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Abstract— We propose a new method for simultaneous syn-
chronization and topology identification of a complex dynamical
network that relies on the edge-agreement framework and on
adaptive-control approaches by design of an auxiliary network.
Our method guarantees the identification of the unknown
topology and it guarantees that once the topology is identified
the complex network achieves synchronization. Under our
identification algorithm we are able to provide stability results
for the estimation errors in the form of uniform semiglobal
practical asymptotic stability. Finally, we demonstrate the
effectiveness of our approach with an illustrating example.

I. INTRODUCTION

Complex dynamical networks exist everywhere and can
represent multiple real networks, including social networks,
biological networks, sensor systems and so on [1]. For
instance, collaborative behaviors over dynamical networks
can be used to model complex phenomena in biological
systems or complex tasks in multi-robots scenarios. Syn-
chronization is one of the fundamental problems of multi-
agent coordination, aiming at rendering all agents to behave
following the same dynamics. Plenty of results on how to
design strategies for the synchronization of different systems
have been achieved in recent years [1]–[4].

The topology of a complex network plays a key role
in the control design for synchronization. Most of the ex-
isting methods, however, assume complete knowledge of
the network topology and do not consider the relevant and
realistic situations where such topology is, usually, partially
or fully unknown. In view of this, lots of methods have been
developed to identify the topology of complex networks,
including knock-out methods [5], [6], optimization-based
methods [7], and adaptive-control-based methods [8]–[11],
to name a few. In this paper we focus on an adaptive-control
based method to identify the network topology.

Adaptive-control-based designs have been used to identify
the topology of various network models, where a linear
independence condition is an important assumption for suc-
cessful identification of the topology, see e.g. [8], [9]. This
condition, however, is usually difficult to verify. In light
of the latter, the authors in [10] propose an approach to
address this concern by designing the control of the original
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network to track an auxiliary system, which guarantees the
success of the topology identification of a network. The aux-
iliary system is designed such that the linear independence
condition is inherently satisfied, thus avoiding the need to
verify it explicitly. However, this method only deals with
the topology identification problem, without considering the
equally relevant problem of simultaneous achievement of
synchronization and topology identification. Indeed, in real
scenarios, the topology of complex systems being unknown,
hinders the use of existing algorithms for synchronization.
However, in the existing works mentioned above, in order
to successfully identify the topology, the system cannot
reach a synchronized state since the conditions guarantee-
ing the success of the identification algorithm are lost at
synchronization. Therefore, in this paper we propose an
approach to simultaneously identify the topology and reach
synchronization.

The main contribution of this paper is two-fold. Firstly,
we present a new approach to study the network topology
identification problem based on the so-called edge-agreement
framework [1]. The edge-agreement framework transforms
the synchronization problem of complex networks into the
stabilization problem of the edge dynamics, which allows
the simultaneous synchronization and topology identification
problem to be solved by well-known adaptive control meth-
ods. It relies on the definition of a virtual weighted dynamic
complete graph, where the non-zero edge-weights correspond
to the edges of the real topology. Hence, the topology is
identified by estimating the weights of edges of the complete
graph. Second, we propose a new topology identification
algorithm based on adaptive control using the concept of
δ-persistency of excitation [12]. For the topology identifi-
cation of complex networks, we design an auxiliary system
with δ-persistently exciting dynamics, thereby preventing the
synchronization from happening before the topology has
been identified. It guarantees the success of simultaneous
identification of the topology and the synchronization of the
network. Moreover, the δ-persistency of excitation condition
enlarges the choice of possible auxiliary systems, compared
to the approach in [10]. Different from the existing works
studying topology identification using adaptive-control tools,
in this work we establish uniform semi-global practical
asymptotical stability for the topology identification errors.
The latter are stronger stability results than the convergence
properties usually established in the literature.
Notations: A continuous function α : R≥0 → R≥0 is of class
K (α ∈ K), if it is strictly increasing and α(0) = 0; α ∈ K∞
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if, in addition, α(s) → ∞ as s → ∞. A continuous function
σ : R≥0 → R≥0 is of class L if it is decreasing and σ(s) → 0
as s → ∞. A function β : R≥0 × R≥0 → R≥0 is of class
KL if, β(·, t) ∈ K for any t ∈ R≥0, and β(s, ·) ∈ L for any
s ∈ R≥0. We use | · | for the Euclidean norm of vectors and
the induced L2 norm of matrices. The set B(δ) ⊂ Rn is the
closed ball of radius ∆ centered at the origin, i.e. B(∆) :=
{x ∈ Rn : |x| ≤ ∆}. The notation H(δ,∆) := {x ∈ Rn :
δ ≤ |x| ≤ ∆}. We define |x|δ := infy∈B(δ) |x − y|. We
use G = (V, E ,W ) to denote a weighted graph defined by a
node set V = {1, 2, . . . , N} with cardinality N , an edge set
E ⊆ V2 with cardinality M such that an edge ek := (i, j) ∈
E , k = {1, . . . ,M} indicating that agent j has access to
information from node i, and a positive diagonal matrix W ∈
RM×M , whose diagonal wk entries represent the weights of
the edges. A tree is a subgraph in which every node has
exactly one parent except for one node, called the root, which
has no parent and which has a path to every other node. A
spanning tree is a tree subgraph containing all nodes in V . A
graph is said to be complete if there exists an edge between
every pair of agents.

