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Abstract— In this paper, we investigate an optimal strategy
for malicious agents to compromise remote state estimators
where only a portion of the transmitted packets is secured. First,
the analysis of the performance evolution and stealthiness prop-
erties of innovation-based linear attacks that can compromise
unsafe transmission channels is provided. An optimal attack
policy is then derived by numerically solving an optimization
problem step by step. Different from the scenario where all
links are vulnerable to cyber-attacks, the existence of secured
channels poses a tighter stealthiness constraint and thus can
significantly reduce the worst-case attack impact. Additionally,
it is shown that the well-studied flipping-sign-attack in existing
work cannot remain stealthy. Finally, a numerical example and
comparative studies are included to verify the effectiveness of
the proposed method.

I. INTRODUCTION

The state-of-the-art in modern industrial applications has
greatly promoted the deployment of wireless network tech-
niques. Yet theses advancements also bring forward new
challenges regarding threats from cyber-attacks. In various
situations, malicious agents are capable of intercepting and
modifying data packets in unreliable transmission channels,
with the goal to degrade system performance [1], [2], [3],
[4], [5]. Specially, the data manipulation that achieves the
maximum performance degradation and deceives anomaly
detectors is known as an “optimal stealthy attack” and has
stimulated extensive research interests in the past decade.

The deception attack against remote state estimation has
gained particular attention in recent years. In the scenario
where different sensors measure system states and send pack-
ets to the remote end, attackers may modify the transmitted
data sophisticatedly to mislead a Kalman filter into non-
optimal estimation. If all measurements could be manipu-
lated and the compromised innovation was required to be
identically and independent distributed (i.i.d.) Gaussian, the
optimal innovation-based linear attack was simply flipping
the sign of nominal innovations [6]. The result was extended
to the cases where attackers deployed extra sensors to gain
side information of system states and attacks with relaxed
stealthiness [7], [8], [9]. Though the latest research found
the optimal information-based attack was an affine function
of the minimum mean-square error (MMSE) estimation of
prediction errors [10], linear attacks still reside at the center
of our concern owing to their simple form and the capacity
to deceive whiteness detectors [11], [12], [13].

This work was supported by the Natural Sciences and Engineering
Research Council of Canada.

J. Zhou and T. Chen are with the Department of Electrical and Computer
Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
jzhou15@ualberta.ca; tchen@ualberta.ca

Almost all existing work on innovation-based linear at-
tacks focuses on the scenario that entire data channels can
be compromised. However in practical cases measurements
may have various levels of confidentiality or be transmitted
to the remote end through different channels. For the links
with high reliability (e.g., cable transmission), it is rather
difficult or even impossible for adversaries to manipulate
data. For the insecure channels with low protection (e.g.,
wireless transmission), malicious agents may modify the data
freely according to their interests. When only a portion of
transmitted packets is vulnerable, there is little work on
discussing how to design optimal attacks from an adversary’s
perspective to worsen system performance; the guideline to
make full utilization of secured channels for system protec-
tion is also lacking. Li and Chen [14] proposed a sequential
data fusion algorithm to defend against deception attacks in
unsecured channels, while the underlying assumption was
that the adversary adopted the so-called flipping-sign-attack
in [6]. A countermeasure against this type of attacks using
learning algorithms was given in [15]. As will be shown
in this paper, flipping the sign of nominal innovations from
unsafe channels will lead to changes of statistical properties
of innovations from the stacked measurements, thus the
attack can be easily detected by a χ2 detector.

To fill the gap in this research topic, we investigate the
optimal linear strategy for malicious agents to compromise
remote state estimators when partial transmitted packets are
secured. The detailed analysis on the attack performance evo-
lution and stealthiness properties is given. The optimal attack
coefficients are then obtained by solving a constrained op-
timization problem repeatedly. A numerical example shows
that protecting only a small portion of transmission channels
can significantly reduce the worst-case attack impact, thus
providing new insights on designing defensive measures
for networked systems. The finding is also consistent with
[16], where encrypting a single data channel is sufficient to
prevent most of stealthy deception attacks. The advantage
over [16] is that the method in this work does not require
an encryption/decryption module but only an additional χ2

anomaly detector.
The remainder of this paper is organized as follows.

