteration, we first perform a forward
propagation to load the vehicle flows using the current mean
policy and then conduct a backward propagation to solve
an optimal policy and update the mean policy with it. This
iterative procedure is summarized in Algorithm 1.

Algorithm 1 Solution algorithm for eRIVER

Input: Demand {qti}; parameters in Tab. I; gap threshold δ
Output: Equilibrium policy π̄∗

Initiate random policy π̄(0).
1: for n = 0, 1, . . . , do
2: Forward propagation: Load vehicle flows by (5) and

(6) using policy π̄(n).
3: Backward propagation: Solve a policy π̂ that maxi-

mizes (3) by dynamic programming.
4: Update policy π̄(n+1) = (1 − η)π̄(n) + ηπ̂ with step

size η = 1/(n+ 1).
5: Compute gap g = ||π̄(n+1) − π̄(n)||1.
6: if g < δ then
7: break
8: end if
9: end for

10: return π̄∗ = π̄(n)

We compute the eRIVER equilibria for three demand
profiles, where the origin-destination (OD) pattern is always
assumed to be balanced, i.e., αt

ij = 1/N,∀i, j, t.
• Uniform: invariant over time and space (qti = 20,∀t, i);
• Peak/offpeak: uniform over space with a temporal pat-

tern shown in Figure 2;
• Central/peripheral: uniform over time but concentrated

in the central zone (qti = 40 for i = 6 otherwise 15).
Figure 3 illustrates the performance of Algorithm 1 in

the case of Peak/offpeak demand; results in other cases are
similar. The policy gap reduces to a magnitude of 10−4

within 500 iterations. Yet, due to the diminishing step, the
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Fig. 2: Temporal demand pattern in case Peak/offpeak.

convergence is sublinear and the value gap (i.e., normalized
difference between value function and Q-values with positive
vehicle flows) stablized around 10−3.

Fig. 3: Gap over iteration in case Peak/offpeak.

B. “Congestion” in service zones and charging stations

Figure 4 plots equilibrium vehicle flows in service zones
and at charging stations, normalized by their respective
maximum values in each case. The darker the color, the
larger the vehicle flows. In all three cases, vehicles show
a strong preference for the central zone even though it has
the same demand as other zones in the cases of Uniform and
Peak/offpeak demand. Besides, severe charging queues are
observed at time t = 4 because most vehicles arrive at the
charging stations at time t = 3 and t = 4.

Thanks to the simple network structure, results in Figure 4
are symmetric. Hence, in what follows, we only compare
the vehicle flows between the central zone (i = 6) and
a peripheral zone (i = 0), and between an inner station
(l = B) and an outer station (l = A). Figure 5 illustrates
the idle vehicles over time along with the demand in each
zone represented by the grey dashed line. It can be seen
that in the cases of Uniform and Peak/offpeak demand, a
fraction of demand is lost between t = 2 and t = 4 because
most vehicles are either delivering trips or charging. Yet,
this issue is rather minor in Central/peripheral. Another
observation is that, due to its popularity, the central zone
tends to be oversupplied in the second half of the study
horizon meanwhile the peripheral zones are undersupplied.
This implies that the selfish behaviors of vehicles do not
lead to efficient system performance. This is in line with the
widely known result in congestion games [28].
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(a) Uniform

(b) Peak/offpeak

(c) Central/peripheral

Fig. 4: Normalized vehicle flows in service zones and at charging stations for the three demand patterns. The number under
each panel indicates its time step.
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Fig. 5: Cruising vehicles in central and peripheral zones.
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Fig. 6: Arriving charging vehicles at inner and outer stations.
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(a) Random initial SOC case 1
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(b) Random initial SOC case 2 (c) Random initial location

Fig. 7: Arriving charging vehicles at inner and outer stations under different initial state distributions.

In Figure 6, we plot the arriving vehicles with the station
capacity. It clearly illustrates the peak of vehicle arrivals at
time t = 3 and t = 4, as well as a secondary peak at time
t = 7 in Uniform and Peak/offpeak. While the first peak is

more significant at inner stations, the second one has a more
profound impact on outer stations.
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C. Impact of initial state distribution

One possible cause of the severe charging queue at t =
4 is that we have initiated vehicles with a full battery and
thus they all tend to run out of battery around the same
time if they continuously operate from the very beginning.
Hence, we conduct another experiment with random initial
state distributions. Due to the limited space, we only present
the results of Uniform; the main findings in other cases are
similar.

Figure 7 presents the arriving vehicle flows in two random
samples of initial SOC and one random sample of initial
locations. It can be seen that the congestion at the charg-
ing stations persists and is more sensitive to initial SOC
compared to locations. In the two tested cases, the highest
peak happens earlier at time t = 1, largely because there are
more vehicles starting the day with a partial state of charge.
Considering that the market has a much larger supply at
the beginning (as all vehicles are idle at time t = 0), these
vehicles tend to charge at early time steps.

IV. CONCLUSIONS

This paper presents a game-theoretical model for the rout-
ing and charging behaviors of electric ride-hailing vehicles.
Each vehicle’s decisions are characterized by a Markov
decision process (MDP). We show the state transitions in
this MDP depend on the aggregate vehicle flows, which are
induced by the mean policy over all vehicles. Accordingly,
the collective behaviors can be cast in a mean-field Markov
game. We define the equilibrium, prove its existence and
investigate the equilibrium vehicle flows through numerical
experiments. The results demonstrate the inefficiency of self-
ish routing and charging decisions, which causes significant
congestion both in service zones and at charging stations.
This indicates a necessity to design appropriate control and
intervention schemes to optimize the coupled system of
on-demand mobility service and electric vehicle charging.
Moreover, vehicle travel times within and between zones
have assumed to be fixed, which may deviate from the reality.
Hence, besides “congestion” in the matching and charging
processes, future studies shall also take traffic congestion
caused by ride-hailing vehicles into consideration.
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