II. MODEL AND PROBLEM FORMULATION

We consider a multi-agent system where the agents inter-
act over an unknown topology described by an undirected
graph G(V, E ,W ). Each agent’s dynamics is given by

ẋi = fi(xi)−
N∑
j=1

wij [xi − xj ] + ui i ∈ V, (1)

where xi ∈ R is the state of agent i, fi : R → R is a
smooth function, wij ≡ wk is the unknown weight of the
interconnection between agents i and j such that wij = 0 if
the edge ek /∈ E and wij ̸= 0 if the edge ek ∈ E .

Let E ∈ RN×M denote the (unknown) incidence matrix
of an arbitrary orientation of G. This is a matrix with rows
indexed by the nodes and columns indexed by the edges
with its (i, k)th entry defined as follows: [E]ik := −1 if
i is the terminal node of edge ek, [E]ik := 1 if i is the
initial node of edge ek, and [E]ik := 0 otherwise. Defining
x := [x1 . . . xN ]

⊤, F (x) := [f(x1) . . . f(xN )]
⊤, and u :=

[u1 . . . uN ]
⊤, (1) may be written in compact form as

ẋ = F (x)− EWE⊤x+ u. (2)

Now, denote by Ē the incidence matrix of a complete
graph K(V, Ec, W̄ ), where E ⊆ Ec, |Ec| = 1

2N(N−1) =: M̄ ,
and let W̄ := diag{w̄k} where w̄k ≡ wk if ēk ∈ E and
w̄k = 0 if ēk ∈ Ec\E . That is, the weight w̄k is different
from 0 if the edge ēk of the complete graph exists in the
graph G to be identified. Therefore, akin to (2), we have that
(1) can also be written as

ẋ = F (x)− ĒW̄ Ē⊤x+ u. (3)

In this paper, we rely on the edge-agreement framework
[1] for the representation of multi-agent systems in which we
consider the state of the edges of the graph rather than that

of the nodes. Hence, we define the edge variable z := Ē⊤x.
Then, using (3) we obtain

ż = Ē⊤F (x)− Ē⊤ĒW̄ z + Ē⊤u. (4)

Under the edge-based representation for networked sys-
tems it is possible to obtain an equivalent reduced system in
terms of an arbitrary directed spanning tree. Indeed, using
an appropriate labeling of the edges, the incidence matrix of
the complete graph K may be expressed as

Ē =
[
ĒT ĒC

]
(5)

where ĒT ∈ RN×(N−1) denotes the full-column-rank in-
cidence matrix corresponding to an arbitrary spanning tree
GT ⊂ K and ĒC ∈ RN×(M̄−N+1) represents the incidence
matrix corresponding to the remaining edges not contained
in GT . Moreover, defining