Section II describes the deception attack problem. Section III
shows the design procedure for stealthy linear attacks. Sec-
tion IV gives a numerical example to verify the theoretical
results. Finally, Section V concludes this paper.

Notations: N (0,Π) stands for a zero-mean Gaussian
distribution. h(X) ≜ AXAT + Q is the Lyapunov operator.
g[C,R](X)≜X−XCT(CXCT+R)−1CX is the Riccati operator.
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Fig. 1. Deception attacks against remote state estimation.

II. PROBLEM FORMULATION

The system architecture of remote state estimation with
secured and unsafe channels is illustrated in Fig. 1.

A. Process Model

In this work, we consider an LTI process

xk+1 = Axk +wk, (1)
yk =Cxk + vk, (2)

where xk ∈ Rn is the system state; yk ∈ Rm denotes the
measurement; wk ∈ Rn and vk ∈ Rm are zero-mean i.i.d.
Gaussian noises with covariance Q ∈ Sn

+ and R ∈ Sm
++,

respectively. The initial state x0 ∈Rn is zero-mean Gaussian
with covariance Π0 ∈ Sn

+, independent of wk and vk,∀k ∈N.
As depicted in Fig. 1, the raw measurement is partitioned
into safe and unsafe parts. Define

yk =

[
ȳk
ỹk

]
, C =

[
C̄
C̃

]
, vk =

[
v̄k
ṽk

]
, R =

[
R̄ S
ST R̃

]
,

where ȳk = C̄xk + v̄k ∈ Rm̄ is transmitted through a secured
channel and thus cannot be altered, while ỹk = C̃xk+ ṽk ∈Rm̃

may be modified by malicious agents. Assume the pair (A,C̃)
is detectable and (A,

√
Q) is controllable.

B. Anomaly Detector
Once the data has been received by the remote end, two

χ2 detectors can be utilized to detect anomalies. The first
one is deployed to reveal abnormal events (faults/attacks)
in unsafe channels. The second one is a byproduct of the
remote state estimator. Each χ2 detector is associated with a
Kalman filter, which generates MMSE state estimation based
on the received data and produces an i.i.d. Gaussian sequence
[17]. Without loss of generality, we assume both filters are
in steady state. Whenever g̃k or gk exceeds a given threshold,
an alarm will be raised.

i) g̃k = z̃T
k Σ̃−1z̃k, where z̃k is the innovation corresponding

to the unsecured measurement ỹk, i.e.,

x̃k|k−1 = Ax̃k−1|k−1, (3a)

z̃k = ỹk −C̃x̃k|k−1, (3b)

x̃k|k = x̃k|k−1 + K̃z̃k, (3c)

ii) gk = zT
k Σ−1zk, where zk is the innovation corresponding

to the stacked measurement yk, i.e.,

xk|k−1 = Axk−1|k−1, (4a)

zk = yk −Cxk|k−1, (4b)

xk|k = xk|k−1 +Kzk, (4c)

where x̃k|k−1 and xk|k−1 are the a priori state estimates; x̃k|k
and xk|k are the corresponding a posteriori state estimates.
K̃ = P̃C̃TΣ̃−1 and K = PCTΣ−1 represent the estimator gains;
Σ̃ = C̃P̃C̃T + R̃, Σ =CPCT +R. P̃ and P denote solutions of
the Riccati equations X = h[g[C̃,R̃](X)] and X = h[g[C,R](X)],
respectively. In steady state, the two innovations in (3b) and
(4b) satisfy z̃k ∼ N (0m̃×1, Σ̃) and zk ∼ N (0m×1,Σ).

C. Deception Attacks

From instant k̄, we assume the attacker adopts the follow-
ing innovation-based linear attack to modify the measure-
ments in unsafe channels:

z̃a
k = Tk z̃k +bk, bk ∼ N (0m̃×1,Φk),

where z̃a
k is the compromised innovation of filter (3); bk ∈Rm̃

is an i.i.d. Gaussian noise to compensate the stealthiness
property. We also make the standard assumption that the
attacker knows all system parameters and the initial state
of filter (3); thus he/she can run a duplicated Kalman filter
as (3) to obtain the nominal innovation z̃k. At each instant,
the attacker should choose Tk ∈Rm̃×m̃ and Φk ∈ Sm̃

+ to design
z̃a

k , which is equivalent to modifying ỹk as

ỹa
k = C̃x̃a

k|k−1 +Tk z̃k +bk, bk ∼ N (0m̃×1,Φk), (5)

where x̃a
k|k−1 is the compromised a priori state estimate and

can be determined by the following equation:

x̃a
k|k−1 = Ak−k̄x̃k̄|k̄−1 +

k−1

∑
i=k̄

Ak−iKz̃a
i .

The attack performance is measured by the trace of the a
posteriori estimation error covariance, namely

Pa
k|k = E[(xk − xa

k|k)(xk − xa
k|k)

T],

where xa
k|k is the compromised estimation of filter (4).

D. Problem of Interest

In this work, we aim to design the optimal attack co-
efficients (Tk,Φk) to maximize Trace(Pa

k|k), meanwhile the
following constraints are fulfilled:

z̃a
k ∼ N (0m̃×1, Σ̃), (6a)

za
k ∼ N (0m×1,Σ), (6b)

where za
k is the compromised innovation of filter (4). Con-

straint (6) guarantees that the alarm rates of two χ2 detectors
will not change; hence the attack can remain stealthy.

III. MAIN RESULTS

With presence of deception attacks, the corrupted data
received by the remote state estimator is

ya
k =

[
ȳk
ỹa

k

]
=

[
C̄xk + v̄k

C̃x̃a
k|k−1 +Tk z̃k +bk

]
,

thus the innovation of filter (4) becomes

za
k = ya

k −Cxa
k|k−1

=

[
ȳk −C̄xa

k|k−1
ỹa

k −C̃xa
k|k−1

]
=

[
C̄(xk − xa

k|k−1)+ v̄k

C̃(x̃a
k|k−1 − xa

k|k−1)+Tk z̃k +bk

]
.
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Define ẽk|k−1 = xk − x̃k|k−1 and ek|k−1 = xk − xk|k−1 as the
prediction errors of the Kalman filters in (3) and (4), respec-
tively. ẽa

k|k−1 = xk − x̃a
k|k−1 and ea

k|k−1 = xk − xa
k|k−1 are their

counterparts when there exist deception attacks. Note that
z̃k = C̃ẽk|k−1 + ṽk; define the following matrices

Ĉk =

[
0m̄×n 0m̄×n C̄
TkC̃ −C̃ C̃

]
, T̂k =

[
Im̄ 0m̄×m̃

0m̃×m̄ Tk

]
,

E =

[
0m̄×m̃

Im̃

]
, ηk =

[
ẽT

k|k−1 (ẽa
k|k−1)

T (ea
k|k−1)

T
]T

,

then za
k can be rewritten in a compact form as

za
k = Ĉkηk + T̂kvk +Ebk. (7)

Next we analyze the influence of the modified data ya
k on

the covariance of za
k and the trace of Pa

k|k.

A. The Dynamics of Prediction Errors

From (1) and (3), we have

ẽk|k−1 = Aẽk−1|k−2 −AK̃z̃k−1 +wk−1.

Substituting z̃k−1 = C̃ẽk−1|k−2 + ṽk−1 yields

ẽk|k−1 = (A−AK̃C̃)ẽk−1|k−2 −AK̃ṽk−1 +wk−1. (8)

For the compromised filter in (3), we have

ẽa
k|k−1 = Aẽa

k−1|k−2 −AK̃z̃a
k−1 +wk−1.

Substituting z̃a
k = Tk z̃k +bk and z̃k = C̃ẽk|k−1 + ṽk yields

ẽa
k|k−1 = Aẽa

k−1|k−2 −AK̃Tk−1C̃ẽk−1|k−2

−AK̃Tk−1ṽk−1 −AK̃bk−1 +wk−1. (9)

For the compromised filter in (4), we have

ea
k|k−1 = Aea

k−1|k−2 −AKza
k−1 +wk−1.