R := [ IN−1 T ] , T :=
(
Ē⊤

T ĒT
)−1

Ē⊤
T ĒC , (6)

with IN−1 denoting the N − 1 identity matrix, one obtains
the identity

Ē = ĒT R. (7)

Similarly, the edge state may be divided as

z =
[
z⊤T z̃⊤C

]⊤
, (8)

where zT ∈ R(N−1) are the states of the edges corresponding
to the spanning tree GT and zC ∈ RM̄−N+1 are the states of
the remaining edges. Moreover, using (7) we have that

z = R⊤zT . (9)

Then, from (4), applying (7) and (9), we obtain a reduced-
order model

żT = Ē⊤
T F (x)− Ē⊤

T ĒW̄R⊤zT + Ē⊤
T u. (10)

Note that, since Ē is the incidence matrix of a complete
graph on N nodes, it is known. Moreover, any arbitrary
spanning tree contained in the complete graph may be chosen
for defining (5) and (8). Now, using the notation in (4),
the topology identification problem reduces to estimating the
diagonal entries of matrix W̄ , i.e. the weights w̄k. On the
other hand, the synchronization problem is transformed into
the stabilization of the origin for the reduced-order system
(10). Indeed, from (9) zT → 0 implies z → 0, and the latter
is equivalent to xi − xj → 0 for all i, j ∈ V .

III. MAIN RESULT

A. Simultaneous identification and synchronization

The control goal is to design the external input u in
order to simultaneously identify the unknown graph topology
G (the edge weights w̄k) and synchronize the dynamical
systems (1). For that purpose, the main component of the
design is to drive the network system in the edge rep-
resentation (4) to converge to the known dynamics of an
auxiliary system with state x̂. More precisely, let us define
w̄⊤ := [w̄1 · · · w̄M̄ ] ∈ RM̄ as the vector of unknown
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weights, ŵ⊤ := [ŵ1 · · · ŵM̄ ] ∈ RM̄ as the estimate of w̄,
and Ŵ := diag{ŵ}. Then, the external input is set to

u = −F (x)− c1(x− x̂(t)) + ˙̂x(t) + ĒŴ (t)ẑ(t) (11)

with the adaptive law
˙̂w = −Ẑ(t)Ē⊤Ēz̃, (12)

where c1 is a positive constant, z̃ := z−ẑ(t) = Ē⊤(x−x̂(t)),
ẑ(t) := Ē⊤x̂(t), Ẑ(t) := diag{ẑ(t)}.

Define w̃ := w̄ − ŵ, ξ⊤ :=
[
z̃⊤ w̃⊤], and let ϕ(t, ξ) :

R≥0 × R2M̄ → RM̄ , (t, ξ) 7→ ϕ(t, ξ) be a function to be
defined later. Let ρ : R≥0 → R≥0 be a continuous non-
decreasing function. Assume that for all ξ ∈ RM̄ and almost
all t ∈ R≥0

max

{
|ϕ(·)|,

∣∣∣∣∂ϕ(·)∂t

∣∣∣∣ , ∣∣∣∣∂ϕ(·)∂ξ

∣∣∣∣} ≤ ρ(|ξ|). (13)

Then, the update law for the auxiliary variable x̂(t) (for ẑ(t)
in edge form) is given by

˙̂z = −c2ẑ + Ē⊤ϕ(t, ξ) (14)

where c2 is a positive constant.
From (4), (11), and (12) we have that the closed-loop

system is given by (14) and[
˙̃z
˙̃w

]
=

[
−c1I − Ē⊤ĒW̄ −Ē⊤ĒẐ(t)

Ẑ(t)Ē⊤Ē 0

] [
z̃
w̃

]
, (15)

or, equivalently, using the identities (7) and (9), by[
˙̃zT
˙̃w

]
=

[
−c1I − Ē⊤

T ĒT RW̄R⊤ −Ē⊤
T ĒT RẐ(t)

Ẑ(t)R⊤Ē⊤
T ĒT RR⊤ 0

] [
z̃T
w̃

]
.