The filter gain can be partitioned as K =
[
KI KII

]
, where

KI ∈Rn×m̄, KII ∈Rn×m̃. Then substituting (7) into ea
k|k−1 and

with some straightforward derivations, we have

ea
k|k−1 =

[
−AKIITk−1C̃ AKIIC̃ A−AKC

]
ηk−1

−
[
AKI AKIITk−1

]
vk−1 −AKIIbk−1 +wk−1

=−AKIITk−1C̃ẽk−1|k−2 +AKIIC̃ẽa
k−1|k−2

+(A−AKC)ea
k−1|k−2 −AKIv̄k−1 −AKIITk−1ṽk−1

−AKIIbk−1 +wk−1. (10)

B. The Covariance of za
k

Notice that vk,bk are zero-mean and independent of ηk;
from (7), the covariance of za

k is given by

Cza
k

△
= E[za

k(z
a
k)

T] = ĈkE[ηkη
T
k ]Ĉ

T
k + T̂kRT̂ T

k +EΦkET. (11)

Now we evaluate the recursion of Cηk = E[ηkηT
k ], which

is partitioned as a 3-by-3 block matrix. The (1,1)th block
denotes the covariance of ẽk|k−1. Since the filter has already

been in steady state before instant k̄, we have C 11
ηk

= P̃,∀k ≥
k̄. From (8)–(9), we have that the (1,2)th block satisfies

C 12
ηk

= E[ẽk|k−1(ẽ
a
k|k−1)

T]

=−(A−AK̃C̃)E[ẽk−1|k−2ẽT
k−1|k−2]C̃

TT T
k−1K̃TAT

+(A−AK̃C̃)E[ẽk−1|k−2(ẽ
a
k−1|k−2)

T]AT

+AK̃E[ṽk−1ṽT
k−1]T

T
k−1K̃TAT +E[wk−1wT

k−1]

= (A−AK̃C̃)(C 12
ηk−1

− P̃C̃TT T
k−1K̃T)AT

+AK̃R̃T T
k−1K̃TAT +Q

= (A−AK̃C̃)C 12
ηk−1

AT +Q, (12)

where the last equality is from the equation

− (A−AK̃C̃)P̃C̃TT T
k−1K̃TAT +AK̃R̃T T

k−1K̃TAT

=A[K̃(C̃P̃C̃T + R̃)− P̃C̃T]T T
k−1K̃TAT

=A(K̃Σ̃− P̃C̃T)T T
k−1K̃TAT = 0n. (13)

Since the a priori state estimation at step k̄ is not affected by
deception attacks, ẽk̄|k̄−1 and ẽa

k̄|k̄−1 are identical. Thus C 12
ηk̄

=

C 11
ηk̄

= P̃. It follows directly from (12) that C 12
ηk

= P̃,∀k ≥ k̄.
For the (2,2)th block, we have

C 22
ηk

=E[ẽa
k|k−1(ẽ

a
k|k−1)

T]

=AE[ẽa
k−1|k−2(ẽ

a
k−1|k−2)

T]AT +AK̃E[bk−1bT
k−1]K̃

TAT

+AK̃Tk−1C̃E[ẽk−1|k−2ẽT
k−1|k−2]C̃

TT T
k−1K̃TAT

+AK̃Tk−1E[ṽk−1ṽT
k−1]T

T
k−1K̃TAT +AK̃E[bk−1bT

k−1]K̃
TAT

−AE[ẽa
k−1|k−2ẽT

k−1|k−2]C̃
TT T

k−1K̃TAT

−AK̃Tk−1C̃E[ẽk−1|k−2(ẽ
a
k−1|k−2)

T]AT +E[wk−1wT
k−1]

=AC 22
ηk−1

AT +AK̃Tk−1Σ̃T T
k−1K̃TAT +AK̃Φk−1K̃TAT

−AC 21
ηk−1

C̃TT T
k−1K̃TAT −AK̃Tk−1C̃C 12

ηk−1
AT +Q

=AC 22
ηk−1

AT +AK̃Σ̃K̃TAT −AP̃C̃TT T
k−1K̃TAT

−AK̃Tk−1C̃P̃AT +Q, (14)

where the last equality is from the stealthiness constraint
Tk−1Σ̃T T

k−1 +Φk−1 = Σ̃ and C 12
ηk−1

= C 21
ηk−1

= P̃. Since ẽk̄|k̄−1
and ẽa

k̄|k̄−1 are identical, the initial state of the above recursion
is C 22

ηk̄
= P̃. From (8) and (10), the (1,3)th block is

C 13
ηk

=E[ẽk|k−1(e
a
k|k−1)

T]

=− (A−AK̃C̃)E[ẽk−1|k−2ẽT
k−1|k−2]C̃

TT T
k−1KIIAT

+(A−AK̃C̃)E[ẽk−1|k−2(ẽ
a
k−1|k−2)

T]C̃TKT
IIA

T

+(A−AK̃C̃)E[ẽk−1|k−2(e
a
k−1|k−2)

T](A−AKC)T

+AK̃E[ṽk−1v̄T
k−1]K

T
I AT +AK̃E[ṽk−1ṽT

k−1]T
T

k−1KT
IIA

T

+E[wk−1wT
k−1]

=− (A−AK̃C̃)P̃C̃TT T
k−1KIIAT +AK̃STKT

I AT

+AK̃R̃T T
k−1KT

IIA
T +(A−AK̃C̃)C 12

ηk−1
C̃TKT

IIA
T

+(A−AK̃C̃)C 13
ηk−1

(A−AKC)T +Q

=(A−AK̃C̃)C 13
ηk−1

(A−AKC)T

+(A−AK̃C̃)P̃C̃TKT
IIA

T +AK̃STKT
I AT +Q, (15)
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where in the last equality we use C 12
ηk−1

= P̃ and a similar
equation as (13) to eliminate two terms. To obtain the initial
state of the above recursion, we consider the case without
attacks, i.e., Tk = Im̃, bk = 0m̃×1, ẽk−1|k−2 = ẽa

k−1|k−2. Then
the dynamics in (10) become:

ek|k−1 =(A−AKC)ek−1|k−2 −AKIv̄k−1 −AKIIṽk−1 +wk−1

=(A−AKC)ek−1|k−2 −AKvk−1 +wk−1. (16)

It follows from (8) and (16) that

E[ẽk|k−1eT
k|k−1] =(A−AK̃C̃)E[ẽk−1|k−2eT

k−1|k−2](A−AKC)T

+AK̃E[ṽk−1vT
k−1]K

TAT +E[wk−1wT
k−1].

Since both A−AK̃C̃ and A−AKC are stable, the steady-state
value of E[ẽk|k−1eT

k|k−1] will converge to the solution of the
matrix equation

X =(A−AK̃C̃)X(A−AKC)T

+AK̃
[
ST R̃

]
KTAT +Q. (17)

The solution of (17) is denoted as X̄ . For the two terms in
(15), we have

(A−AK̃C̃)P̃C̃TKT
IIA

T +AK̃STKT
I AT

=A[(P̃C̃T − K̃C̃P̃C̃T)KT
II + K̃STKT

I ]A
T

(a)
=A[(K̃Σ̃− K̃C̃P̃C̃T)KT

II + K̃STKT
I ]A

T

=AK̃[(Σ̃−C̃P̃C̃T)KT
II +STKT

I ]A
T

=AK̃
[
ST R̃

]
KTAT,

where equality (a) is from P̃C̃T = K̃Σ̃. With this equality,
we can verify from (15) and (17) that C 13

ηk
is already in its

steady state at instant k̄. Thus C 13
ηk

= X̄ ,∀k ≥ k̄. From (9) and
(10), the (2,3)th block satisfies

C 23
ηk

=E[ẽa
k|k−1(e

a
k|k−1)

T]

=−AE[ẽa
k−1|k−2ẽT

k−1|k−2]C̃
TT T

k−1KT
IIA

T

+AE[ẽa
k−1|k−2(ẽ

a
k−1|k−2)

T]C̃TKT
IIA

T

+AE[ẽa
k−1|k−2(e

a
k−1|k−2)

T](A−AKC)T

+AK̃Tk−1C̃E[ẽk−1|k−2ẽT
k−1|k−2]C̃

TT T
k−1KT

IIA
T

−AK̃Tk−1C̃E[ẽk−1|k−2(ẽ
a
k−1|k−2)

T]C̃TKT
IIA

T

−AK̃Tk−1C̃E[ẽk−1|k−2(e
a
k−1|k−2)

T](A−AKC)T

+AK̃Tk−1E[ṽk−1v̄T
k−1]K

T
I AT +E[wk−1wT

k−1]

+AK̃Tk−1E[ṽk−1ṽT
k−1]T

T
k−1KT

IIA
T

+AK̃E[bk−1bT
k−1]K

T
IIA

T

=−AC 21
ηk−1

C̃TT T
k−1KT

IIA
T +AC 22

ηk−1
C̃TKT

IIA
T

+AC 23
ηk−1

(A−AKC)T +AK̃Tk−1C̃C 11
ηk−1

C̃TT T
k−1KT

IIA
T

−AK̃Tk−1C̃C 12
ηk−1

C̃TKT
IIA

T −AK̃Tk−1C̃C 13
ηk−1

(A−AKC)T

+AK̃Tk−1STKT
I AT +AK̃Tk−1R̃T T

k−1KT
IIA

T

+AK̃Φk−1KT
IIA

T +Q.