(16)
The main result, presented in Proposition 1 below, relies

on designing the signal ẑ(t) to be persistently exciting (PE)
through the design of ϕ—see Appendix I for a definition.
Indeed, systems in the form of (15) and (16) have been
studied for decades in adaptive control and are known to
be globally exponentially stable if ẑ(t) is PE [13]. Although
this would allow us to identify the unknown topology, as in
[10] synchronization of the multi-agent system would be pre-
vented even when the topology has been correctly estimated.
In order to identify the topology and simultaneously achieve
synchronization, in this paper we design ϕ to be uniformly
δ-persistently exciting (uδ-PE)—see Appendix I.

Proposition 1: Let ϕ : R≥0 × R2M̄ → RM̄ , (t, ξ) 7→
ϕ(t, ξ) satisfying (13). Then, if ϕ is uδ-PE in the sense
of Definition 2 in Appendix I, the origin of the closed-
loop system (16) with ẑ(t) given by the update law (14)
is uniformly globally asymptotically stable and the topology
of network (4) is identified by the estimate ŵ, that is,
w̄ = lim

t→∞
ŵ(t) with the update law (12). Moreover, the

system achieves synchronization, i.e. xi(t) − xj(t) → 0 as
t → ∞ for all i, j ∈ V or, equivalently, zk(t) → 0 as t → ∞
for all k ≤ M̄ . □

Proof: The total derivative of the Lyapunov function
V1(z̃T , w̃) = 1

2

[
|z̃T |2 + |w̃|2

]
along (16) yields

V̇1(z̃T , w̃) ≤ −c1|z̃T |2 ≤ 0. (17)

From (17) we conclude that the system (16) is uniformly
globally stable. Therefore, the solutions ξ(t, t0, ξ0) are uni-
formly globally bounded.

Now, for the auxiliary system (14) consider the Lyapunov
function V̂ (ẑ) := 0.5|ẑ|2 whose total derivative satisfies

˙̂
V (ẑ) ≤− c2|ẑ|2 + |ẑ||Ē||ϕ(t, ξ)|

≤ − c′2|ẑ|2 + |ρ(|ξ|)|2
≤− c′2|ẑ|2 + σ,

(18)

where the last inequality follows from the fact that the solu-
tions ξ(t, t0, ξ0) are uniformly globally bounded, hence, there
exists a positive constant σ such that |ρ(|ξ(t, t0, ξ0)|)|2 ≤ σ
for all t. Similarly, from (18) we conclude that the solutions
ẑ(t, t0, ẑ0) are uniformly globally bounded. Therefore, since
all the assumptions in Lemma 3 in Appendix I are satisfied,
ẑ(t) is uδ-PE with respect to ξ.

Then, invoking Lemma 4 in Appendix I we conclude that
the origin of (16), and therefore that of (15), is uniformly
globally asymptotically stable. Therefore, lim

t→∞
ŵ = w̄.

Moreover, since lim
t→∞

ξ(t) = 0 we have that, from (18),
lim
t→∞

ẑ(t) = 0. Therefore, lim
t→∞

z(t) = 0, i.e., the system
asymptotically reaches synchronization.

Remark 1: The proof of Proposition 1 relies on the fact
that ϕ in (14) is uδ-PE with respect to ξ. As a matter of
fact, Proposition 1 still holds even if ϕ is uδ-PE “only” with
respect to w̃—cf. [14]. However, for this purpose, one would
have to design ϕ dependent on w̃, hence, on w̄ which are
the unknown weights to estimate. Therefore, in the following,
we study the stability properties of (16) and (14) when ϕ is
uδ-PE “only” with respect to z̃. •

Proposition 2: Let ϕ : R≥0 × RM̄ × Rnθ → RM̄ ,
(t, z̃, θ) 7→ ϕ(t, z̃, θ), be parameterized by the free constants
θ ∈ Θ ⊂ Rnθ . Moreover, let ρ : R≥0 → R≥0 be a continuous
non-decreasing function and denote ϕθ(t, z̃) := ϕ(t, z̃, θ)
satisfies

max

{
|ϕθ(·)|,

∣∣∣∣∂ϕθ(·)
∂t

∣∣∣∣ , ∣∣∣∣∂ϕθ(·)
∂z̃

∣∣∣∣} ≤ ρ(|z̃|). (19)