Then substituting C 11
ηk−1

= C 12
ηk−1

= C 21
ηk−1

= P̃, C 13
ηk−1

= X̄ ,
and the stealthiness constraint Tk−1Σ̃T T

k−1 + Φk−1 = Σ̃, we

can simplify the above recursion as

C 23
ηk

=AC 23
ηk−1

(A−AKC)T −AK̃Tk−1C̃X̄(A−AKC)T

+AC 22
ηk−1

C̃TKT
IIA

T +AK̃Tk−1STKT
I AT +AK̃Σ̃KT

IIA
T

−AP̃C̃TT T
k−1KT

IIA
T −AK̃Tk−1C̃P̃C̃TKT

IIA
T +Q. (18)

Again, since ẽk̄|k̄−1 and ẽa
k̄|k̄−1 are identical, the initial state

is C 23
ηk̄

= X̄ . Finally, for the (3,3)th block, we have

C 33
ηk

=E[ea
k|k−1(e

a
k|k−1)

T]

=AKIITk−1C̃C 11
ηk−1

C̃TT T
k−1KT

IIA
T +AKIIC̃C 22

ηk−1
C̃TKT

IIA
T

+(A−AKC)C 33
ηk−1

(A−AKC)T

−AKIITk−1C̃C 12
ηk−1

C̃TKT
IIA

T +AKIIC̃C 23
ηk−1

(A−AKC)T

−AKIITk−1C̃C 13
ηk−1

(A−AKC)T

−AKIIC̃C 21
ηk−1

C̃TT T
k−1KT

IIA
T +(A−AKC)C 32

ηk−1
C̃TKT

IIA
T

−(A−AKC)C 31
ηk−1

C̃TT T
k−1KT

IIA
T +AKIITk−1STKT

I AT

+AKIR̄KT
I AT +AKIITk−1R̃T T

k−1KT
IIA

T

+AKIIΦk−1KT
IIA

T +AKIST T
k−1KT

IIA
T +Q.

Then using the stealthiness constraint Tk−1Σ̃T T
k−1+Φk−1 = Σ̃,

C 11
ηk−1

= C 12
ηk−1

= C 21
ηk−1

= P̃, C 13
ηk−1

= X̄ , and C 31
ηk−1

= X̄T, we
can simplify C 33

ηk
as

C 33
ηk

=(A−AKC)C 33
ηk−1

(A−AKC)T +AKIIC̃C 22
ηk−1

C̃TKT
IIA

T

+(A−AKC)C 32
ηk−1

C̃TKT
IIA

T +AKIIC̃C 23
ηk−1

(A−AKC)T

+AKIIΣ̃KT
IIA

T +AKIR̄KT
I AT +AKIST T

k−1KT
IIA

T

−AKIITk−1C̃P̃C̃TKT
IIA

T −AKIIC̃P̃C̃TT T
k−1KT

IIA
T

−AKIITk−1C̃X̄(A−AKC)T

−(A−AKC)X̄TC̃TT T
k−1KT

IIA
T

+AKIITk−1STKT
I AT +Q, (19)

the initial state is C 33
ηk̄

= P since the filter in (4) is not altered
and is in steady state at instant k̄.

Now all nine blocks of Cηk = E[ηkηT
k ] are obtained with

the above recursions. It is interesting to notice that C 12
ηk

and C 13
ηk

are constant and not affected by linear attacks.
Substituting these block matrices into (11), we can obtain the
covariance of za

k , which plays a central role in the analysis
of stealthiness constraints.

C. Stealthiness Constraints and Attack Performance

First, we partition Cza
k

as a 2-by-2 block matrix according
to the dimensions of ȳk and ỹk. Substituting E[ηkηT

k ] into
(11), we obtain the (1,1)th block,

C 11
za
k
= C̄C 33

ηk
C̄T + R̄, (20)

the (1,2)th block,

C 12
za
k
= (C̄C 31

ηk
C̃T +S)T T

k +C̄(C 33
ηk

−C 32
ηk
)C̃T, (21)

and the (2,2)th block,

C 22
za
k
=TkC̃(C 13

ηk
−C 12

ηk
)C̃T +C̃(C 31

ηk
−C 21

ηk
)C̃TT T

k

+C̃(C 33
ηk

+C 22
ηk

−C 23
ηk

−C 32
ηk
)C̃T + Σ̃. (22)
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The constraint on C 21
za
k

is omitted owing to the symmetry
of Cza

k
. It is observed from (20) that C 11

za
k

is determined by
C 33

ηk
, which is not affected directly by Tk but by the attack

coefficient in the previous step, namely, Tk−1, by recursion
(19). Thus when designing Tk, we should take its impact
on the stealthiness constraint in the subsequent step into
account. Therefore, (6b) becomes

C 11
za
k+1

= Σ
11 △

= C̄PC̄T + R̄, (23a)

C 12
za
k
= Σ

12 △
= C̄PC̃T +S, (23b)

C 22
za
k
= Σ

22 △
= C̃PC̃T + R̃. (23c)

Note that (23a) is for ensuring the stealthiness property at
instant k+ 1 by imposing an equality constraint on Tk and
C 11

za
k̄
= C̄PC̄T+ R̄ is fulfilled automatically since C 33

ηk̄
=P. All

above constraints are linear with respective to Tk.
The constraint in (6a) leads to TkΣ̃T T

k +Φk = Σ̃, which can
be reformulated as the following LMI by eliminating Φk and
applying the Schur complement:[

Σ̃ Tk
T T

k Σ̃−1

]
⪰ 0. (24)

For the remote state estimator, the a posteriori estimation
error covariance evolves according to

Pa
k|k = E[(xk − xa

k|k−1 −Kza
k)(xk − xa

k|k−1 −Kza
k)

T]

= Pa
k|k−1 +KE[za

k(z
a
k)

T]KT −E[ea
k|k−1(z

a
k)

T]KT

−KE[za
k(e

a
k|k−1)

T],

where Pa
k|k−1 = E[ea

k|k−1(e
a
k|k−1)

T] = C 33
ηk

. Since E[za
k(z

a
k)

T] =
Σ is constant and Pa

k|k−1 is not affected by the attack policy
at instant k, in order to maximize Trace(Pa

k|k), we need only
to minimize the index function

Jk = Trace{KE[za
k(e

a
k|k−1)

T]}
= Trace{KE[(Ĉkηk + T̂kvk +Ebk)(ea

k|k−1)
T]}

= Trace{KĈkE[ηk(ea
k|k−1)

T]}.

Substituting Ĉk and ηk yields

Jk = Trace(KIITkC̃C 13
ηk
)−Trace(KIIC̃C 23

ηk
−KCC 33

ηk
).

The last term is not affected by Tk, thus the objective is to
design Tk that minimizes the first term.

D. Optimal Attack Policy

Summarizing the analysis in the previous section, the
attacker needs to solve the following optimization problem
step by step to obtain the optimal attack strategy:

P1 : min
Tk∈Rm̃×m̃

Trace(C̃C 13
ηk

KIITk)

s.t. (23) and (24).

The problem has a linear objective and all constraints are
convex, thus can be solved efficiently with the Matlab CVX
toolbox. At instant k̄, constraint (23a) is dropped. After T ∗

k

is solved, we have Φ∗
k = Σ̃−T ∗

k Σ̃(T ∗
k )

T. The coefficients are
substituted into (14), (18), and (19) to obtain C 22

ηk
, C 23

ηk
, and

C 33
ηk

, respectively; then all parameters in (20)–(22) and Jk are
updated and the attacker readily proceeds to solve P1 in the
subsequent step. The attack performance is evaluated by

Pa
k|k = APa

k−1|k−1AT +KΣKT −KIITkC̃C 13
ηk

− (C 31
ηk
)C̃TT T

k KT
II

+(KIIC̃C 23
ηk

−KCC 33
ηk
)+(KIIC̃C 23

ηk
−KCC 33

ηk
)T +Q.