Then, if ϕθ is uδ-PE with respect to z̃, the origin of the
closed-loop system (16) with ẑ(t) given by the update law

˙̂z = −c3ẑ + Ē⊤ϕθ(t, z̃) (20)

is uniformly semiglobally practically asymptotically stable
on Θ. □

Proof: We begin by introducing the following result.
Consider the parameterized nonlinear time-varying system[

ẋ1

ẋ2

]
=

[
A Bϕθ(t, x1)

⊤

−ϕθ(t, x1)B
⊤ 0

] [
x1

x2

]
(21)

where x⊤ :=
[
x⊤
1 x⊤

2

]
, ϕθ(t, x1) := ϕ(t, x1, θ), ϕ : R≥0 ×

Rn×Rnθ → Rn is piece-wise continuous in t and continuous
in x1, with θ ∈ Θ ⊂ Rnθ a constant free parameter.

Lemma 1: For system (21) suppose there exists a contin-
uous non-decreasing function ρ : R≥0 → R≥0 such that

max

{
|ϕθ(·)|,

∣∣∣∣∂ϕθ(·)
∂t

∣∣∣∣ , ∣∣∣∣∂ϕθ(·)
∂x1

∣∣∣∣} ≤ ρ(|x1|). (22)

395



Furthermore, assume that for any Q = Q⊤ > 0 there exist
P = P⊤ > 0 such that A⊤P+PA = −Q. Then, if ϕθ(t, x1)
is uδ-PE with respect to x1, the origin of (21) is uniformly
semiglobally practically asymptotically stable on Θ. □

Proof: First consider the Lyapunov function V1 :=
x⊤Px, which satisfies

α1|x|2 ≤ V1(t, x) ≤ α2|x|2 (23)
V̇1 ≤ −α3|x1|2 (24)

with α1 := λmin(P ), α2 := λmax(P ), and α3 := λmin(Q).
Next, let us define the functions

V2(t, x) := −x⊤
1 Bϕθ(t, x1)

⊤x2 (25)

V3(t, x) := −
∫∞
t

e(t−τ)
∣∣Bϕθ(τ, x1)

⊤x2

∣∣2 dτ (26)
V4(t, x) := V2(t, x) + V3(t, x). (27)

Note that for any ∆ > 0, in view of ϕθ being uδ-PE, (22),
and Lemma 2, (25) satisfies, for all (t, x) ∈ R× B(∆)

V4(t, x) ≤ b|x1|ρ(|x1|)|x2| − γθ(|x1|)|x2|2 (28)

where b := |B| and γθ(|x1|) := eϑ∆(|x1|)γ∆(|x1|, θ).
We proceed now to evaluate the total derivative of V4(t, x)

along the trajectories of the system. First, we have

V̇2(t, x) = x⊤
1 Bϕθ(t, x1)

⊤ϕθ(t, x1)B
⊤x1

− x⊤
2 ϕθ(t, x1)

⊤B⊤Bϕθ(t, x1)x2

− x⊤
2 ϕθ(t, x1)

⊤B⊤Ax1 − x⊤
2

˙︷ ︸︸ ︷
ϕθ(t, x1)B

⊤x1

= V2(t, x)− |Bϕθ(t, x1)x2|2 +
∣∣ϕθ(t, x1)B

⊤x1

∣∣2
− x⊤

2 ϕθ(t, x1)
⊤B⊤(A− I)x1

− x⊤
2

˙︷ ︸︸ ︷
ϕθ(t, x1)B

⊤x1.
(29)

Next, we write

∂V3

∂x1
= −

∫ ∞

t

2e(t−τ)x⊤
2 ϕθ(τ, x1)B

⊤B

[
∂ϕθ(τ, x1)

x1

⊤
x2

]
dτ

∂V3

∂x2
= −

∫ ∞

t

2e(t−τ)ϕθ(τ, x1)B
⊤Bϕθ(τ, x1)

⊤x2dτ

∂V3

∂t
=
∣∣Bϕθ(τ, x1)

⊤x2

∣∣2−∫ ∞

t

∂

∂t

[
e(t−τ)

∣∣Bϕθ(τ, x1)
⊤x2

∣∣2]dτ.
Finally, from (22) and (28) we can obtain a bound for
the derivative of (25). Define bρ := bρ(∆) and ρ̄(r, s) :=
bρ

[
5rs+ bρr

2 + bρs
2
]
, then, for (t, x) ∈ R× B(∆),

V̇4(t, x) ≤ ρ̄(|x1|, |x2|)− γθ(|x1|)|x2|2. (30)

Now, consider the candidate Lyapunov function V (t, x) :=
V1(t, x) + εV4(t, x), with ε a small positive constant to be
defined. Notice that in view of (28), V4(t, x) satisfies on
R×H(δ,∆)

−εγθ(∆)|x2|2 − εbρ|x1||x2| ≤ εV4(t, x) ≤εbρ|x1||x2|
− εγθ(δ)|x2|2.

(31)

So, from (23) and (31), for any ∆ > δ > 0 and for a
sufficiently small ε, there exist αδ,∆ > 0 and αδ,∆ > 0
such that for all (t, x) ∈ R×H(δ,∆)

αδ,∆|x|2 ≤ V (t, x) ≤ αδ,∆|x|2. (32)

Using (24) and (30) the total derivative of V (t, x) satisfies,
for all (t, x) ∈ R×H(δ,∆),

V̇ (t, x) ≤− α3|x1|2 − 5εbρ|x1||x2|+ εb2ρ|x1|2 + εb2ρ|x2|2

− εγθ(δ)|x2|2.
Choosing θ∗(δ,∆) such that γθ(δ) ≥ 2b2ρ we have

V̇ (t, x) ≤ −(α3−εb2ρ)|x1|2−5εbρ|x1||x2|−εb2ρ|x2|2, (33)

and, for a sufficiently small ε, there exists c > 0 such that

V̇ (t, x) ≤ −c|x|2. (34)

The result follows from (32), (34), and [15, Theorem 10].
Following the same analysis as in the proof of Proposi-

tion 1 we can conclude that ẑ(t), given by the update law
(20), is uδ-PE with respect to z̃. Therefore, the proof follows
from Lemma 1 replacing x1, x2, A, B, and ϕθ by z̃, w̃,
−c1I − Ē⊤ĒW̄ , −Ē⊤Ē, and Ẑ, respectively.

Remark 2: An example of the parameterized uδ-PE func-
tion ϕθ in (20) can be given as

ϕθ(t, z̃) = tanh
(
κĒz̃

)
sin(t), (35)

where κ ≡ θ∗(δ,∆) is the design parameter that can be
chosen large enough so that the ultimate bound of the
estimation error is as small as desired. Note that (35) is uδ-
PE with respect to z̃ as per Definition 2 in Appendix I. •

IV. NUMERICAL EXAMPLE

We consider a network of N = 10 agents modeled by
(1) with an interaction determined by the unknown topology
G(V, E ,W ), represented in Fig. 1. The objective is to esti-
mate the unknown weights w̄ij . For this purpose, the external
input u is given by (11) with (12) and (20), where

ϕθ(t, z̃) = tanh
(
κĒz̃

)
pe(t)

pe(t) = 2 sin(πt) + 0.3 cos(6πt)− 0.5 sin(8πt)

and the control gains are taken as c1 = 1, c3 = 0.5, κ = 200.

1
2

3

4

5
6

7

8

9

10

Fig. 1: Connected undirected topology graph of the network.