(25)

Remark 1. P1 may have multiple optimal solutions; then
there exist different optimal policies that can achieve the
same attack performance. However there can be the case
that the optimal solution is an identity matrix. In fact, if the
unique solution at instant k̄ is T ∗

k̄ = Im̃, then it is easy to verify
T ∗

k = Im̃,∀k ≥ k̄. It indicates that there does not exist such
a deception attack that can deceive two anomaly detectors
simultaneously and also degrade the estimation performance.
These situations arise because the equality constraints in (23)
are overly restrictive. For example, if m ≥ 2 and m̃ = 1, there
exists only one unsafe channel that can be compromised by
attackers; Tk ∈ R is a scalar. One can verify that X̄ = P
and T ∗

k = 1 is the only coefficient that satisfies all equality
constraints in (23). Then Φ∗

k = 0, z̃a
k = z̃k, ỹa

k = ỹk, and ya
k = yk.

No stealthy deception attacks can be launched in this case.

Remark 2. It can be verified that Tk̄ =−Im̃ does not satisfy
(23), thus flipping the sign of nominal innovations in the
unsafe channel is not a stealthy policy and can be easily
detected by anomaly detector II.

Remark 3. Compared with the scenario where all transmis-
sion links are vulnerable, the deployment of secured channels
imposes stricter stealthiness constraints, thus limiting the set
of feasible policies for adversaries. It is clear that securing
all channels can completely prevent stealthy attacks but also
induces extra costs. In practical cases, system defenders
should consider the optimal tradeoff between the resources
required for channel protection and performance degradation
caused by malicious attacks.

IV. NUMERICAL EXAMPLES

A stable LTI process is utilized to verify the effectiveness
of the proposed strategy:

A =


0.4 0 0 0 0

0.08 0.4 0 0 0
0.73 0.39 0.8 0 0
0.87 0.98 0.48 0.67 0
0.46 0.94 0.95 0.81 0.4

 ,

C = diag{
[
1 3 2 2 4

]
},

Q = diag{
[
0.8 1 1.2 2 1.6

]
},

R = diag{
[
1 2 8 12 6

]
}.

In nominal conditions, the summation of steady state estima-
tion errors is Trace(Pk|k) = 3.37. We assume m̄ = 1, m̃ = 4,
k̄ = 40; there is only one secured channel and the remaining
four can be compromised. The blue curve in Fig. 2 shows
the evolution of Trace(Pa

k|k) with attack (5). As a comparison,
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the red curve is the performance of the optimal linear attack
(za

k = −zk) in [6], where all five channels are vulnerable
to malicious agents. The steady state values of Trace(Pa

k|k)
drop from 631 to 123 in the two cases. It is seen that even
if only a small portion (20%) of original data is secured,
the worst-case attack effects can be significantly reduced.
This observation highlights the necessity and effectiveness
of investing limited resources to securing partial transmission
channels in real applications.
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100
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300
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Fig. 2. Optimal attack performances with/without secured channel.

Let the threshold of anomaly detector II be 6, which leads
to a theoretical false alarm rate α = 0.3062. The LTI process
runs for 20000 times with randomly generated noises. Fig. 3
indicates the alarm rate (AR) before and after the attack
occurs. The empirical AR is always consistent with the
theoretical one, illustrating the stealthiness property. As a
comparison, if the attacker adopts the optimal strategy in [6]
and simply flips the sign of nominal innovations in the unsafe
channel (z̃a

k = −z̃k), Fig. 4 shows that this attack cannot
remain stealthy as a greater AR is induced. Note that both
attacks can completely deceive anomaly detector I.

0 10 20 30 40 50 60 70 80

0.3

0.305

0.31

0.315

Empirical AR
Theoretical AR

Fig. 3. Alarm rate of the optimal attack in (5).

V. CONCLUSIONS

In this work, we study the optimal linear attack strategy
and mainly focus on analyzing how data manipulation in
unsafe channels impacts the innovation of the remote state
estimator. The worst-case attack policy is obtained and
it shows that protecting a small portion of channels can

0 10 20 30 40 50 60 70 80
0.3

0.32

0.34

0.36

0.38

0.4

0.42

Empirical AR
Theoretical AR

Fig. 4. Alarm rate of the attack policy Tk =−Im̃,Φk = 0m̃.

significantly reduce the worst-case attack impact. The future
work would include investigating the feasibility and methods
to make full utilization of secured channels to completely
prevent these stealthy deception attacks.
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