The simulation results are presented in Figs. 2-4. As can
be clearly seen from Fig. 2, the estimation errors of the
weights w̄ij converge to the origin, successfully identifying
the unknown topology, which is given by the values of the
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estimated weights in Fig. 3. Note that, as predicted by the
theoretical results, the estimation error of the weights does
not converge exactly to the origin, but rather to a small
neighborhood of the origin, hence exact identification is not
achieved. However, this small neighborhood can be made
arbitrarily small by tuning the parameter κ in the uδ-PE
function ϕθ. Indeed, in Fig. 5 we present the estimation errors
with κ = 20 and it is clear that the steady state errors are
larger than for the case in Fig. 5 with κ = 200. Finally, note
that the topology is successfully identified (up to a small
tunable error), as predicted by the theory, despite the system
reaching synchronization, and therefore not satisfying the
Linear Independence Condition, as can be seen from Fig. 4.

0 20 40 60 80 100

−0.2

0

0.2

0.4

t [s]

w̃ −1
0
1
2

·10−2

Fig. 2: Estimation errors of the graph weights (κ = 200).
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0
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0.6

t [s]

ŵ

Fig. 3: Estimated values of the graph weights.

0 20 40 60 80 100
−4

−2

0

2

4

t [s]

z̃ k

Fig. 4: Evolution of the synchronization errors.

V. CONCLUSIONS

We presented a new method for simultaneous synchroniza-
tion and identification of the topology of a complex dynam-
ical network. The design is based on the edge-agreement

0 20 40 60 80 100

−0.2

0

0.2

0.4

t [s]

w̃ −1
0
1
2
·10−2

Fig. 5: Estimation errors of the graph weights (κ = 20).

framework and on an known auxiliary network which is
designed to be δ-persistently exciting. Under the proposed
algorithm, the topology is successfully identified without
requiring the verification of the Linear Independence Condi-
tion, and synchronization is achieved once the actual topol-
ogy has been estimated. It is important to emphasize that,
beyond mere convergence, we establish uniform semiglobal
practical asymptotical stability of the estimation error. We
believe that these properties may be useful to extend the
current approach to more complex dynamical models and to
establish finite- or fixed-time estimation and synchronization.
The latter is the topic of current and further research.

APPENDIX I
ON PERSISTENCY OF EXCITATION AND δ-PERSISTENCY

OF EXCITATION

Definition 1 (Persistency of excitation): A function ϕ :
R≥0 → Rn is said to be PE if there exist T > 0 and µ > 0
such that, for all t ∈ R∫ t+T

t

|ϕ(τ)|dτ ≥ µ. (36)

The following is adapted from [16] to better fit the content
of this paper. See also [12]. Let x ∈ Rn be partitioned as
x⊤ :=

[
x⊤
1 x⊤

2

]
where x1 ∈ Rn1 and x2 ∈ Rn2 . Define

the column vector function ϕ : R × Rn → Rm and the set
D1 := (Rn1\{0})× Rn2 .

Definition 2 (δ-persistency of excitation): A function
ϕ(·, ·) where t 7→ ϕ(t, x) is locally integrable and
x 7→ ϕ(t, x) is uniformly continuous in t, is said to be
uδ-PE with respect to x1 if and only if for each x ∈ D1

there exist T > 0 and µ > 0 such that, for all t ∈ R∫ t+T

t

|ϕ(τ, x)|dτ ≥ µ. (37)

If ϕ(·, ·) is uδ-PE with respect to the whole state x the it
is simply said that ϕ(·, ·) is uδ-PE.

The following characterization of uδ-PE, presented in [16],
is a technical tool used in the proof of convergence.

Lemma 2: For each ∆ > 0 there exist γ∆ ∈ K and ϑ∆ :
R>0 → R>0 continuous strictly decreasing such that

{|x1|, |x2| ∈ [0,∆] \{x1 = 0}}

=⇒
∫ t+ϑ∆(|x1|)

t

|ϕ(τ, x)|dτ ≥ γ∆(|x1|), (38)
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for all t ∈ R. □
The next Lemma establishes that the output of a strictly

proper stable filter driven by a uδ-PE input conserves such
property. A reminiscent version of the lemma was originally
presented in [14]. For completeness we rewrite it here with
a different proof.

Lemma 3 (Filtration property): Let ϕ : R≥0 ×Rn → Rm

and consider the system[
ẋ
ω̇

]
=

[
f(t, x, ω)

f1(t, ω) + f2(t, x)ω + ϕ(t, x)

]
(39)

with f1 : R≥0 × Rn → Rm is Lipschitz in ω uniformly in
t and measurable in t and satisfies |f1(·)| ≤ |ω| for all t;
f2 : R≥0×Rn → Rm×m is locally Lipschitz in x uniformly
in t and measurable in t. Assume that ϕ(t, x) is uδ-PE with
respect to x. Assume also that ϕ is locally Lipschitz and there
exists a non-decreasing function α : R≥0 → R≥0, such that,
for almost all (t, x) ∈ R≥0 × Rn:

max

{
|ϕ(·)|, |f(·)|, |f2(·)|,

∣∣∣∣∂ϕ(·)∂t

∣∣∣∣ , ∣∣∣∣∂ϕ(·)∂x

∣∣∣∣} ≤ α(|x|).
(40)

Assume further that all solutions t 7→ xϕ of (39), with x⊤
ϕ =[

x⊤ ω⊤], are defined in [t0,∞) and satisfy

|xϕ(t, t0, xϕ0)| ≤ r ∀t ≥ t0, (41)

then ω is uδ-PE with respect to x. □
Proof: Defining ρ = −ω⊤ϕ we have that

ρ̇ =− |ϕ|2 − ϕ⊤f1 − ω⊤
[
f2ϕ+

∂ϕ

∂t
+

∂ϕ

∂x
f

]
≤− |ϕ|2 + 2|ω|

[
α2(r) + α(r)

]
=: −|ϕ|2 + c(r)|ω|.

Inverting the sign and integrating both sides from t to t+Tf ,
with Tf := (k + 1)T , we obtain that

ω(t)⊤ϕ(t, x)− ω(t+ Tf )
⊤ϕ(t+ Tf , x)

≥
∫ t+Tf

t

|ϕ(τ, x)|2dτ +

∫ t+(k+1)T

t

c(r)|ω(τ)|dτ (42)

Using the bounds in (40) and (41) on the left-hand side of
inequality (42), the latter is equivalent to

2α(r)r ≥
∫ t+Tf

t

|ϕ(τ, x)|2dτ +

∫ t+Tf

t

c(r)|ω(τ)|dτ.

Since ϕ(t, x) is uδ-PE, there exists µ such that∫ t+Tf

t

|ϕ(τ, x)|2dτ ≥ (k + 1)µ2.

Then we obtain∫ t+Tf

t

|ω(τ)|dτ ≥ k + 1

c(r)
µ2 − 2α(r)r

c(r)
.

Finally, choosing k large enough so that k ≥ 2α(r)r we
obtain that ω(t) is uδ-PE with respect to x.

The following lemma presented originally in [12] is in-
cluded here for completeness. Consider the nonlinear time-
varying system[

ẋ1

ẋ2

]
=

[
A Bϕ(t, x(t))⊤

−ϕ(t, x(t))C⊤ 0

] [
x1

x2

]
(43)

where x⊤ :=
[
x⊤
1 x⊤

2

]
, the function ϕ : R≥0×Rn+m → Rm

is piece-wise continuous in t and continuous in x.
Lemma 4: For the system (43) suppose that there exist

continuous non-decreasing functions αi : R≥0 → R≥0, i =
1, 2, such that

|ϕ(t, x)| ≤ α1(|x|),

max

{∣∣∣∣∂ϕ(t, x)∂t

∣∣∣∣ , ∣∣∣∣∂ϕ(t, x)∂ξ

∣∣∣∣} ≤ α2(|x|)

and assume that ϕ(t, x(t)) is uδ-PE with respect to x. If the
triple (A, B, C) satisfies the Kalman-Yakubovich-Popov
(KYP) lemma, i.e. there exist P = P⊤ > 0 and Q = Q⊤ >
0 such that A⊤P +PA = −Q and PB = C, then the origin
of (43) is uniformly globally asymptotically stable. □
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